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Abstract

Background: Plant viruses are useful expression vectors because they can mount systemic infections allowing
large amounts of recombinant protein to be produced rapidly in differentiated plant tissues. Pepino mosaic virus
(PepMV) (genus Potexvirus, family Flexiviridae), a widespread plant virus, is a promising candidate expression vector
for plants because of its high level of accumulation in its hosts and the absence of severe infection symptoms. We
report here the construction of a stable and efficient expression vector for plants based on PepMV.

Results: Agroinfectious clones were produced from two different PepMV genotypes (European and Chilean), and
these were able to initiate typical PepMV infections. We explored several strategies for vector development
including coat protein (CP) replacement, duplication of the CP subgenomic promoter (SGP) and the creation of a
fusion protein using the foot-and-mouth disease virus (FMDV) 2A catalytic peptide. We found that CP replacement
vectors were unable to move systemically and that vectors with duplicated SGPs (even heterologous SGPs)
suffered from significant transgene instability. The fusion protein incorporating the FMDV 2A catalytic peptide gave
by far the best results, maintaining stability through serial passages and allowing the accumulation of GFP to 0.2-
04 g per kg of leaf tissue. The possible use of PepMV as a virus-induced gene silencing vector to study gene
function was also demonstrated. Protocols for the use of this vector are described.

Conclusions: A stable PepMV vector was generated by expressing the transgene as a CP fusion using the
sequence encoding the foot-and-mouth disease virus (FMDV) 2A catalytic peptide to separate them. We have
generated a novel tool for the expression of recombinant proteins in plants and for the functional analysis of virus
and plant genes. Our experiments have also highlighted virus requirements for replication in single cells as well as

intercellular and long-distance movement.

Introduction

Pepino mosaic virus (PepMV) is a widespread plant
virus that causes a major disease of tomato crops world-
wide [1-11]. PepMV belongs to the genus Potexvirus
(family Flexiviridae) and, like other members of this
genus, has virions that are non-enveloped flexuous rods
508 nm in length [12]. The PepMV genome is a single-
stranded RNA molecule approximately 6.4 kb in length,
comprising five open reading frames (ORFs) flanked by
5 and 3’ untranslated regions (UTRs) with a 5’-cap and
a 3’ poly-A tail. The ORFs encode a 164-kDa RNA-
dependent RNA polymerase (RdRp); three triple gene
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block (TGB) proteins named TGBp1 (26 kDa), TGBp2
(14 kDa) and TGBp3 (9 kDa); and a 25-kDa coat protein
(CP) [1,13]. Gene expression is thought to be similar to
that in other potexviruses, i.e. the viral replicase is
expressed from the genomic RNA (gRNA) whereas the
TGB proteins are expressed from subgenomic RNAs
(sgRNAs) 1 and 2, and the CP from sgRNA3 [1,13-15].
However, none of the above has been established
empirically for PepMV, and little is known about its
molecular interactions with host cells.

PepMV is a promising candidate expression vector for
plants because of its high level of accumulation in its hosts
and the absence of severe infection symptoms for some
isolates, factors that have already led to the development
of other potexvirus vectors [16,17]. Plant viruses are useful
expression vectors because they can mount systemic infec-
tions allowing large amounts of recombinant protein to be
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produced rapidly in differentiated plant tissues, which
makes them particularly suitable for the production of
subunit vaccines [18-22]. However, they are also useful for
basic research, e.g. as virus-induced gene silencing (VIGS)
tools for reverse genetic studies of gene function [23-29]
or to investigate the molecular basis of plant-virus interac-
tions [16,30,31].

Many different approaches have been used to convert
viruses into expression vectors, including gene replace-
ment, gene insertion, epitope presentation and comple-
mentation [16,17,32-36]. Vectors based on tobacco
mosaic virus (TMV), potato virus X (PVX), alfalfa
mosaic virus (AMV), cucumber mosaic virus (CMV),
and cowpea mosaic virus (CPMV) have been engineered
as expression vectors and used to produce functional
recombinant proteins including vaccines, antigens and
enzymes [32,34,37-45]. Early vectors suffered from lim-
itations such as instability and low yields, but this has
been addressed by the genetic modification of vector
sequences and by delivering virus vectors into plant
cells using Agrobacterium tumefaciens [39,40].

Here we describe the development of a PepMV-based
vector capable of systemic reporter gene expression in
Nicotiana benthamiana plants. We explored different
strategies to achieve stable transgene expression, includ-
ing CP gene substitution, duplication of the CP subge-
nomic promoter (SGP) and the creation of a
translational gene fusion. A stable PepMV vector was
generated by expressing the transgene as a CP fusion
using the sequence encoding the foot-and-mouth dis-
ease virus (FMDYV) 2A catalytic peptide to separate
them. We have generated a novel tool for the expression
of recombinant proteins in plants, for the analysis of
PepMV-plant interactions and for gene function studies.
Our experiments have also highlighted virus require-
ments for replication in single cells as well as intercellu-
lar and long-distance movement.

Results

Agroinfectious PepMV clones

Isolates PepMV-Sp13 (European tomato genotype) and
PepMV-Ps5 (Chilean genotype) [3,13] were used to pro-
duce agroinfectious clones [46]. Full-length cDNAs gen-
erated by RT-PCR were inserted into vector pBIN61
[47] between the cauliflower mosaic virus (CaMV) 358
promoter and the nos terminator, generating plasmids
pBPepXL6 (for PepMV-Sp13) and pBPepPs5 (for
PepMV-Ps5). Agroinfiltration of N. benthamiana leaves
with A. tumefaciens containing either of the plasmids
revealed that both clones were infectious, and very effi-
cient (100% of plants were infected in each experiment).
Agroinoculated plants developed symptoms identical to
those induced by the original virus isolates, including
mild mosaics, leaf bubbling and stunting. Plants
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agroinfiltrated with pBPepXL6 showed mild symptoms
by 5 days post inoculation (dpi), whereas pBPepPs5
induced more severe symptoms, although these did not
appear until 10 dpi. In both cases, infection was readily
transmitted to other plants via sap. Dot-blots of total
RNA extracted from systemically infected leaves from
all the inoculated plants generated a strong hybridiza-
tion signal when probed with a PepMV replicase
sequence, confirming replication and movement of the
virus (data not shown). We elected to develop
pBPepXL6 as a vector because infection was faster, but
accompanied by milder symptoms.

