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Abstract

Background: Successful defence of tobacco plants against attack from the oomycete Phytophthora nicotianae includes
a type of local programmed cell death called the hypersensitive response. Complex and not completely understood
signaling processes are required to mediate the development of this defence in the infected tissue. Here, we
demonstrate that different families of metabolites can be monitored in small pieces of infected, mechanically-stressed,
and healthy tobacco leaves using direct infrared laser desorption ionization orthogonal time-of-flight mass
spectrometry. The defence response was monitored for 1 - 9 hours post infection.

Results: Infrared laser desorption ionization orthogonal time-of-flight mass spectrometry allows rapid and
simultaneous detection in both negative and positive ion mode of a wide range of naturally occurring primary and
secondary metabolites. An unsupervised principal component analysis was employed to identify correlations between
changes in metabolite expression (obtained at different times and sample treatment conditions) and the overall

defence response.

A one-dimensional projection of the principal components 1 and 2 obtained from positive ion mode spectra was used
to generate a Biological Response Index (BRI). The BRI obtained for each sample treatment was compared with the
number of dead cells found in the respective tissue. The high correlation between these two values suggested that the
BRI provides a rapid assessment of the plant response against the pathogen infection. Evaluation of the loading plots
of the principal components (1 and 2) reveals a correlation among three metabolic cascades and the defence response
generated in infected leaves. Analysis of selected phytohormones by liquid chromatography electrospray ionization

mass spectrometry verified our findings.

Conclusion: The described methodology allows for rapid assessment of infection-specific changes in the plant
metabolism, in particular of phenolics, alkaloids, oxylipins, and carbohydrates. Moreover, potential novel biomarkers
can be detected and used to predict the quality of plant infections.

Background
Metabolism consists of a complex network of biosyn-
thetic pathways and comprises a series of biochemical
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reactions that are catalyzed by enzymes [1,2]. Plants and
animals produce a remarkably diverse array of over
100,000 secondary metabolites. In contrast to the pri-
mary metabolites, secondary metabolites are normally
not directly involved in growth, development, and repro-
duction, but partly play essential roles in the adaptation
of the organisms to their environments [1-5]. The rich
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diversity of secondary metabolites results from a co-evo-
lutionary process with biotic attackers. Secondary metab-
olites stored in various plant organs and cell
compartments play important roles as constitutive
defence against herbivores and microbial pathogens. Nat-
ural selection favors those plants that have developed dis-
tinct cellular defence responses, specifically induced and
tailored against the invasion of pathogens or attack by
insects [1-5]. Induced defences against various attackers
are differentially orchestrated by a network of interacting
signaling pathways.

Depending on the signaling pathway employed, the
defence response may in some cases only encompass the
infected tissue (local response) or in addition involve non-
infected parts of the plant (systemic response), thus pro-
tecting the plant against subsequent attacks [6,7]. The
phytohormone salicylic acid (SA) is mainly induced by
biotrophic and hemi-biotrophic parasites and initiates
and controls both the systemic response and the hyper-
sensitive response (HR) [5,8-10]. The HR is a type of pro-
grammed cell death in which the plant sacrifices a few
cells immediately surrounding the attacked cell, thereby
restricting pathogen growth [8-10]. For the proper devel-
opment of a HR, the SA-signaling pathway includes feed-
back loops which integrate other defence-associated
signals, such as (i) jasmonic acid (JA) [11,12], (ii) ethylene
(ET) [13], and (iii) nitric oxide (NO) [14-16]. Other meta-
bolic events, which are important in the execution of HR
include reinforcement of the cell wall [17], phytoalexin
production [18], expression of pathogenesis-related pro-
teins [19], reactive oxygen species (ROS) generation
[17,20], and the readjustment of the primary metabolism,
that includes sugar accumulation and signaling [17,20].
The overall signature of the complex metabolic and sig-
naling networks in the plant determines the pattern of
defence-related metabolome changes and, hence, eventu-
ally the outcome of the plant - pathogen interaction
[1,8,9,12].

Different methods have been developed for the analysis
of multiple metabolites during the plant defence
response, such as fluorescence microscopy [21-24] and
mass spectrometry (MS) [25-30] Because of the high
complexity of the plant metabolome, hyphenated MS-
based methods are mostly preferred, e.g. the coupling of a
mass spectrometer with gas chromatography (GC) [25-
27] or liquid chromatography (LC) [28-30]. By adding ref-
erence compounds, these techniques allow the absolute
quantification of individual metabolites [27-30]; however,
the employment of these hyphenated methods requires
cumbersome sample preparation processes [25-30].

Matrix-assisted laser desorption ionization mass spec-
trometry (MALDI MS) has been increasingly employed
in metabolomic studies. Advantages of this analytical
method are that first limited effort is required for sample
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preparation and second the method lends itself to high
throughput analysis [31-35]. A few reports have
described the utilization of ultraviolet (UV) and infrared
(IR) lasers for the analysis of plant metabolites directly
from tissue [32,36-40]. This is possible because laser
energy in the UV or IR region can be absorbed directly by
different biomolecules in the tissue. If the concentration
of absorbing biomolecules is high enough, they can func-
tion as an endogenous matrix for the MALDI process. IR
lasers with an emission wavelength around 3 pm, such as
an Er:YAG laser emitting at 2.94 pm or an optical para-
metric oscillator (OPO) laser, make use of O-H contain-
ing biomolecules (i.e. mostly water molecules) as an
endogenous matrix via excitation of the O-H bond
stretch vibrations [41]. In the following, we will use the
abbreviation "IR-LDI" instead of "IR-MALDI" to account
for the fact that only endogenous biomolecules are used
as energy absorbers.

While direct tissue analysis by mass spectrometry gen-
erally does not allow for absolute quantification of molec-
ular concentrations, a semi-quantitative analysis may be
possible by recording the changes in signal intensities of
individual compounds, for instance in response to a treat-
ment. A particularly elegant method to retrieve informa-
tion about even small changes of the molecular profiles in
a complex system (a LDI mass spectrum may contain
hundreds of ion signals) is the use of principal compo-
nent analysis (PCA) [42,43]. PCA is a multivariate data
analysis which can be used to reduce the complexity of
large amounts of detectable ion signals to a small number
of independent (orthogonal) component vectors. Hence,
in the PCA the individual identity as well as the absolute
intensity of an ion signal are not as relevant as the mass
spectral profile as a whole [42,43].

With respect to the mass analyzer, for the analysis of
rough and electrically non-conducting surfaces (such as
leaf tissue), orthogonal time-of-flight (0TOF) mass spec-
trometers have been found to provide particularly benefi-
cial properties [40,44,45]. This is because these
instruments decouple the ion formation process from the
time-of-flight measurement and thereby provide a high
and constant mass accuracy, independent of the exact
morphology of the investigated sample [40,44,45]. The
combination of IR-LDI and oTOF MS also provides par-
ticularly soft desorption/ionization conditions that pro-
duce a minimum of analyte ion dissociation [44,46]. The
analysis of a wide range of metabolites directly from plant
tissues - e.g. lipids (phospholipids, sulfates, triglycerides),
carbohydrates (oligosaccharides), glycosidic flavonoids,
and alkaloids - has been reported using this type of
instrument [40].

