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Abstract

Background: Functional mapping is a powerful approach for mapping quantitative trait loci (QTLs) that control
biological processes. Functional mapping incorporates mathematical aspects of growth and development into a
general QTL mapping framework and has been recently integrated with composite interval mapping to build up a
so-called composite functional mapping model, aimed to separate multiple linked QTLs on the same chromosomal
region.

Results: This article reports the principle of using composite functional mapping to estimate the effects of QTL-
environment interactions on growth trajectories by parametrically modeling the tested QTL in a marker interval
and nonparametrically modeling the markers outside the interval as co-factors. With this new model, we can
characterize the dynamic patterns of the genetic effects of QTLs governing growth trajectories, estimate the global
effects of the underlying QTLs during the course of growth and development, and test the differentiation in the
shapes of QTL genotype-specific growth curves between different environments. By analyzing a real example from
a soybean genome project, our model detects several QTLs that cause significant genotype-environment
interactions for plant height growth processes.

Conclusions: The model provides a basis for deciphering the genetic architecture of trait expression adjusted to
different biotic and abiotic environments for any organism.

Background
In nature, any biological trait of an organism is never
isolated from other traits or variables, but rather all of
them are integrated under the premise that natural
selection has tended to optimize energy absorption and
transport within fractal-like distribution networks [1,2].
Such a tendency has led to several universal biological
laws; for example, the change of metabolic rate or sur-
face area scales as the 3/4-power of body mass [3,4],
organismic growth as a function of age follows a sigmoi-
dal shape [5,6] and metabolic rate increases exponen-
tially with temperature [7]. A number of explicit

mathematical equations have been established to
describe these biological laws that hold true for all man-
ners of life forms under natural selection.
These mathematical functions have now played an

important role in incorporating biological laws into a
mapping framework to detect specific quantitative trait
loci (QTLs) for growth trajectories and developmental
events. R. Wu and group pioneered a series of statistical
models, called functional mapping, to map growth and
development QTLs through estimating genotype-specific
mathematical parameters that define a biological process
(reviewed in [8]). In statistics, functional mapping has
proven powerful and stable by modeling the patterns of
trait development and autocorrelations among different
time points measured [9-12]. For some dynamic traits
whose expression cannot be mathematically described,
nonparametric modeling based on the Legendre polyno-
mial orthogonal has been proposed, thus enhancing the
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flexibility of functional mapping [13,14]. Functional
mapping is genetically relevant, allowing the formulation
and test of numerous biologically meaningful hypotheses
about the genetic control of growth [15,16]. Some of the
most important hypotheses include the timing of a QTL
to switch on or off, the duration of its genetic effect,
and the pleiotropic effect of this QTL on different
aspects of development.
Functional mapping has been further extended to

model the genetic control of more complicated biologi-
cal problems related to QTL-QTL interactions [15,17]
and QTL-environment interactions on growth trajec-
tories [10,11]. [15] provided a general procedure within
the functional mapping framework for testing the effects
of individual genetic components, including the additive,
dominance, additive-additive, additive-dominance, domi-
nance-additive and dominance-dominance, on different
stages of development. [10,11] incorporated environ-
mental regimes, such as climates or sexes, into func-
tional mapping to explore the consequence of
interactions between the QTL and environments in
shaping developmental trajectories. Original functional
mapping and its extensions were founded on simple
interval mapping, whose utilization may be limited in a
situation where there are more than one QTL located
on a similar region of a chromosome. When such multi-
ple QTL occur, interval mapping-based approaches may
find some “ghost” QTLs which provide significant sig-
nals for their existence although they do not exist in
reality. [18,19] developed a so-called composite interval
mapping to separate multiple linked QTLs by integrat-
ing the principle of interval mapping for the testing
markers and partial regression analysis of all possible
other markers as co-factors. Composite interval mapping
has been instrumental for the identification of QTLs
that are responsible for different traits [20].
The combination of functional mapping and compo-

site interval mapping can be expected to improve the
estimation of multiple QTLs for growth trajectories, but
this computationally presents a high challenge in terms
of the complexity of estimating growth parameters asso-
ciated with genotypes at each marker as a co-factor.
Fortunately, some of these issues have been solved by R.
Wu and group [14]. These authors integrate parametri-
cal interval mapping (aimed to test a hypothesized QTL
in a test interval) and Legendre polynomial-based non-
parametric longitudinal regression analysis (aimed to
control the genome background by choosing a proper
set of markers as co-factors), facilitating computation,
estimation and tests of functional mapping for multiple
QTLs. In this article, we extend [14]’s semiparametric
idea to illustrate an analytical strategy for mapping
QTLs that affect growth trajectories through their main
effects or QTL-environment interaction effects. An

instructive procedure is described to test the impacts of
each of these components on the timing of development
and stages of growth in a time course. We report on the
detection of QTLs that affect plant height growth trajec-
tories in soybeans by using the approach developed in
this article.