Deletion or replacement of the PepMV coat protein gene
As a first step in vector development, we produced
PepMYV clones in which the CP gene was either mutated
or replaced (Figure 1a). In PepXL6agg the first AUG
codon was mutated to abolish CP expression, whereas
in PepGFPACP most of the CP gene was replaced with
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Figure 1 Multiplication of PepMV CP-mutants in N. benthamiana
protoplasts. (a) Schematic representation of PepXL6 and its derived
CP mutants (PepXL6agg and PepGFPACP). RdRp-RNA-dependent RNA
polymerase ORF; TG1, TGB2 and TGB3-triple gene block ORFs; CP-coat
protein ORF. (b) Northern blot of total RNA prepared from N.
benthamiana protoplasts 24 h post inoculation, hybridized with a
replicase-specific RNA probe. Ethidium bromide-stained rRNA is shown
(bottom panels).
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the gene for green fluorescent protein (GFP) to create
an in-frame fusion (Figure 1a). We produced two sets of
three constructs (PepXL6agg, PepGFPACP and wild-
type PepXL6), one set retaining the CaMV 35S promo-
ter and nos terminator for expression in planta, and the
other using the T7 promoter for run-off in vitro tran-
scription. Northern blots of total RNA extracted from
N. benthamiana protoplasts transfected with in vitro
transcribed viral RNA showed that virus replication effi-
ciency was construct-dependant, with PepGFPACP
accumulating to similar levels as the wild type, but
PepXL6agg accumulating in reproducibly lower amounts
(Figure 1b). CP expression therefore does not appear
necessary for PepMV replication, but the presence of a
translatable ORF in the place of the CP ORF appears to
promote virus accumulation at the single-cell level.

Next, we agroinfiltrated N. benthamiana leaves with
PepGFPACP in the presence of pBpl9 (expressing the
silencing suppressor P19) to avoid any time-dependant
decline in GFP fluorescence [48]. GFP was typically
observed in single epidermal and mesophyll cells (Figure
2a, left). Groups of three fluorescent cells were observed
occasionally, but the fluorescence did not move to adja-
cent cells. Importantly, the number of cells expressing
GFP in the area agroinfiltrated with pBPepGFPACP was
very low compared to the control construct, pBGFP
(Figure 2a, right). These results confirmed that although
the CP is unnecessary for PepMV replication in single
cells, it is required for virus movement, as shown for
other potexviruses [49-51].

We carried out additional agroinfiltration experiments
to determine whether CP provided in trans could comple-
ment PepGFPACP and restore intercellular movement.
This was achieved by co-infiltrating N. benthamiana
leaves with pBPepGFPACP and pBINCPep, containing the
CP gene. Confocal laser scanning microscopy revealed
that ~90% of the GFP foci in co-infiltrated leaves consisted
of multiple (usually more than nine) cells (Figure 2b), con-
firming that PepMV CP movement functions could be
provided in trans.

PepMV vectors with a duplicated subgenomic mRNA
promoter

We next designed two full-length PepMV-GFP vectors,
each carrying a duplicated CP subgenomic mRNA pro-
moter (SGP). In Pep5.128, the GFP gene was posi-
tioned downstream the CP gene, whereas in Pep501 it
was positioned upstream (Figure 3a). The duplicated
SGP began 76 bp upstream of the CP start codon and
ended 36 bp downstream, with the upstream sequence
containing the potexvirus-specific octanucleotide 5’-
GTTAAGTTT-3 [52,53]. The corresponding cDNAs
were inserted into pBIN61 between the CaMV 35S
promoter and nos terminator as above, resulting in
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Figure 2 Effect of CP deletion on PepMV multiplication in
agroinfiltrated N. benthamiana tissues, with and without CP
trans complementation. (a) Leaves agroinfiltrated with
pPBPepGFPACP (left) and pBGFP (rigth) at 6 days post inoculation
(dpi). (b) Leaves co-agroinfiltrated with pBPepGFPACP and the
construct for CP expression, at 6 dpi (left) and 10 dpi (right). The
agroinfiltration assays were carried out in the presence of pB19.
Photographs at 6 dpi were taken by confocal laser scanning
microscopy and the photograph at 10 dpi was taken under
illumination with a handheld UV lamp.

constructs pBPep501 and pBPep5.128. N. benthamiana
leaves were agroinfiltrated with these plasmids in the
presence of pBp19 and GFP expression was monitored
from 3-15 dpi. In each case, fluorescence was detected
in the agroinfiltrated leaves and systemically by 5 dpi,
confirming that the mutants were infectious and cap-
able of intercellular movement (Figure 3b). However,
virus spreading could only be monitored up to 10 dpi
because GFP fluorescence fell below the detection
threshold at this time. Northern blots of total RNA
extracted from infected plants (agroinfiltrated and sys-
temically-infected leaves) at different time-points
revealed a signal corresponding to the predicted size of
GFP-CP sgRNA by 5 dpi (Figure 3b, lane 2, marked
with star) but this band was no longer visible by 7 dpi,
another band matching the expected size of the wild
type CP sgRNA was observed (Figure 3c, lane 3). This
suggested that the GFP transgene had been excised
from the vector genome by recombination during the
course of the infection.
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Figure 3 PepMV vectors containing a duplicated subgenomic
mRNA promoter. (a) In Pep5.128, the GFP gene was positioned
downstream of the CP gene, whereas it was positioned upstream of
the CP gene in Pep501. The duplicated SGP spanned positions -76
to +36 relative to the CP start codon. Pep352 and Pep640 include
successive deletions at the 3’ end of the putative CP SGP. SGP-CP
subgenomic mRNA promoter; SGPd-duplicated CP subgenomic
mRNA promoter. (b) Green fluorescence visible in systemically-
infected N. benthamiana leaves from plants agroinfiltrated with
pBPep501 at 5 and 7 dpi. (c) Northern blot of leaf tissue hybridized
with a CP-specific RNA probe to determine Pep501 stability. Total
RNA was prepared from systemically-infected leaves at 5 and 7 dpi.
The band corresponding to the GFP-CP sgRNA is marked with star.
Ethidium bromide-stained rRNA is shown (bottom panels). (d) N.
benthamiana leaves infiltrated with pBPep352 or pBPep501 vectors,
showing fluorescence emitted under UV illumination with a
handheld UV lamp. Photographs were taken at 5 or 7 dpi.