Here, we used direct IR-LDI-oTOF mass spectrometry
to simultaneously profile a large number of metabolites of
the tobacco plant Nicotiana tabacum (Samsun, SNN),
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generated during development (1 to 9 hours post infec-
tion) of the HR against the oomycete Phytophthora nico-
tianae. A multivariate analysis - principal component
analysis (PCA) - was used to reduce the large and com-
plex LDI MS data to one- or two- dimensional data sets.
The statistical analysis was compared with an established
indicator of the biological response of the plant - patho-
gen system, dead cell count analysis, and an established
method for studying plant defence responses, i.e. quanti-
fication of defence-related phytohormones using liquid
chromatography in combination with electrospray ion-
ization tandem mass spectrometry (LC-ESI MS/MS) [28-
30]. We conclude that IR-LDI MS metabolome profiling
in conjunction with PCA can be a powerful tool to obtain
information about plant defence cascades and to monitor
the intensity and progression of the infection processes.

Results and Discussion

Although extensive data exists describing the role of vari-
ous secondary metabolites (such as SA) during the hyper-
sensitive defence response in pathogen-plant interaction
[5,8-12], much remains to be learned about the response
as a whole.

In a classical approach, it would be possible to identify
the different signal cascades that are activated in the leaf
during the infection by quantifying "key" metabolites for
each sample treatment conditions (i.e. blank, placebo,
and infection). However to reliably quantify these com-
pounds, an internal standard would be required for each
metabolite of interest to compensate for the matrix
effects that originate from the inherent amount of vari-
ability associated with biological samples. Thus, the
quantification approach is suitable for the verification of a
hypothesis but is not recommended as the first step for
any plant study when not much is known about the
occurring cellular processes, as it is the case here.

Relative up- or down-regulation of metabolic cascades
may be followed by employing a semi-quantitative
approach. Here, we applied this method and used the ear-
liest measurement time point obtained for each sample
treatment (i.e. 1 hpi) as reference point. This way, we can
compensate for non-biological effects (e.g. systemic ana-
lytical errors caused by changes in the growth environ-
ment) which could influence the metabolic response. The
general procedure and experimental workflow of the
analysis is depicted in Figure 1; see Materials and Meth-
ods for details.

The accessible mass range of the matrix-less LDI MS
approach is limited to about 1000 7/z units. Because no
matrix was employed in these measurements, the mass
spectra are fully devoid of the matrix-derived chemical
background, which can severely complicate standard
MALDI MS analysis of small molecules. Moreover, sig-
nals corresponding to other relative abundant biological
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substances - such as peptides - also are not produced.
The IR-LDI-oTOF MS measurements were performed in
both positive and negative ion modes from differently
treated leaf samples: zoospores infiltrated (infected, I),
tap-water infiltrated (placebo, P) and untreated (blank,
B), and at time points of 1, 3, 6, and 9 hpi (see Material
and Methods for details on the sample preparation proce-
dure). As an example, Additional file 1 shows the positive
and negative ion mode mass spectra for the region
between m1/z 100 to 500 obtained using IR-LDI-oTOF MS
for two samples, infected (I,) and placebo (P)), harvested
at 6 hpi from a SNN tobacco leaf. A full list of all consis-
tently detected ions is provided in Table 1.

Figure 2 displays the time-profiles for a subset of 9
example metabolites, as derived from the IR-LDI MS
analysis of differently treated samples; data are normal-
ized to the signal intensity obtained at 1 hpi. The chemi-
cal assignments (identities) for these 9 metabolites and
several other compounds (Table 1) could be made with
reasonable confidence on the basis of precise mass mea-
surement, the isotope ratios of the corresponding signals,
and metabolic databases (see Material and Methods for
details on the identification of metabolites).

Alkaloids and phenolics
The alkaloid tetrahydrobiopterin (THB, Figure 2A) was
identified as a metabolite for which the concentration
increases substantially exclusively during local infection.
THB functions as redox-cofactor for a number of meta-
bolic processes (e.g. the oxidation of phenylalanine). In
animals, it is also a cofactor of nitric oxide synthase
(NOs) [47], but the exact plant metabolism of NO, an
important messenger in stress response, is still controver-
sial [48]. Spermidine (Figure 2B) a polyamine involved in
various cellular processes [49], exhibits a moderate tran-
sient concentration increase (at ~ 3 hpi) in infected sam-
ples, but due to its multiple functions in plant
metabolism it cannot be regarded a key indicator of
infection. In contrast, nicotine levels (and possibly also
those of its isomer anabasine) significantly decrease in
infected leaf samples (Figure 2C). The alkaloid nicotine, a
highly effective insecticide, is produced in the tobacco
roots, transported to leaves, and stored in vacuoles.
Increase of nicotine concentration in tobacco leaves has
been related to the JA signaling cascade in response to
attack from herbivores [4,29,50]. However, in contrast to
the response to herbivore attack, infection with Phy-
tophthora nicotianae results in a steep decline in nicotine
concentration, when compared to placebo and blank
samples. This metabolic change might be correlated with
an increase in SA levels, an antagonist of JA (see hormone
analysis below; Figure 3).

Phenolic metabolites whose biosynthesis is derived
from the shikimic acid pathway [1,51], exhibit an increase
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Figure 1 Workflow of the combined IR-LDI mass spectrometry - principal component analysis of plant metabolites. Schematic workflow of
the analysis: () sample treatment, (Il) sample collection, (lll) direct IR-LDI-oTOF MS measurement, (IV) principal component analysis. The lower cuticle
of the leaf is removed using adhesive tape and disks are placed upside down on a glass slide. The glass slide is mounted in a custom-made sample

plate holder and transferred into the laser mass spectrometer for measurement. The nomenclature employed to identify the sample type is explained

in the text.

in concentration during infection. Examples are two
decarboxylation products of phenylalanine: tyramine
(Figure 2D) and phenylethylamine (data not shown); cho-
rismic acid (data not shown), a product of the shikimic
pathway and major precursor of plant phenolics; and
chlorogenic acid (data not shown), a derivative of cou-
maric acid. These observations concur with studies
reporting a substantial up-regulation of the oxidative
pentose-phosphate (OPP) pathway, which creates precur-
sors for the shikimic pathway, and the L-phenylalanine-
ammonia-lyase (PAL) activity, a major control step of the
phenolic metabolism [17]. Chorismic acid or/and cin-
namic acid (the product of the PAL reaction) are poten-
tial precursors of the hormone SA [1]. SA levels strongly
increase after infection with P nicotianae (Figure 3; see
hormone analysis below).