Model
Experimental Design and Regression Model
Consider a recombinant inbred line (RIL) population in
which there are two homozygous genotypes for alterna-
tive alleles at each locus. Molecular markers are geno-
typed for each RIL progeny and analyzed to construct a
genetic linkage map used to identify quantitative trait
loci (QTLs) that affect growth trajectories. The RIL
design allows the same genotype to be replicated in
time and space. Assume that there are n RILs in a QTL
mapping study which are grown in a randomized com-
plete block design in L different environments with mul-
tiple replicates per environment. Each of the individuals
studied is measured for a growth trait at a series of time
points, say T. We will take means at each time point
over replicates in each environment to describe growth
trajectories for an RIL. Alternatively, we can use indivi-
dual plants per RIL to conduct the functional mapping
of growth trajectories by modeling the spatial structure
of a covariance [21].
Suppose there is a quantitative trait locus (QTL) with

genotypes QQ (symbolized as 1) and qq (symbolized as
2) that controls the dynamic expression of the trait mea-
sured. This QTL is located on somewhere on the
genetic linkage map constructed. While a pair of mar-
kers is used to map a hypothesized QTL on this test
interval, m markers within a given window length (in
cM) are chosen as co-factors to associate with growth
trajectories through partial regression analysis. Thus,
according to the principle of composite interval map-
ping [18,19], the phenotypic value of the growth trait, yil
(t), for individual i measured at time t in environment l,
affected by the putative QTL, is expressed as

y t t x t x a t e til l i l ik kl il
k

m

( ) ( ) ( ) ( ) ( )*= + + +
=

∑ 
1

(1)

where and μl(t) and al(t) are the environment-specific
population mean and additive genetic effect for the QTL
at time t, respectively; xi

* is the indicator variables for
individual i that specify the QTL genotypes, which is
defined as 1 for genotype QQ and 0 for genotype qq; akl

(t) is the environment-dependent additive effect at time
t associated with marker k (except for the interval con-
structed by the two markers); xik is the indicator vari-
ables that specify the additive effect of marker k for
individual i, respectively, which is defined similarly as
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xi
* ; and eil (t) is the environment-dependent residual

error at time t, normally distributed as N tl( , ( ))0 2 .
The covariance between the residual errors at different
time points t1 and t2 within environment l is denoted as
sl(t1,t2). All the variances and covariances in environ-
ment l form a (T × T) covariance matrix ∑l.

Likelihood
Let yil = (yil(1), ..., yil(T)) be the phenotypic vector at dif-
ferent time points for individual RIL i at environment l.
A mixture model-based likelihood function of the
across-replicate henotypic mean vector for the growth
trait (y) and marker data (M) can be written, by assum-
ing that different environments are independent, as

L w fj i jl il jl l
ji

nL

( | ) ( ; , ) ,|  y,M y=
⎡

⎣
⎢

⎤

⎦
⎥

==
∑∏∑

1

2

1l=1
(2)

where Ω = (ωj|i, Θjl, Ψl; j = 1, 2, l = 1, ..., L) is a vec-
tor of known parameters, that is, the genomic location
of the QTL, QTL genotype-specific parameters, and
parameters common to all genotypes. In statistics, the
location parameter ωj|i is the proportion of different
mixture normals in equation (2), reflecting the segrega-
tion of the QTL in the population, which can be
inferred from known marker genotypes at the test inter-
val. For a RIL mapping population, n progeny can be
classified into four different groups of two-marker geno-
types. In each group, the mixture proportion or fre-
quency of a QTL genotype is RIL-specific and can be
expressed as the conditional probability of QTL geno-
type j for RIL i given its marker genotype [21]. QTL
genotype- and environment-specific distribution density,
fjl(yil; Θjl, Ψl), is assumed to be multivariate normal with
expected mean vector ujl = (ujl(1), ..., ujl(T)) for QTL
genotype j and covariance matrix ∑l.