In an effort to improve stability, we attempted to
reduce the size of the CP SGP by eliminating sequences
from the 3’ end (Pep352 contained 21 bp of the CP
gene and Pep640 contained 12 bp, as shown in Figure
3a). The corresponding cDNAs were inserted into
pBING61 as described above and introduced into N.
benthamiana leaves by agroinfiltration in the presence
of pBp19. No fluorescence was observed in plants inocu-
lated with Pep640 (data not shown), but fluorescence
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was detected in plants inoculated with Pep352 by 4 dpi
both in agroinfiltrated and systemically-infected leaves.
However, fluorescence was 55% less intense than in
plants inoculated with Pep501, and began to decline by
7 dpi, suggesting even greater instability (Figure 3d).

PepMYV vectors with a heterologous CP subgenomic
mRNA promoter

To reduce the likelihood of excision by recombination,
we constructed a vector based on PepMV-Sp13 that
contained the GFP from the heterologous CP SGP of
PepMV-Ps5. In this vector, named Pep505, the GFP
gene was placed downstream of the CP gene (Figure
4a). Pep505 was capable of replication and systemic
infection in N. benthamiana plants but was less efficient
than Pep501. Systemic GFP fluorescence was observed
by 5 dpi but had begun to decline in upper leaves by 7
dpi (Figure 4b). Northern blots of total RNA from
infected plants (agroinfiltrated and systemically-infected
leaves) at different time-points were hybridized with a
probe specific for the CP gene (Figure 4c), showing the
presence of a band of the predicted size for the CP-GFP
sgRNA at 7 dpi (Figure 4c, lane 1, marked with star). In
systemically-infected leaves, however, this signal began
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Figure 4 PepMV vectors with a heterologous CP subgenomic
mRNA promoter. (a) Schematic representation of Pep505. SGP-Ps5
corresponds to the PepMV Ps5 (Chilean genotype) CP subgenomic
MRNA promoter. (b) Fluorescence in systemically-infected leaves of
N. benthamiana plants agroinfiltrated with pBPep505. Plants were
photographed under illumination with a handheld UV lamp at 7
dpi. (c) Northern blot of total RNA from leaf tissues hybridized with
a CP-specific RNA probe to determine Pep505 stability. Total RNA
was prepared from agroinfiltrated (IN) and systemically-infected
(SYS) leaves at 7 and 10 dpi. The band corresponding to the CP-GFP
sgRNA is marked with star. Ethidium bromide-stained rRNA is shown
(bottom panels).
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to fade between 7 and 10 dpi, and was replaced with a
signal matching the predicted size of the wild-type CP
gene. The heterologous sequence therefore did not
improve vector stability.

PepMV vectors including the FMDV 2A catalytic peptide
sequence

In order to avoid sequence duplication, we explored an
alternative expression strategy based on a CP fusion that
included the FMDV 2A catalytic peptide sequence [54],
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resulting in vector pBPepGFP2a (Figure 5a). Following
agroinfiltration, green fluorescent spots visible to the
naked eye when leaves were illuminated with a handheld
UV lamp appeared by 3-4 dpi. Subsequent long-distance
movement of the virus to developing leaves led to the
appearance of intense green fluorescence in systemically
infected leaves 7-10 dpi (Figure 5b). The movement of
PepGFP2a was therefore slower than Pep501, where sys-
temic fluorescence was visible 5-6 dpi (Figure 3b). After
12 dpi, almost the complete plant expressed fluorescence,
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Figure 5 PepMV vector including a GFP:CP fusion separated by the FMDV 2A catalytic peptide sequence. (a) Schematic representation of
PepGFP2a. The position of the 2A sequence insertion is indicated. (b) Fluorescence in systemically infected N. benthamiana leaves from plants
agroinfiltrated with pBPepGFP2a. (c) Northern blot of leaf tissue hybridized with a CP-specific RNA probe to determine PepGFP2a stability. Total
RNA was prepared from agroinfiltrated and systemically-infected leaves showing fluorescence at 7 and 14 dpi, and from plants mechanically
inoculated with PepGFP2a at 7 dpi after the second and third passages. The band corresponding to the GFP-CP sgRNA is marked with star.
Ethidium bromide-stained rRNA is shown (bottom panels). (d) GFP expression after second and third passage of PepGFP2a. Plants were

Passae 2
’ 7 dpi




Sempere et al. Plant Methods 2011, 7:6
http://www.plantmethods.com/content/7/1/6

including aerial and subterranean parts. Mild or no visi-
ble symptoms of infection were observed during the
course of the experiment. Northern blots of total RNAs
extracted from fluorescent leaves 3-16 dpi revealed a sig-
nal corresponding in size to the CP2aGFP sgRNA (Figure
5¢, lanes 1 and 2, marked with star).