Free fatty acids and oxylipins

Concentrations of free fatty acids (FAs) in plant tissues,
such as y-linolenic acid (y-LA, Figure 2E), a-linolenic acid
(data not shown), and palmitic acid (data not shown), can

be altered by wounding or infection [52-55]. For example,
various oxylipins which function as stress messengers
[52,54,55] are created by non-enzymatical or enzymatical
(lipoxygenases) oxidation of FAs, in particular y-LA [56-
60]. Using IR-LDI-oTOF MS, three oxylipins were
detected: peroxidated y-linolenic acid (HOO-y-LA, Fig-
ure 2F), peroxidated wmethyl-y-linolenate (data not
shown), and possibly peroxidated chloride-methyl-a-lino-
lenate (data not shown); all are presumably derived from
y-LA [52,60]. High levels of LA's, in particular of y-LA
(Figure 2E), are only observed in pathogen-infected sam-
ples and may reflect activation of phospholipases. For
example, phospholipase A2 (PLA,) is known to be acti-
vated in plants by infection [61] and constitutes the first
step in the biosynthesis of the hormone JA. Increased lev-
els of JA are indeed transiently found in infected samples
at 1 hpi (see below; Figure 3). The decrease in HOO-y-LA
(Figure 2F) and JA abundances (while y-LA increases) in
locally and not-locally infected samples, which were not
under mechanical-stress (such as B; samples), most likely

reflects the infection - induced inhibition of pathways
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Figure 2 IR-LDI-oTOF MS analysis of metabolites (time-profiles). Metabolic time-profiles of selected metabolites in Nicotiana tabacum (cv. SNN)
samples that were subjected to different treatments: (1) infected, (P) placebo, and (B) blank (for detailed explanation of the nomenclature employed,
see text). IR-LDI MS signal intensities of the molecular ions (see Table 1 for ion type) were normalized to the value obtained at 1 hpi. THB (tetrahydro-

biopterin); y-LA (y-linolenic acid); HOO-y-LA (peroxidated-y-linolenic acid).

employed for lipid oxidation. This assumption is sup-
ported by the fact that the decrease in oxylipins and JA
levels was not observed in samples that experience pure
local mechanical-stress (which is known to activate the
JA pathway). Moreover, the SA signaling cascade has
been reported to block the first step in the lipoxygenase
(LOX) cascade, which is responsible for the biosynthesis
of JA from its precursor y-LA [8,52].

Carbohydrates

Recently, it was demonstrated for the tobacco - Phy-
tophthora system that during development of the HR
sugars (hexoses and dihexoses) accumulate in the cell wall
[17,20]. Using IR-LDI oTOF MS, hexoses and dihexoses
are detected in both positive and negative ionization
modes. The time profiles of the potassiated sugar mole-
cules are shown in Figure 2G & 2H, respectively.
Although isomers cannot be differentiated in the MS pro-
file, glucose and fructose are expected to comprise the
major hexoses and sucrose the major dihexose in plants.
In agreement with earlier biochemical analysis [17], the

MS analysis indicates a significant increase in sugar levels
(in particular for the dihexose) in infected samples.

Plant hormones

ABA, a regulator of various environmental stress
responses [62-64], positively affects the early (pre-inva-
sion) defence [65]. It also influences the effect of the vola-
tile hormone ET (which regulates the antagonistic
signaling cascades of SA and JA) [66], and inhibits late
defence reactions (such as the SA-mediated HR) [67].
The levels of phaseic acid (Figure 2I), the first stable
decomposition product of ABA [68,69], increased exclu-
sively in the infected samples, reflecting the possible deg-
radation of ABA (see below, Figure 3)

Because IR-LDI MS ion signals of SA, JA, and ABA
were either too low in intensity (SA) or not detectable
(JA, ABA), we extracted these hormones from the plant
lamina and used ESI-LC MS/MS to determine their abso-
lute concentration in tissue [28-30]. The metabolic time
profiles of the three hormones are displayed in Figure 3.
The figure includes data obtained from two different cul-
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Table 1: List of ion signals detected by direct IR-LDI-oTOF mass spectrometry in leaf samples of Nicotiana tabacum in (A)
positive and (B) negative ion mode.*

A: Positive ion mode

# Obs. Mass (m/z) Chemical Formula Theor. Mass (m/z)  Am (ppm) Tentative Assignment*
al 104.107 [C5H14NQO]+ 104.107 0.0 choline
a2 122.095 [CBHTTIN + H]+ 122.097 16.4 phenethylamine
a3 132.112 [C5H13N30 + HJ*+ 132.113 7.6 N-carbamoylputrescine
a4 138.091 [C8HT1NO + H]* 138.092 7.2 tyramine
a5 146.167 [C7HT9N3 + H]* 146.165 13.7 spermidine
a6 163.122 [CTOH14N2 + H]*+ 163.123 6.1 nicotine or anabasine
a7 192.172 [C13H2TN + H]* 192.175 15.6
a8 219.027 [C6H1206 + K]+ 219.027 0.0 hexose
a9 242.126 [CO9H15N503 + H]* 242.125 4.1 tetrahydrobiopterin
al0 251.221 [C14H26N4 + H]*+ 251.223 8.0
all 266.185 [C17H25N + H]* 266.186 3.8
al2 269.170 [C17H20N20 + HI* 269.165 15.8
al3 281.140 [C15H2005 + HI* 281.138 6.0 phaseic acid
al4 311.221 [C18H3004 + H]* 311.221 0.0 hydroperoxyoctadecatrienoic acid
als 318.153 [C14H23NO7 + H]* 318.155 6.3 glycosylated-retronecin or [tyramine + hexose]'
aleé 325.236 [C19H3204 + H]* 325.237 3.1 methyl-hydroperoxyoctadecatrienoate
al7 343.186 [C19H2804 + Nal* 343.189 8.7
al8 355.153 [C19H2405 + Nal* 355.152 2.8 gibberellin 20
al9 361.211 [C19H33CIO4 + H]* 361.215 10.0 methyl-chloro-hydroperoxyoctadecatrienoate
a20 381.079 [C12H22011 + K]+ 381.080 26 dihexose
a2l 399.085 [C12H24012 + K]+ 399.091 15.0 [hexose + hexose]1
a22 431.222 [C23H30N206 + H]* 431.218 9.3
B: Negative ion mode
# Obs. Mass (m/z) Chemical Formula Theor. Mass (m/z) Am (ppm) Tentative Assignment*
b1 103.004 [C3H404 - HI- 103.004 0.1 malonic acid
b2 105.019 [C3H604 - HI- 105.019 2.2 glyceric acid
b3 127.016 [C4H4N203 - HI- 127.014 15.7
b4 133.014 [C4H605 - HI- 133.014 13 malic acid
b5 135.029 [C4H805 - HI- 135.029 1.9 threonate
b6 146.046 [C5HINOA4 - HI- 146.045 3.0
b7 173.008 [C6H606 - HI- 173.009 36 dehydroascorbic acid
b8 174.019 [C6H706 - HI- 174.017 1.5 mono-dehydroascorbic acid
b9 179.055 [C6H1206 - HI 179.055 1.6 hexose
b10 191.053 [C7H1206 - HI 191.056 16.6 quinic acid
b11 197.062 [C13H1002 - H]- 197.060 10.3
b12 215.031 [C6H1206 + ClJ- 215.032 4.8 hexose
b13 225.057 [C10H1006 - HI- 225.061 17.8 chorismic acid
b14 226.995 [C6H8O7 + ClII- 226.996 1.8 citric acid

b15 239.073 [C15H1203 - H]- 239.071 8.4
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Table 1: List of ion signals detected by direct IR-LDI-oTOF mass spectrometry in leaf samples of Nicotiana tabacum in (A)

positive and (B) negative ion mode.* (Continued)

b16 255.233 [C16H3202 - HI- 255.232
b17 267.071 [CO9H1609 - HI- 267.071
b18 269.082 [C16H1404 - H]- 269.081
b19 277.215 [C18H3002 - HI- 277.217
b20 279.034 [C13H1205S - HI- 279.033
b21 279.231 [C18H3202 - HI- 279.232
b22 285.080 [C16H1405 - HI- 285.076
b23 297.045 [C16H1006 - H]- 297.047
b24 309.044 [C17H1006 - HI- 309.040
b25 310.147 [C19H2TNO3 - HI- 310.144
b26 313.075 [C17H1406 - HI- 313.075
b27 315.090 [C17H1606 - H]- 315.090
b28 325.044 [COH15N209P - H]- 325.043
b29 327.054 [C17H1207 - HI- 327.051
b30 353.088 [C16H1809 - HI- 353.087
b31 359.118 [C12H24012 - HI- 359.119
b32 371111 [C20H2007 - HI- 371.113
b33 377.083 [C12H22011 + Cl- 377.084
b34 395.095 [C12H24012 + CII- 395.095
b35 447.132 [C22H2408 - H]- 447.129
b36 457.278 [C29H4202 + CII- 457.286
b37 477.145 [C16H30016 - HI- 477.145

3.0 palmitic acid
0.3

37

6.7 y-linolenic acid
1.8

2.1 a-linolenic acid
14.8

44

12.2

8.4

1.3

0.9

2.6

8.7

0.7 chlorogenic acid
2.8 [hexose + hexose]1
5.8

3.9 dihexose

0.8 [hexose + hexose]1
8.4

17.3

0.5

*Assignment of chemical composition is based on precise mass measurements, comparison of isotopic patterns, and comparison with databases
and literature addressing Nicotiana tabacum metabolites; only signals consistently exhibiting an s/n of 10 or better are listed. 'Possible gas phase

adducts.

tivars of Nicotiana tabacum, the resistant cultivar SNN
and the nonresistant cultivar Xanthi, which exhibits no or
only a weak HR. In SNN, high JA levels appear transiently
during the first hour post infection [70]. The rapid
decline in JA after its initial burst (which is most likely
due to the inhibition of the LOX cascade of the JA biosyn-
thesis pathway) is possibly reflected in the IR-LDI-oTOF
mass spectra by the "cross-over" between y-LA (for which
signals increase) and its peroxidation products (for which
signals decrease). In contrast to JA, the levels of the phe-
nolic hormone SA, known to inhibit JA biosynthesis
[8,52], increase monotonously with time after injection of
zoospores. The increase in SA concentration in the
tobacco - Phytophthora system after 1 hpi is further sup-
ported by the appearance of PR1, a marker for the SA
pathway [17]. In the LDI MS profile, infection-induced
biosynthesis of SA may be reflected by the appearance of
its phenolic precursors chorismic acid and chlorogenic
acid (data not shown) [1,12]. In Xanthi, the initial JA
burst was small and the increase in SA levels was
retarded, compared to those seen in SNN, reflecting the
difference in their response against the pathogen.

Principal component analysis

A PCA transformation can help to visualize the most sig-
nificant differences in the mass profiles between samples
and allows similar samples to be grouped together. The
first principal component (PC1) is most strongly influ-
enced by the combination of ion signals that exhibit the
largest change between the recorded spectra. In a similar
way, subsequent principal components (PC2, PC3, etc)
represent less influential changes that can, however, still
help to identify particular features of the investigated sys-
tem. Figure 4 shows the PC1 vs. PC2 score plot of the
unsupervised PCA performed with the positive mode ion
spectra (see Material and Methods for details). This
graphic representation reveals a high correlation between
the MS profiles of the six different groups of investigated
samples. Based on PC2 values, they are essentially
grouped into one of three "qualitative" clusters. Qualita-
tively, these clusters may be seen as representing: (I)
untreated samples (blank near a placebo zone, Bp); (II)
"stressed" samples from local water infiltration (placebo
near blank or infection zone; Py, P}); and (III) "stressed”

samples from infection (Ip, I, B)). This qualitative analy-
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sis suggests that PC2 may capture both systemic and local
stress signals, though the local stress response is presum-
ably reflected stronger. In the score plot, samples are not
differentiated with respect to the time post treatment. As
can be seen in Figure 5, mass spectra of the infected sam-
ples tend to show an increase of the PC1/PC2 values
derived from their metabolic profile with time post infec-
tion, while the picture for the other sample treatments is
less clear.

Identification of key metabolites and their pathways

The corresponding loading plots (displayed in Additional
file 2) identify which metabolites, and therefore their
associated pathways, contribute the most to the variance
of the two principal components. Some of these metabo-
lites can directly be related to known metabolic pro-
cesses. Examples for PC1: phaseic acid (m/z 281.140, cf.
to Table 1 for the type of ion formation) relates to ABA
turnover (see hormone analysis above); tyramine (m/z
138.091, cf. to Table 1) relates to the phenolic metabolism
and SA turnover (see hormone analysis above). Examples
for PC2: HOO-y-LA (m/z 311.220, cf. to Table 1) and its
methyl ester (m/z 325.236, cf. to Table 1) relate to LOX
activity and JA turnover (see hormone analysis above).
The loading plots also revealed MS signals that exhibit a
high correlation in the PCA, for which the identity of the
corresponding ions, however, is currently unknown. For
example, the ion signal with an m/z value of 318.153
(Table 1) shows a strong correlation with PC1. Based on
its mass, this metabolite could possibly be either a glyco-
sylated ester of the alkaloid retronecin [71], or a gas phase
adduct of protonated tyramine + hexose (or both). A sec-
ond signal with an m/z value of 361.211 (Table 1) shows a
strong correlation with PC2. This species might be perox-
idated-chlorinated-a-methyl-linolenate or a gas phase
adduct of protonated peroxidated-methyl-y-linolenate
with hydrochloric acid. Further studies are needed to elu-
cidate the chemical identity of these species. These exam-
ples demonstrate that the defence response of tobacco
(SNN) toward Phytophthora Nicotianae can only be more
fully captured by the combination of the two main princi-
pal components (PC1 & PC2).