Because PepGFP2a was the most promising candidate
vector so far, we analyzed the stability of the GFP gene
during serial passages, noting that GFP fluorescence was
visible for several weeks in plants that were agroinfiltrated
directly. We found that GFP fluorescence was maintained
for up to four passages (Figure 5d), and Northern blots
carried out 7 days after each passage confirmed the struc-
tural integrity of the virus (Figure 5c). During the third
passage, at 12 dpi, GFP fluorescence began to decline in
the upper leaves of the inoculated plants; Northern blots
of total RNAs extracted from these leaves revealed a signal
corresponding to the predicted size of the wild type CP
sgRNA (data not shown), indicating that the vectors did
eventually lose their integrity.

Expression of GFP from PepGFP2a

Protein extracts from systemically-infected leaves by 10
dpi were analyzed by western blot using a CP-specific
antibody to determine whether the fusion protein was
correctly processed. This revealed the presence of both
a fusion protein (GFP2aCP) and a free CP, as well as a
third signal representing a protein slightly larger than
the free CP (Figure 6a); possibly, this third band corre-
sponds to GFP plus the 12 immunorreactive amino-
terminal amino acids of the CP fused to GFP due to the
way the construct was designed.

The levels of GFP expression in plants agroinfiltrated
with PepGFP2a were then investigated by SDS-PAGE
and western blot. Total protein extracted from systemi-
cally-infected leaves was separated by SDS-PAGE, and a
strong band migrating in the position expected for free
GFP was observed in the Coomasie-stained gel (Figure
6b, lanes 2 and 3). This band was missing from the total
protein extract prepared from leaves systemically
infected with wild-type PepMV. The identity of this
band was confirmed by western blot using an anti-GFP
antibody, revealing that fluorescent leaves contained sig-
nificant amounts of free GFP protein (Figure 6c). Rela-
tively little of the GFP2aCP fusion protein was detected,
indicating that cleavage by the 2A peptide was nearly
complete. Based on these data, plus the results of quan-
titative ELISA experiments (data not shown), we esti-
mated that expression levels of 0.2-0.4 g/kg leaf tissue
could be achieved in systemically-infected leaves.

A VIGS vector based on PepMV
Finally, we tested if PepMV could be used to generate a
VIGS vector. A 335 bp fragment of the tomato phytoene
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Figure 6 Western blot analysis of total proteins extracted from
systemically-infected leaves agroinfiltrated with PepGFP2a.
Soluble leaf proteins were separated by 15% SDS PAGE, followed by
western blotting using an antibody against (a) the CP or (c) GFP. (b)
Gel stained with Coomasie brilliant blue.

desaturase (pds) gene was inserted into the PepGFP2a
vector, replacing the gfp gene. The tomato pds fragment
selected showed a sequence identity of 93% with the
gene from N. benthamiana. Additionally, PepGFP2a was
further modified to include additional cloning sites so
that genes of interest could be inserted into Agel and
Hpal restriction sites. The resulting virus, PepPDS2a
(Figure 7a), was used to infect N. benthamiana plants.
All plants infiltrated with pBPepPDS2a began to display
different photobleaching symptoms at 3-4 weeks post-
infiltration (Figure 7b), attributed to the silencing of the
endogenous pds. The silencing phenotype was first
detected in the upper uninoculated leaves. It appeared
first as a yellow-white coloration along the veins and
then, as silencing progressed, yellow-white areas became
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Figure 7 PepMV based gene silencing vector. (a) Schematic
representation of PepPDS2a. (b) Representative leaves from N.
benthamiana plants infected with the PepPDS2a vector showing
different phenotypes of photobleaching (L1, L2 and L3). (c)
Quantification of pds mRNA levels by semi-quantitative RT-PCR in
plants inoculated with water (mock), pBPepGFP2a and pBPepPDS23,
as indicated. Lanes 1-3 correspond to mock-inoculated controls
using 20, 25 and 30 amplification cycles. Thirty cycles were used for
amplifications in lanes 4-7. L1, L2 and L3 correspond to the leaves
with different phenotypes of photobleaching shown in the panel b.
The relative (%) accumulation of pds mMRNA in relation to mock-
inoculated leaves is indicated below each lane.

visible in the leaves, covering with time almost the com-
plete leaf.

To confirm VIGS at the molecular level, semi-quanti-
tative RT-PCR was performed to compare the levels of
pds transcripts present in leaves showing different
photobleaching phenotypes (Figure 7c). The primers
used for estimation of the pds mRNA levels were
designed to anneal outside the region targeted for silen-
cing, so that only the endogenous mRNA was probed.
We used the eukaryotic elongation factor 1A (eEF1A)
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mRNA as a constitutively expressed internal control.
Quantification of the signal brightness of DNA bands
revealed that the pds mRNA was on average 80-90% less
abundant in photobleached leaves of plants infected
with PepPDS2a than in mock-inoculated leaves or in
leaves infected with PepGFP2a (Figure 7c, lanes 3 and 4,
respectively). In contrast, similar levels of eEFIA mRNA
were found in all cases (Figure 7c). As expected, pds
mRNA levels were smaller in leaves exhibiting more
complete photobleaching (L2 and L3 in Figure 7b) than
in leaves where the silencing was restricted to the veins
(L1 in Figure 7b) (Figure 7c). Taken together, these find-
ings suggest that the photobleaching symptoms in the
PepPDS2a-infiltrated N. benthamiana plants can be
attributed to silencing of the plant pds mRNA. These
results indicate that PepMV can be used as a viral vec-
tor to silence genes in N. benthamiana plants.

Discussion

In this work, two agroinfectious clones from two differ-
ent PepMV genotypes (European and Chilean), able to
initiate typical PepMV infections, were generated. We
took advantage of these agroinfectious clones to develop
a novel set of PepMV-based vectors. We investigated
three key vector development strategies, namely replace-
ment of the CP gene, duplication of the CP SGP and
CP fusion using the FMDV 2A peptide. Although potex-
viruses are generally well-characterized, few studies have
specifically focused on PepMYV and little is known about
the precise functions of its genes and proteins, and how
these control its interactions with host plants. As part of
our investigation, we have determined that the PepMV
CP is required for cell-to-cell and long-distance move-
ment, and we have gained insight into the minimal
sequence required to act as a CP SGP.