Biological response index

Because only locally infected tissue of the SNN cultivar
undergoes HR, while neighboring leaf areas do not
exhibit HR, two qualitatively lines can be drawn in the
PC1 vs. PC2 score plot of Figure 4. The first one, labeled
as "Thr" (threshold), is a line that separates all measured
samples from tobacco (SNN) into two regions: (a) +HR
(undergoing HR) and (b) -HR (not undergoing HR),
respectively. The second one is perpendicular to "Thr",
and is labeled as f(PC1,PC2). The projection of the PC1
vs. PC2 data points onto this line - f(PC1,PC2) - can be
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regarded as reflecting the "stress status” of the samples.
One may thus call this one-dimensional projection an
integrated "Biological Response Index" (BRI).

Figure 5A shows the so-derived BRI values for the dif-
ferently treated SNN and Xanthi samples for time points
between 1 to 9 hpi. For convenience, the mean of the BRI
values derived for "untreated" samples (Bp), where a mini-
mum of metabolic effects can be expected to occur, was
furthermore arbitrarily set to zero. The highest BRI val-
ues of ~7 were derived for infected SNN samples at 6 and
9 hpi, while infected Xanthi samples exhibit intermediate
values of ~4, which are essentially constant at all time
points, and also similar to the BRI values obtained for P;
and B; SNN samples.

To further evaluate the possible relevance of the BRI,
we examined how well the BRI values correlate with the
number of cells that had undergone HR by performing
classical dead cell count analysis of identically treated
samples. The correlation between the two values is plot-
ted in Figure 5B. Cell death is a consequence of (SA -
mediated) HR and proportional to the strength of the
plant defence response. The BRI vs. DCC plot (Figure 5B)
reveals a non-linear function of the form "a +
b*Ln(DCC)" between the qualitative BRI and the quanti-
tative DCC values. The non-linearity of the relationship
may be interpreted as describing the complex metabolic
(and hormonal) transition, starting from initial local or
"micro-systemic" stress or infection responses to a spe-
cific defence reaction. BRI values around 5 reflect the
transition from more or less reversible stress response to
irreversible processes (such as HR) which inevitably
result in cell death (represented by the line labeled "Thr"
in Figure 4), but this transition is not abrupt.

The BRI parameter appears to only reflect the strength
of the local defence response toward the infection. Treat-
ments applied on the opposite side of the midvein did not
notably influence the BRI value obtained for the infected
samples. This demonstrates that at least within the time
frame of 1 - 9 hpi, the analysis of leaf sections which
develop a HR will not be dramatically affected by major
systemic effects which traversed the major veins (Addi-
tional file 3). However, the occurrence of more minor sys-
temic effects, that are influencing the overall metabolic
profile, is well reflected by the original PCA score plot.
For example, in the PC1 vs. PC2 score plot of Figure 4, the
metabolic profile of blank control samples is placed adja-
cent to an infection site, suggesting that PC2 may capture
"micro-systemic" metabolic responses.

Employing loading plots (Additional file 2) to find those
metabolites that are associated with a high BRI value, two
ion species with m/z values of 269.170 and 431.222,
respectively, were identified to exhibit a particular high
correlation with the BRI. The metabolic time profiles of
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Figure 3 Quantitative LC-ESI MS/MS analysis of phytohormones
(time-profiles). Absolute amount of the major signaling phytohor-
mones (ABA, JA, and SA) per weight of fresh leave material in two dif-
ferent cultivars of Tobacco (SNN, and Xanthi), determined by LC-ESI
MS/MS in multiple reaction mode (MRM). Samples labeled with a pre-
ceding "X*" represent samples from N. tabacum (cv. Xanthi), * repre-
sents the sample treatment (for detailed explanation of the
nomenclature employed, see text).

these, as yet unidentified compounds, are displayed in
Figure 6. Both species essentially show the same expres-
sion profile with time post treatment. The mass differ-
ence of 162.052 u suggests that these two metabolites
likely represent the deglycosylated/glycosylated deriva-
tive of each other, where the sugar moiety would be a
hexose. The strong correlation with the BRI value and
thus to the infection-related stress response renders them
as putative biomarkers for monitoring the HR defence
response. Future studies will aim to structurally charac-
terize the two compounds.

Conclusions
IR-LDI-oTOF mass spectrometry allowed the rapid and
simultaneous detection of a wide range of naturally
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occurring (unlabeled) metabolites directly from leaf lam-
ina samples of tobacco plants. Changes in time for the
signals of secondary metabolites (such as phenolics, alka-
loids, and oxylipins) and primary metabolites (such as
hexoses and dihexoses) were recorded for differently
treated samples. The recorded changes in the metabo-
lome indicated that the JA/SA-defence cascades as well as
the ABA turnover cascade were involved in stress/infec-
tion response. The involvement of these three cascades
can explain the majority of the physiological changes that
were previously observed during this plant - pathogen
infection [17,20]. The hypothesis that the JA/SA-defence
cascades as well as ABA turnover are important for the
development of HR was successfully verified by LC-ESI-
MS/MS analysis of phytohormones.

From the PCA of the positive ion mode spectra a quali-
tative stress response factor (denominated: biological
response index, BRI) was derived. By employing the PCA
loading plots, several ion signals were identified to be
strongly correlated with the local defence response
against the pathogen. While many of these metabolites
have been described previously to be involved in stress/
infection response, two ion signals that are showing a
particular strong correlation with the BRI could so far not
be assigned. Potentially, the two compounds can serve as
biomarkers for monitoring the HR. Thus, IR-LDI-oTOF
MS analysis in combination with PCA may help to not
only to rapidly record complex metabolic transitions dur-
ing specific stress responses, but also to identify such
potential biomarkers.

Furthermore, two additional advantages of the LDI-
oTOF MS method are that it first allows to record meta-
bolic profiles directly from fresh tissue and second pro-
vides a high lateral resolution. This simplifies and
accelerates the analysis, on the one hand, and facilitates
the mapping of the spatial spread of the metabolic
response across the leaf on the other. Recent develop-
ments even indicate the possibility to analyze individual
plant cells [39]. Thus, in nearby future; this method could
be beneficial for studying developmental processes,
which exhibit distinctive spatial orientation as well as sev-
eral types of stress responses. In the case of the defence of
the N. tabacum cultivar SNN toward P. nicotianae, the
HR is strictly a localized process, however the defence
response may not need to be (there might be signals
going out which prepare neighboring cells to execute HR
faster). Hence, future high resolution metabolome map-
ping could be an extremely powerful tool, e.g. for detect-
ing the spread of an infection and for analyzing the
interaction between infected and non-infected cells.