We first sought to determine the relationship between
CP expression and virus replication by constructing two
PepMV mutants in which CP expression was abolished,
in one case by a point mutation and in the other by the
replacement of most of the CP ORF. Both mutants
remained capable of replicating in protoplasts, confirm-
ing that the CP is not absolutely necessary for PepMV
replication at the single-cell level. However, CP muta-
tions in other potexviruses have been shown to reduce
the amount of plus-sense RNA accumulating in proto-
plasts suggesting that, although the CP may not be
essential for virus replication in single cells, it may sti-
mulate this process [49,50,55]. Our results appear to
rule out a direct and specific role of the CP, so we spec-
ulate that the point mutation in PepXL6agg may
increase the rate of RNA degradation because of its
untranslatable 3’ end, as shown for many other plant
mRNAs [56]. However, while our protoplast transfec-
tions were indicative, they were not strictly quantitative,



Sempere et al. Plant Methods 2011, 7:6
http://www.plantmethods.com/content/7/1/6

so without additional experiments we cannot completely
exclude the possibility that the CP may influence the
accumulation of PepMV RNA at the single-cell level.

Agroinfiltration of N. benthamiana leaves with
pBPepGFPACP showed that although CP-deficient
PepMV mutants were competent for replication, they
were unable to achieve cell-to-cell movement. This phe-
nomenon is well documented in other potexviruses
[49,50]. The movement of PepMV-CP mutants could be
restored by providing CP in trans but there were only
few infection foci, suggesting that PepGFPACP was able
to initiate infection foci but with a low efficiency. Move-
ment-deficient TMV expression vectors delivered into
N. benthamiana leaves by agroinfiltration also initiated
replication rather inefficiently, a phenomenon that was
attributed to improper processing of the primary tran-
script in the plant nucleus [57]. The authors showed
that the addition of introns and the removal of putative
splicing sites increased the proportion of infected cells
from 0.6% to 96%, and it is possible that the same strat-
egy might improve the efficiency of PepMV-based
vectors.

We constructed further PepMV vectors by duplicating
the putative CP SGP and using this additional promoter
to drive the GFP gene. Two vectors were prepared
(pBPep501 and pBPep5.128) and both infected N.
benthamiana leaves efficiently and were capable of sys-
temic movement, resulting in strong GFP expression
throughout the plant. However, this SGP duplication
made the vector unstable and possibly prone to recom-
bination; homologous recombination has been observed
in many other viral vectors, resulting sooner or later in
transgene elimination [33,38,58-61], although PVX-
based vectors are remarkably stable [16]. Dragicci and
Varrelamann [62] have shown that the frequency of
transgene elimination in PVX vectors is proportional to
the length of the homologous sequence available for
template switching. Since our PepMV SGP is twice the
size of the equivalent sequence in PVX vectors, that
could be the reason for the observed instability [16].
The duplicated PepMV SGP contained all the cis-acting
elements necessary for transgene expression. We
attempted to increase the stability of the vector by
removing potentially unnecessary downstream sequences
from the duplicated SGP. Unfortunately, this size reduc-
tion reduced the level of virus RNA produced in
infected plants, suggesting that the sequences between
positions +12 and +36 are necessary for optimal SGP
activity. Sequences within the CP ORF are also required
for maximum sgRNA production in other viruses [63],
usually by acting as enhancers [64,65].

Stability has been improved in other vectors with
duplicated SGPs by using heterologous promoters to
reduce the likelihood of recombination [59,63,65,66].
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Accordingly, we generated a hybrid vector containing
the SGPs from two distantly related PepMYV isolates,
PepMV-Sp13 and PepMV-Ps5. These sequences had an
overall identity of 48%, although they contained a highly
conserved 22-nt region at the 5 end including the
potexvirus-specific octanucleotide motif discussed above.
Although such heterologous sequences have increased
the stability of TMV vectors [63], they had little impact
in the case of PepMV: the hybrid vector suffered trans-
gene loss at 7-10 dpi, similarly as with the duplicated
SGP vectors. In agreement with this result, Nagy and
Bujarski [67] showed that as little as 15 nt of sequence
identity can promote homologous recombination in a
brome mosaic virus vector. On the other hand, Dragicci
and Varrelmann [62] provided evidence that RNA sec-
ondary structure was required to achieve precise homo-
logous recombination. The PepMV CP SGP region
potentially forms several stem-loops structures around
the octanucleotide motif (data not shown) that may be
involved in recombination events causing transgene
elimination.

The FMDV 2A protease sequence has been used with
success to overcome the problem of homologous recom-
bination in viral vectors [34,68] and has been shown to
work in the context of both PVX and CPMV [34,69].
We therefore developed a further vector (PepGFP2a) in
which GFP is expressed fusioned with the CP, with an
intervening 2A peptide. This strategy appeared to solve
our instability problems observed with the other vectors.
Although PepGFP2a spread more slowly than Pep501,
systemic infection was nevertheless observed by 7 dpi,
and GFP fluorescence persisted for several weeks.
PepGFP2a was stably propagated through up to four
serial passages, each passage resulting in a similar sys-
temic infection characterized by long-lasting uniform
fluorescence, with instability events only starting to
occur at ~12 dpi in the third passage. This instability
might result from the presence of a 36-nt duplication
within the CP gene. Western blot analysis of infected
plants showed that the fusion protein was expressed and
correctly processed, confirming that the 2A protease
was efficient in the context of PepMYV infection (free CP
was approximately tenfold more abundant than the
GFP2aCP fusion protein showing that most of the
fusion protein was fully processed). GFP accounted for
0.2-0.4 g/kg of fresh tissue, comparable to the yields
reported for CPMV [32] and early versions of TMV
[70]. These yields are already sufficient for most applica-
tions, although they are not as high as those reported
for highly-developed systems [35,39,71,72]. We expect
that further refinement of the vector (e.g., altering the
viral sequence to improve mRNA processing after agroi-
noculation, improving inoculation methods and other
parameters) [44,57] will lead to increased expression
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levels. The data presented here suggest that our system
can be used for the expression of proteins that are at
least as large as GFP. For the expression of larger pro-
teins, systems based on “deconstructed” vectors (e.g.,
providing the CP in trans) could be explored [73].