Materials and methods
Chemicals

Deuterated abscisic acid (D,-ABA) and jasmonic acid
(D,-dihydro-JA) were purchased from OlChemIm Ltd
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Figure 4 Principal component analysis of the IR-LDI-oTOF MS spectra. PC1 vs. PC2 score plot of an unsupervised PCA of the positive ion mode
IR-LDI mass spectra acquired from differently treated samples of Nicotiana tabacum (cv. SNN). Based on their distribution with respect to the PC2-axis,
the samples can, qualitatively, be grouped into three clusters: (I) untreated samples (blank near a placebo zone, By); (Il) "stressed" samples from local
water infiltration (placebo near blank or infection zone; P, P)); and (lll) "stressed" samples from infection (I, lg, B). The line labeled as "Thr" separates
samples that do not undergo HR (-HR) from those that undergo HR (+HR) (i.e. top right = high cell death, bottom left = low cell death). The line
f(PC1,PC2) is displayed as the perpendicular line to "Thr". The "stress status" (BRI value, displayed in Figure 5) for each sample is obtained from the

projection of any point to f(PC1,PC2).

(Olomouc, Czech Republic); deuterated salicylic acid (D,-
SA), and all other chemicals/solvents were purchased
from Sigma-Aldrich (Steinheim, Germany) and were
used without further purification.

Plant and pathogen material

Plants were grown in a climate chamber with 24°C and
22°C (day and night temperature, respectively), with a 14
hour photoperiod (light levels of 300 umol quanta-m-2-s-
1). Source leaves of six to eight weeks old plants from two
cultivars of Nicotiana tabacum were used. Because only
about two source leaves of this age are found in an indi-
vidual tobacco plant, several identically treated plants
were employed for this study. The cultivar SNN is resis-
tant against the employed pathogen and capable of devel-
oping a strong HR; the other cultivar, Xanthi, is
susceptible and does not produce sizable HR (thus, it was
employed as a biological reference) [17]. Cultivation of
Phytophthora nicotianae van Breda de Haan isolate 1828

(DSMZ, Braunschweig, Germany), the production of
zoospores, and the infection procedure were performed
as described previously [17,20].

Preparation of samples for IR-LDI-oTOF MS

Three types of samples were collected from plant leaves:
Blank samples (B) were from untreated leave areas, pla-
cebo samples (P) from areas which got sterile tap water
injected to represent the pure injection stress, and
infected samples (I) which where injected a suspension of
750 + 250 zoospores per pl. In case of the P and I samples,
several injections of either tap water or zoospore suspen-
sion were placed close to each other within an area of ~20
cm?; the total injected volume per sample was 1 ml. The
liquid was slowly infiltrated with a fine syringe to fill the
air space in the spongy mesophyll of the leaves. The bene-
fit of employing Phytophthora nicotianae (which initiates
local HR responses in leaves of resistant tobacco) as a
pathogen and using an artificial infection procedure
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Figure 5 Biological response index and comparison with dead
cell count values. (A) Biological response index (BRI, f(pc1,,C2)) ob-
tained from the PCA shown in Figure 4 (see text for detailed explana-
tion of the procedure). Samples labeled with a preceding "X*"
represent samples from N. tabacum (cv. Xanthi), * represents the sam-
ple treatment (see text for details). (B) Comparison between BRI and
the dead cell count (DCC, %) determined for differently treated SNN
samples. Solid line: Best fit according to BRI = a + b*Ln(DCC), where a
=2.6044 and b = 1.6535 (R2=0.9986). The shaded area indicates the
threshold in terms of DCC that defines a positive HR.

(local infiltration of leaves) is that the infection area is
well defined and the mesophyll cells respond nearly syn-
chronously. To determine whether, besides the local reac-
tions of interest, there are also systemic effects,
combinations of the three treatments were applied to
three sets of leaves. One specific treatment was applied
on one side of the midvein and the second was applied to
the other. Subscripts identify this treatment; for example,
I, would be a sample taken from a zoospore-injected site
with a placebo (i.e. water injection) on the opposite side
of the midvein.

For each treatment, injections were placed on a given
side of the leaf in areas, where the different time points
were separated by side veins (i.e. one distal zone for each
time point) in order to minimize crosstalk between differ-
ent samples [72]. Typically, three discs of 7.5 - 15 mm in
diameter were cut out of each treatment area and ana-
lyzed by IR LDI-oTOF MS. The punch sites were all
placed as close as possible to the point of injection. A
sketch illustrating the example of a leave with spore injec-
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tion on the right side of the leaf and a blank of the left is
shown in Figure 1.

Samples were shock-frozen in liquid nitrogen immedi-
ately after dissection, and subsequently stored at -80°C
until the MS measurements. Immediately prior to the IR-
LDI MS measurement, and while the leaf was still frozen,
the lower cuticle of the leaves was removed using adhe-
sive tape. Leaf samples were placed on a standard micro-
scope glass slide "upside down" (i.e. the lower epidermis
side of the leaf was "face-up") using adhesive (G304, Plano
W. Plannet GmbH, Wetzlar, Germany) (Figure 1). The
glass slide was mounted into a custom-made MALDI
sample plate using double-sided tape.

To visualize the changes in the metabolic profile that
are specifically induced by infection from those initiated
by mechanical or osmotic stress (due to leaf infiltration or
wounding by sample collection) IR-LDI mass spectra
acquired from pathogen-infiltrated (infected) leaf sec-
tions were compared with those recorded from water-
infiltrated (placebo), and untreated (blank) leaf sections.
Furthermore, to minimize the local variations in the
amount of zoospores present in the tissue, mass profiles
were taken from the middle of the injection zones. A
sketch illustrating this procedure is provided in Addi-
tional file 4.

Samples were collected at time points of 1, 3, 6, and 9
hpi. Typically, the injected water exuded/evaporated
within 45 min. Because a low mass spectral quality was
obtained from plant tissue containing excessive water in
the air space of the spongy mesophyll,1 hpi was chosen as
the earliest measurement time point. By comparing

miz 431.2224

(x100%)

miz 269.1695

Rel. change in intensity

B P,

| P, B B, XI,, Xl XP, XB,
Sample treatment conditions
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Figure 6 Putative biomarkers for the HR of tobacco (SNN). Meta-
bolic time-profiles (determined by direct IR-LDI-oTOF MS) of two, as yet
unidentified metabolites exhibiting m/zvalues of 431.222 and 269.170
that exhibit a strong correlation with the biological response index
(BRI, f(PC1,PC2)) and could be employed for monitoring the defence
response of N. tabacum (cv. SNN) toward P. nicotianae infection.
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changes of the relative intensity of an ion signal deter-
mined at the different time points, normalized to its
intensity at the reference point of 1hpi, "key metabolites”
that exhibit significant changes with time post treatment
can be identified. Care was taken that samples did not
reside inside the fine vacuum of the MS ion source longer
than 10 min to avoid excessive water loss by dehydration.