The experiments carried out with PepGFP2a showed
that PepMYV viral vectors induce no or mild symptoms
in the infected plants and that PepMV is distributed in
most parts of the plants, infecting roots and flowers.
These characteristics make PepMV an attractive sys-
tem to be used as a tool for silencing genes in different
tissues. Therefore, we constructed PepPDS2a and
demonstrated that this vector is also suitable for VIGS
experiments. Plants infected with PepPDS2a, carrying a
fragment of the tomato pds gene, showed a clear
bleaching phenotype visible at 21 - 28 dpi. Molecular
analysis showed successful pds silencing in stronger
bleached yellow-white leaves, whereas in the leaves
with bleaching occurring only in their veins silencing
was less efficient, showing a clear correlation between
phenotypes and mRNA levels. The fact that silencing
was not equally efficient in different leaves is probably
due to an unequal distribution of the virus in the
infected tissues. It is noteworthy that the silencing
capacity of our PepMV-based VIGS vector is possibly
higher, because the pds fragment (from tomato)
inserted into the vector had only 93% of nucleotide
identity with the homologous gene from N. benthami-
ana. Moreover, it has been demonstrated that the
length and the position of the insert with respect to
the full-length ¢cDNA can affect silencing efficiency of
a particular vector [74]. Therefore these aspects need
to be taken into account in the design of new and spe-
cific PepMV-based VIGS vectors.

Conclusions

In conclusion, we have demonstrated that PepMV can
be used as an expression vector for recombinant protein
expression in plants. Two distinct vector systems were
envisaged, one based on an autonomous viral vector and
another based on a “deconstructed” virus, where the CP
is provided in trans [39,40,75]. Such vectors could serve
for multiple purposes including the analysis of gene
functions in planta, the expression of valuable recombi-
nant proteins and the dissection of PepMV wild-type
functions.

Materials and methods

PepMV agroinfectious clones

The full-length ¢cDNAs of PepMV-Spl3 [13] and
PepMV-Ps5 [3] were generated by RT-PCR using pri-
mers CE-42 (5-CGC GGA TCC GGA AAA CAA AAT
AAA TAA-3’) or CE-292 (5-GGG CCC GGA AAA
CAA AAC ATA ACA C-3’) and CE-43 (5’-(A), CCC
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GGG CCC GCG GTA CCC C-3’), corresponding to the
5 and 3’ termini of the Sp13 and Ch2 genomic RNAs,
respectively, and including the necessary restriction sites
(underlined). First strand cDNAs were synthesized using
primer CE-43 and the SuperScript First-Strand Synthesis
System for RT-PCR (Invitrogen), and amplified with
Pyrobest polymerase (Takara). The resulting DNA frag-
ments were purified and inserted into the pTOPO-XL
vector (Invitrogen), generating constructs pTPepXL6
and pTPepPs5. The pTPepXL6 construct was inserted
between the BamHI and Xmal sites of pBIN61 [47] to
generate pBPepXL6, whereas pTPepPs5 was inserted at
the BamHI site of the same vector to generate
pBPepPs5. Constructs for in vitro transcription using
the T7 promoter were produced by amplifying the viral
insert in PepXL6 with forward primer CE-484 (5'-AAT
ACG ACT CAC TAT AGG GAA AAC AAA ATA
AAT AA-3’; T7 promoter sequence underlined) and
reverse primer CE-43.

DNA constructs for PepMV mutants and vectors

All PepMV mutants and vectors were constructed using
standard overlapping PCR and molecular cloning meth-
ods [76]. For the construction of pT7PepXL6agg, two
overlapping DNA fragments were amplified in separate
PCRs. In PCR 1, a DNA fragment containing the repli-
case and the TGB genes and the first 11 nt of the CP
gene was amplified from pTPepXL6 using the primers
CE-42 and CE-199 (5-CAA TAA ACA ATC AgG CCT
GAC AC-3’); the mutated nucleotide is shown in lower
case within the context of the original ATG triplet,
underlined). In PCR 2, a DNA fragment containing the
CP gene and the 3’ UTR was amplified with the primers
CE-198 (reverse complement of CE-199) and CE-43.
These overlapping fragments were mixed and amplified
in a third PCR to produce a full-length DNA fragment
using primers CE-484 and CE-43, complementary to the
ends of the two initial fragments. The resulting PCR
product was inserted into pTOPO-XL.

For the construction of pBPepGFPACP and
pT7PepGFPACP, the same steps as above were carried
out amplifying two overlapping DNA fragments in sepa-
rate PCRs. In PCR 1, a DNA fragment covering the 3’
end of TGB1 though to the 5" end of the CP gene was
amplified using pTPepXL6 as the template and the pri-
mers Pep303 (5-CGG AAT TGC AGG CAC TGG G-
3’) and CE-458 (5-GTT GCT GCC ACT TCA AGT
AGG AGT AAA GGA GAA GAA-3, including the first
18 nt of the GFP gene). CE-458 places the GFP ORF 36
nt downstream of the first CP codon. In PCR 2, a DNA
fragment containing the GFP gene followed by the
PepMV 3’ UTR was amplified using primers CE-459
(reverse complement of CE-458) and CE-43. The over-
lapping products were mixed and amplified into a full-



Sempere et al. Plant Methods 2011, 7:6
http://www.plantmethods.com/content/7/1/6

length DNA fragment using primers Pep303 and CE-43.
The final PCR product was either inserted into
pT7PepXL6agg using the Xmnl and Xmal sites to pro-
duce pT7PepGFPACP, or inserted into pTPepXL6 using
the same restriction sites followed by subcloning into
the BamHI and Xmal sites of pBPepXL6 to obtain
pBPepGFPACP.

For the construction of pBINCPep, a binary vector
used to provide CP in trans, a DNA fragment corre-
sponding to the PepMV CP gene was amplified using
pTPepXL6 as the template and primers CE-356 (5-CGC
GGA TCC CAA TCA TGC CTG ACA C-3’) and oligo
d(T). The PCR product was introduced into the Smal
site of the binary vector pBIN61.

Overlapping PCR was also used to construct
pBPep5.128. In PCR 1, a DNA fragment covering the 3’
end of TGB1 through to the 3’ end of the CP gene was
amplified using pTPepXL6 as the template and primers
Pep303 and CE-504 (5-GAA AAC TTA ACC CGT
TCC AAG TTA AAG TTC AGG GGG TG-3), including
18 nt of the TGB4 (from 5563 to 5581), considered as
the 5" end of the putative CP SGP). In PCR 2, a cDNA
fragment containing the GFP gene fused to the PepMV-
3> UTR was amplified using primers CE-503 (reverse
complement of CE-504) and CE-43. These PCR pro-
ducts were mixed and amplified in the third PCR with
primers Pep303 and CE43. The resulting fragment was
introduced into the Xmnl and Xmal sites of pTPepXL6,
and a BamHI/Xmal fragment from this construct was
introduced into the BamHI and Xmal sites of the binary
vector pBPepXL6. For the construction of pBPep501 by
overlapping PCR, the same templates were used but in a
different order. In this case, PepGFPACP was used as a
template in PCR 1 and pTPepXL6 in PCR 2, using the
complementary primers CE-502 (5- GAT GAA CTA
TAC AAA TAA CTT GGA ACG GGT TAA GTT
TTC-3’) and CE-501 (5'- GAT GAA CTA TAC AAA
TAA CTT GGA ACG GGT TAA GTT TTC-3’) corre-
sponding to the last 18 nt of the GFP gene and the first
18 nt of TGB4 (from 5563 to 5581). The resulting frag-
ment was transferred to pTPepXL6 and then to
pBPepXL6 as described above.

For the construction of pBPep352 and pBPep640, the
procedures and templates were the same as those used
to produce pBPep501. Two consecutive sets of overlap-
ping PCR were performed. The first was similar to that
used to prepare pBPepGFPACP but with different com-
plementary primers. For pBPep352, the primers were
CE-352 (5-CCT GAC ACA ACA CCT GTT CCG CGG
ATG AGT AAA GGA-3’) and CE-350 (reverse comple-
ment of CE-352). For pBPep640, the primers were CE-
640 (5'-AAC AAT CAT GCC TGA CAC AAT GAG
TAA AGG AGA AGA-3’) and CE-641 (reverse comple-
ment of CE-641). The second overlapping PCR and
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subsequent cloning steps followed were exactly as
described for pBPep5.128.

Two consecutive sets of overlapping PCRs were also
required for the construction of pBPep505. The first of
overlapping PCRs was used to generate the SGPps-
GFP-3’ UTR fragment. In PCR 1, a DNA fragment con-
taining the putative SGPpss was amplified using
pTPepPs5 as the template and primers CE-497 (5-GCA
ATA AAC TTC TCC CCT TGG AAC GGG TTA
AGT-3’, corresponding to 18 nt of PepMV-Sp13 TGB4
(from 5545 to 5563) and 18 nt of PepMV-Ps5 TGB4
(from 5553 to 5571)) and CE-498 (5-GCT TCT AAC
CCA TCA GAT ATG AGT AAA GGA GAA GAA-3,
corresponding to 18 nt of the CP gene (from 5651 to
5669) and 18 nt of the GFP gene). In PCR 2, a DNA
fragment comprising GFP fused to the PepMV-3" UTR
was amplified using primers CE-499 (the reverse com-
plement of CE-498) and CE-43. The overlapping pro-
ducts were joined in a third PCR using primers CE-497
and CE-43. The second set of overlapping PCRs was as
described for the construction of pBPep5.128 although
with the SGPpgs-GFP-3” UTR fragment used instead of
pBPepGFPACP in PCR 2. The subsequent cloning steps
were the same as those used in the construction of
pBPep5.128.

Two consecutive sets of overlapping PCRs were also
used for the construction of PepGFP2a (pBPepGFP2a).
In PCR 1, a DNA fragment covering the 3’ end of TGB1
through to the 5 end of the CP gene was amplified
using pTPepXL6 as the template and primers Pep303
and CE-458. In PCR 2, a DNA fragment containing the
GFP gene and 2A sequence was amplified using CE-459
(the reverse complement of CE-458) and CE-665 (5'-
GAG TCC AAC CCT GGG CCT GAC ACA ACA CCT
GTT-3’, corresponding to last 18 nucleotides of 2A
sequence and nt 4-21 of the CP). Because 2A-mediated
processing requires a proline to follow the 2A sequence
(NFDLLKLAGDVESNPG), it was inserted between the
last codon of the GFP gene and the second codon of
the CP gene, which specifies a proline residue. The pro-
ducts were mixed and amplified to obtain the full-length
DNA using primers Pep303 and CE-665. The second set
of overlapping PCRs was similar to those used in the
construction of Pep501, although the fragment obtained
with primers Pep303 and CE-665 was used as the tem-
plate in PCR 1. and in PCR 2, a DNA fragment contain-
ing the CP gene and 3" UTR was amplified using
primers CE-664 (the reverse complement of CE-665)
and CE-43. The subsequent cloning steps were as
described for the construction of pBPep5.128.