IR-LDI-oTOF MS analysis of metabolites

The mass spectrometer has been described in detail
before [34,40]. This instrument is equipped with an UV-
laser (N, laser, A = 337 nm) and an Er:YAG laser (Speser,
Spektrum, Berlin, Germany). The latter is an IR-laser that
emits pulses of ~150 ns duration at a wavelength of 2.94
pum and at a repetition rate of 2 Hz. The IR-laser beam
irradiated the leaf surfaces at an angle of incidence of 45°.
The focal spot size was slightly elliptical and had an area
of ~150 x 200 pm? (1/e? intensity definition), the beam
profile was near-Gaussian. N, was used as buffer gas for
collisional cooling and focusing [44]. The pressure in the
sample region of the ion source was adjusted to ~0.7
mbar [46]. For ion generation, a laser fluence (energy per
pulse and area) of ~25 k]-m-2was typically applied. At this
fluence, tissue layers of about 50 pum in depth are
removed per laser pulse in the central part of the focused
beam, allowing the analysis of the content of lysed cells.
120 laser shots where accumulated for each single spec-
trum. These successive exposures were applied over an
area of typically 2 mm?2 by manually moving the sample
target under the fixed laser beam in a zigzag pattern. This
way, any given sample location was exposed to no more
than four laser pulses, thereby avoiding a full penetration
of the sample. Two mass spectra were recorded from each
individual sample disk.

Measurements were performed in positive and negative
ion mode using time-of-flight voltages of + 10 kV. The
mass resolution (FWHM) was about 6,000 in both ion
modes. Using the monoisotopic ion signals of Angio-
tensin I ([M+H]*+ m/z 1296.6853) and 2,5-dihydroxyben-
zoic acid (DHB) UV-MALDI matrix molecules ([M+H]+
m/z 155.0344) for external calibration, a mass accuracy of
about ~20 ppm was achieved for the m/z range between
100 - 500. All ions were detected as singly charged spe-
cies. With internal calibration, using signals of metabo-
lites of known identity (e.g. nicotine, hexose, and
dihexose), the mass accuracy could be improved to ~6
ppm. Mass spectra were partially processed using Mov-
erZ software (freeware edition, Genomics Solution, Ann
Arbor, MI, USA).

Although HR signals are locally triggered in the patho-
gen infection area [17,21], plants possess the ability to
generate disease resistance against further infections in
healthy (uncompromised) parts by employing secondary
metabolites as infection messengers. As shown in Addi-
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tional file 4A, the location from where the sample disk
was taken within the same distal zone may to some extent
influence the metabolic pattern in the mass spectra, due
to changes in the local concentrations of zoospores in the
tissue. To account for this source of variability, all sample
disks were taken from the center of the placebo or
infected areas located inside one distal zone and as equi-
distance as possible to the multiple points of injection. In
the case of the blank samples, the sample disks were
taken from the center of their respective distal zones
(Additional file 4B).

If the samples were taken from the center of their
respective distal zones, the main parameters that influ-
enced the relative signal intensities and ion patterns were
the amount of water contained in the leaves and the
applied laser fluence (see above, preparation of samples
for IR-LDI-oTOF MS). Attempts to improve a quantita-
tive data evaluation by finding an endogenous "internal
standard" were not successful. Therefore, care was taken
to follow a consistent preparation and measurement pro-
tocol. Under these conditions, the variation in the inten-
sities of specific metabolite signals obtained from
identically prepared and treated samples (from the same
or different plants) was between 5 - 30%. This is illus-
trated by the error bars in the graphs.

Identification of metabolites

Table 1 lists the presumable chemical composition and
type of ion formation for all ~60 consistently detected ion
species, in positive (Table A1A) and negative (Table B1B)
ion mode, along with the experimental and calculated m/
z values. Positively charged ions are mostly detected as
protonated [M+H]* and partially as sodiated/potassiated
[M+Na]*/[M+K]* species, negatively charged ions as
deprotonated [M-H]- and partially as chlorinated mole-
cules [M+Cl]- (identified by the distinct 35Cl/37Cl isotopic
distribution of chlorine).

In addition, a few gas phase adducts such as [hexose +
hexose + K]+ and [tyramine + hexose + H]* are presum-
ably also detected due to the soft desorption/ionization
conditions [40]. Since the oTOF instrument does not pro-
vide a tandem MS option for structural characterization
of ions, isobaric species can not be differentiated. Hence,
putative identification of metabolites is based on the
comparison of experimental and theoretical mass values
(which had to coincide within 20 ppm), the comparison
of experimental and theoretical isotopic patterns, and the
use of various databases addressing general plant metab-
olites, as well as literature addressing Nicotiana tabacum
metabolism. The following databases were used in this
study: ChemBioFinder http://chembiofinder.cambridge-
soft.com/; Chemspider http://www.chemspider.com/;
Kegg http://www.genome.jp/kegg/; LipidBank http://lip-
idbank.jp/; LipidMaps http://www.lipidmaps.org/; Met-



http://chembiofinder.cambridgesoft.com/
http://chembiofinder.cambridgesoft.com/
http://www.chemspider.com/
http://www.genome.jp/kegg/
http://lipidbank.jp/
http://lipidbank.jp/
http://www.lipidmaps.org/

Ibanez et al. Plant Methods 2010, 6:14
http://www.plantmethods.com/content/6/1/14

lin http://metlin.scripps.edu/Plant metabolomic
pathway http://plantcyc.org/; and Welmetser http://
maths.sci.shu.ac.uk/students/bioinformatics/

Bindal Nidhi/WELMETSER.pl.

Principal component analysis

The oTOF mass spectra were converted to ASCII files
using the custom-made data acquisition software of the
mass spectrometer (TOFMA v99.6; developed by W. Ens
and colleagues at the University of Manitoba, Winnipeg,
CA). The ASCII files were converted into Microsoft excel
sheets using a home-made program to become compati-
ble with the PCA program RapidMiner 4.600 (Rapid-I,
Dortmund, Germany). Only ion signals that were consis-
tently detected with a signal-to-noise (s/x) ratio of at least
10 at any of the monitored time points for SNN plants
were used for the unsupervised PCA. Because the focus
of this study was on the resistant SNN cultivar, those ions
which were unique to Xanthi and not seen in SNN with
the necessary s/u ratio were excluded from the PCA.

Preparation of samples for LC-ESI MS

LC-ESI MS quantitation of selected metabolites (phyto-
hormones) was performed based on the work published
by the Baldwin group (Max Planck Institute for Chemical
Ecology in Jena, Germany) [28-30]. The infection proce-
dure was identical to the one employed for the IR-LDI-
oTOF MS measurements. Eight disks of 0.9 mm in diam-
eter were cut out with a puncher. Samples were shock-
frozen in liquid nitrogen immediately after dissection and
subsequently stored at -80°C in 2 ml vials. Free phytohor-
mones were extracted by homogenizing ~100 mg of leaf
material in a SamplePrep 2000 Geno/Grinder (SPEX Cer-
tiPrep, Metuchen, NJ, USA), employing FastPrep tubes
containing 900 mg of lysing matrix (BIO 101; Vista, Cali-
fornia, USA) and 1 ml of ethyl acetate spiked with 100 ng
of deuterated internal standards D,-SA and D,-ABA; and
40 ng of D,-dihydro-JA. Phytohormones were extracted

by reciprocal shaking at 6.5 m s-1 for 2 min; consecutively,
they were centrifuged at 13,000 rpm for 20 min at 4°C.
The supernatants were evaporated to dryness in a vac-
uum concentrator at 30°C. The dry residue was re-dis-
solved in 600 pl of methanol (70%) and centrifuged at
13,000 rpm for 10 min at 4°C. An aliquot (500 pl) was
transferred to HPLC vials for measurement.