The design of pBPepPDS2a was basically the same as
for pBPepGFP2a but in this case we introduced a por-
tion of the tomato pds sequence [from 962 to 1319;
GeneBanK 544073] flanked by sites Agel and Hpal
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instead of the gfp sequence (Figure 7a). For the con-
struction of pBPepPDS2a, a DNA fragment reaching
from the 3’ end of TGB1 until the 3’ UTR with a Xmal
site inmediatly after the poly(A) tail, and including the
tomato pds sequence in-between as mentioned before,
was synthesized by GeneScript (New Jersey, USA). This
fragment was digested with XmnI and Xmal and intro-
duced into the same sites of pTPepXL6, and further
subcloned into the binary vector pBIN61 using the
BamHI/Xmal restriction sites, resulting in pBPepPDS2a.

In vitro transcription and protoplast transfection

Plasmids pT7PepXL6, pT7PepXL6agg and pT7PepGFPACP
were linearized with Kpnl and transcribed in vitro in the
presence of cap analog (m’G’pppNp) (Promega) using
RiboMAX™ Large Scale RNA Production Systems (Pro-
mega) according to the manufacturer’s instructions. N.
benthamiana plants (4-5 weeks old), grown in a growth
chamber (16-h photoperiod, 22°C), were used for prepara-
tion of mesophyll protoplasts as described by Weston and
Turner [77]. Approximately 10° protoplasts were electropo-
rated with 10 pg of in vitro transcribed RNA. The proto-
plasts were incubated in the dark at 25°C and harvested
after 24 h for RNA extraction.

Inoculation and fluorescence visualization
Agrobacterium tumefaciens strain C58C1 was trans-
formed with the different PepMV constructs cloned in
binary vector pBIN61 by electroporation. Overnight cul-
tures (3 ml) were centrifuged at 2,500 g for 10 min. The
pellet was resuspended in the same volume of 10 mM
MES (pH 5.5), 10 mM MgSO, and 100 pM acetosyrin-
gone. Leaves of N. benthamiana plants from the green-
house were infiltrated using a syringe without a needle.
For trans-complementation analysis, A. tumefaciens cul-
tures were mixed in a 1:1 ratio. If P19 was used in the
experiments, A. tumefaciens cultures containing the
pBP19 vector were mixed with those containing the
PepMV constructs at a 1:3 ratio. Mechanical inoculation
was carried out by homogenizing leaf tissue in 30 mM
sodium phosphate, pH 8.0, followed by rubbing 3-week-
old carborundum-dusted N. benthamiana leaves with the
extract. N. benthamiana plants (4-5 weeks old) were
grown in a growth chamber (16-h photoperiod, 25°C for
GFP expression or 22°C to induce silencing). Leaves were
viewed under UV light (365 nm) provided by a handheld
lamp (Blak Ray B100-AP lamp, UV products, Upland, CA
91786, USA). For confocal imaging, 0.5 cm?® squares of
leaf tissue were prepared, mounted in water and imaged
using a Leica TCS SP2 (Leica Microsystems, Germany)
inverted confocal laser scanning microscope. The fluores-
cence intensity was measure using Qwin V3 (Leica)
image analysis software.
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RNA and protein analysis

RNA was extracted from protoplasts or leaf tissue using
TRI-Reagent (Sigma Chemical Co., St. Louis, MO) and
separated in agarose gels containing formaldehyde. The
RNA was transferred to positively charged nylon mem-
branes (Roche, Indianapolis, IN, USA), which were hybri-
dized with digoxigenin-labeled probes (prepared by in
vitro transcription) specific for PepMV replicase, PepMV
CP or GFP [76]. Chemiluminescent detection was carried
out using the reagents and protocols supplied in the
DIG-labeling and detection kit (Roche Diagnostics). For
protein extractions, 100 mg samples of fluorescent N.
benthamiana leaves were ground in 200 pl protein
extraction buffer (0.1 M Tris, pH 8.0, 0.125 mM 2-mer-
captoethanol, 200 mM PMSF, 10% glycerol). Total solu-
ble protein content was determined using the Bradford
assay. Crude extracts were mixed with 4 x loading buffer
and separated by SDS-PAGE followed by staining with
Coomassie Brilliant Blue or by electrotransfer to nitrocel-
lulose membranes. Blots were probed with monoclonal
antibodies raised in rabbits against PepMV CP (AC Diag-
nostics, Fayetteville, USA) or in mouse against GFP
(Clontech, Palo Alto, CA, USA) followed by detection
with anti-rabbit or anti-mouse immunoglobulin G (IgG)
coupled to horseradish peroxidase (Promega) and chemi-
luminescence (ECL Western Blotting and Protein Analy-
sis System, Amersham Biosciences). The image was taken
with the GeneSnap software on a G:BOX (Syngene, Cam-
brige, UK) and signal intensity of DNA bands quantified
using the Gene Tools software (Syngene, Cambrige, UK).

Semiquantitative RT-PCR analysis

For semiquantitative RT-PCR analysis, leaves expressing
different bleaching phenotypes were harvested at 5 and
6 weeks post-infiltration. Total RNA was extracted
using Tri-Reagent and samples were treated with
RNase-free Dnase I (Roche) prior to reverse-transcrip-
tion with the One-Step RT-PCR kit (Qiagen, Valencia,
CA, USA) according to the supplier’s instructions. Pri-
mers CE-787 (5-TTT CCA AAA GTT GGA GAA GC-
3’) and CE-788 (5-TCA TGT TGT CAA AAC CCC
AA-3’) used to amplify the pds mRNA, annealed outside
the region targeted for silencing. Semiquantitative RT-
PCR was performed as described by Wang et al. [78]
using primers CE-780F (5-ACA AAC CCC TCC GTC
TTC CAC-3’) and CE-781 (5-CCC TAC TGG TTT
GAC AAC TGA-3) to amplify eEF1A mRNA as inter-
nal, constitutively expressed control. RT-PCR reactions,
in a final volume of 25 ul, contained 250 ng of RNA
and 0.6 uM of each pair of primers. After 25 and 30
cycles, the PCR-generated fragments were analyzed in
1.5% agarose gels, and the intensity of the amplified
fragments was quantified using GeneSnap sofware tools.
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