LC-ESI MS/MS analysis of phytohormones

The transferred aliquots were quantified using an LC-ESI
tandem mass spectrometry system (Varian 1200, Palo
Alto, USA). 10 pl of each extracted sample were injected
onto a ProntoSIL column (C18; 5 um, 50 x 2 mm; Bis-
choff, Leonberg, Germany) attached to a precolumn
(C18, 4 x 2 mm; Phenomenex, Aschaffenburg, Germany).
The mobile phase comprised solvent A (0.05% formic
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acid) and solvent B (methanol) used in a gradient mode
(time/concentration [min/%] for B: 0.0/15; 1.5'/15; 4.5'/
98; 12.5'/98; 13.0'/15; 15.0'/15) with a flow of (time/flow
[ml/min]: 0.0'/0.4; 1.0'/0.4; 1.5'/0.2; 10.0'/0.2; 10.5'/0.4;
15.0'/0.4). Compounds were detected as negative ions in
multiple reaction monitoring (MRM) mode. Molecular
ions [M-H]- at m/z 137, 209, 263 (SA, JA, and ABA,
respectively) and 141, 211; 265 (deuterated derivatives of
the compounds, respectively) were fragmented using 15
eV collision energy. The ratios of ion intensities of non-
deuterated and deuterated product ions were used to
quantify endogenous SA, JA, and ABA.

Dead cell count analysis

The infection procedure was identical to the one
employed for the IR-LDI-oTOF MS measurements. Dead
cell count was performed with 0.5 mg ml! propidium
iodide aqueous solution based on the work published by
the Weis group (Institute of Botany, Westfdlische Wil-
helms-Universitit Miinster, Germany) [21]. Cells with
disrupted membranes (dead cells) allow the fluorescence
dye propidium iodide to enter into the cytoplasmatic
region, thus indicating cell death. The fluorescence was
detected at 590 - 650 nm after excitation at 488 nm using
a confocal laser scanning microscope (TCS SPE2 with
inverse DM IRB-microscope, Leica, Wetzlar, Germany)
[21].

List of abbreviations

2,5-DHB: (2,5-Dihydroxybenzoic acid); ABA: (Abscisic
acid); ASCII: (American standard code for information
interchange); B;: (Sample taken from an untreated site
with an infected, i.e. spore-injected, on the opposite side
of the midvein); Bp: (Sample taken from an untreated site
with a placebo, i.e. water injection, on the opposite side of
the midvein); BRI: (Biological response index); D,-ABA:
(Deuterated abscisic acid); D,-dihydro-JA: (Deuterated
dihydro-jasmonic acid); D,-SA: (Deuterated salicylic
acid); DCC: (Dead cell count); DSMZ: (German collec-
tion of microorganisms and cell culture - Deutsche Sam-
mlung von Mikroorganismen und Zellkulturen GmbH);
Er:YAG: (Erbium-doped yttrium aluminum garnet); ESI:
(Electrospray ionization); ET: (Ethylene); FA: (Free fatty
acid); FM: (Fresh mass - weight of fresh leaf); GC: (Gas
chromatography); y-LA: (y-linolenic acid); HOO-y-LA:
(Peroxidated y-linolenic acid); hpi: (Hours post infiltra-
tion - hours post infection); HR: (Hypersensitive
response); Iy: (Sample taken from a spore-injected site
with a blank, i.e. untreated, on the opposite side of the
midvein); Ip: (Sample taken from a spore-injected site
with a placebo, i.e. water injection, on the opposite side of
the midvein); IR: (Infrared); JA: (Jasmonic acid); LA:
(linolenic acid); LC: (Liquid chromatography); LDI:
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(Laser desorption/ionization); LOX: (Lipoxygenase);
MALDI: (Matrix assisted laser desorption/ionization);
MRM: (Multiple reaction monitoring); MS: (Mass spec-
trometry); MS/MS: (Tandem mass spectrometry); Ny:
(Molecular nitrogen); NO: (Nitric oxide); OPO: (Optical
parametric oscillator); OPP: (Oxidative pentose phos-
phate pathway); oTOF: (Orthogonal time-of-flight); PAL:
(L-phenylalanine-ammonia-lyase); Py (Sample taken
from a water injection site with a blank, i.e. untreated, on
the opposite side of the midvein); PC: (Principal compo-
nent); PCA: (Principal component analysis); P;: (Sample
taken from a water injection site with an infected, i.e.
spore-injected, on the opposite side of the midvein);
PLA,: (Phospholipase A2); PR1: (Pathogenesis-related
gene 1); ROS: (Reactive oxygen species); s/n: (Signal-to-
noise ratio); SA: (Salicylic acid); SNN: (Samsun cultivar of
Nicotiana tabacum); THB: Tetrahydrobiopterin); TOF:
(Time-of-flight).

Additional material

Additional file 1 IR-LDI-oTOF MS spectra. Representative IR-LDI-oTOF
mass spectra showing metabolic profiles obtained in positive and negative
ion modes from an |, and a P; SNN tobacco leaf sample at 6 hpi. Presumable
chemical compositions are identified for selected major ions species. A full
list of detected ion signals and their tentative identities is provided in Table
1.

Additional file 2 Unsupervised loading plots generated from the PCA.
Loading plots of the PCA result of Figure 4, showing all positive ions listed in
Table 1; for improved clarity, nominal mass values are displayed. lons of par-
ticular interest are highlighted in boldface, including phaseic acid (m/z
281.140) as predominantly associated with the ABA turnover, three oxy-
lipins at m/z311.220, 325.236, and 361.211, and the phenolic metabolite
tyramine (m/z 138.091) from the shikimic pathway. Metabolites that display
the highest correlation to the biological response index (BRI), and conse-
quently to the strength of the infection are shown in italic

Additional file 3 Validation of the BRI index. The BRI reflects the local
defence response. Comparing the BRI plot and the dead cell count (DCC, %)
in SNN obtained from infected samples with different sample treatment
environments on the opposite side of the midvein (Ig: blank; Ip: placebo; I
infected). For the calculation of the BRI, 3 plant per infection times 2 leaves
per plant times 3 samples per plant were used; for the DCC, 3 plants per
infection times 3 leaves per plant times 14 Infection sites per plant and 17
cLSM pictures per infection site were employed.

Additional file 4 IR-LDI-oTOF MS analysis of metabolites (spatial-pro-
file). Metabolic profiles detected by direct IR-LDI-oTOF of Nicotiana
tabacum (cv. SNN) leaf samples from one single distal zone measured at 6
hpi. (A) Mass spectra were acquired from 7.5 mm diameter sample disks
located within the infection zone. (B) Mass spectra acquired by successively
moving the sample target, hence the area irradiated by the IR laser, across
the imaginary border between healthy and infection zones present in one
distal zone of the leaf.
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