Modeling Time-Dependent Genetic Effects
To solve the likelihood function (2), functional mapping
models the genotypic means for an assumed QTL at dif-
ferent time points by a biologically meaningful mathe-
matical function. Since a growth trait is considered, the
mathematical function used can be a logistic curve,
expressed as

g t a
be rt( ) ,=

+ −1
(3)

where the set of parameters (a, b, r) defines the shape
of the genotypic curve. Thus, by estimating the three
curve parameters, functional mapping can test the dif-
ferences in geno-typic means over times. Depending on
the nature of experimental materials, many other growth
equations can also be used [4]. By estimating QTL

genotype-specific growth curve parameters for different
environments (ajl, bjl, rjl) (j = 1, 2; l = 1, ..., L), the time-
dependent additive effect of the QTL in environment l
is the difference in growth curve between the two geno-
types, i.e.

1 1 2( ) ( ) ( ).t g t g tl l= − (4)

We will use [14]’s nonparametric approach to model
time-dependent effects of the markers outside the test
interval used as co-factors for partial regression analysis.
This approach based on a Legendre polynomial is flex-
ible for curve fitting [22] and has a closed form solution
for the marker effects. The Legendre polynomial of
order  implemented to model the genetic effects of
individual markers is generally expressed as
L S St L L L( ) ( ( ), ( ), , ( ))= 0 1   where
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where s = 0, 1, ...,  and  = − + −
−1

2( min( ))
max( ) min( )

t t
t t with

min(t) and max(t) being the first and last time point,
respectively.
Combining the parametric model for the QTL effect

and the Legendre-based nonparametric model for the
marker effects together, we rewrite the time-dependent
expected means of different QTL genotypes for RIL i in
environment l as

u t t t x t

u t t x

l S l ik kl
k

m
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1

(5)

where l l l Sl= ( , , , )  0 1  and akl k l k l kSla a a= ( , , , )0 1 
are the base population mean vector and the base addi-
tive effect vector for marker k as a co-factor,
respectively.
Combining the QTL and marker effects in composite

functional mapping, time-dependent expected means for
different QTL genotypes in environment l are modelled
by  jl jl jl jl l kl k

ma b r= =( , , , ,{ } ) a 1 if a logistic curve (3) is
considered. The model allows the fitting of any other
growth curves.

Modeling the Covariance Matrix
The covariance structure of serial measurements can
be modeled by a number of approaches. One of the
commonly used approaches for structuring the covar-
iance is the first order au-toregressive (AR(1)) model
[23]. Its advantage lies in the existence of a general
expression for calculating the determinant and inverse
of the matrix for any number of time points measured.
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In practice, the assumptions of variance stationarity
and correlation stationarity, i.e., the residual variance
at different time points is the same, expressed as s2,
and the correlation between two different time points
t1 and t2 decreases exponentially in r with time lag,
expressed as ( , ) | |t t t t

1 2
1 2= − , may not hold. [24] used

[25] transform-both-sides (TBS) model to meet the
first assumption because heteroscedastic variances can
be stable after the data are log-transformed. For the
AR(1) model, we only need to use l l= ( , ) 1

2 to
model the structure of environment-specific covariance
matrix ∑l. Some other approaches for modeling the
covariance structure include the structured antedepe-
dence model [26,27].

Computing Algorithm
By fixing the position of a hypothesized QTL (in terms
of the proportion of recombinant homozygotes) within a
test interval, we obtain the maximum likelihood esti-
mates (MLEs) of mean-modeling parameters (Θjl) and
covariance-structuring parameters (Ψl) with the EM
algorithm. In the E step, the posterior probabilities of
each QTL genotype for RIL i in environment l are cal-
culated by

Γ jl i
j l j il jl l

j i j il j l l
j

w f

w f
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2

In the M step, the log-likelihood equations are derived
in terms of Ωjl|i to estimate the growth parameters asso-
ciated with the QTL effect, basis function parameters
associated with the population means and marker
effects, and parameters modeling the covariance struc-
ture. It is possible to derive the closed forms for the
base population means and base additive effects for m
markers as cofactors, which are expressed as
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with L L LS S S T= ′ ′( ( ), , ( ))1  and al = (al(1), ..., al(T))
both for environment l.
To estimate the MLEs of the parameters that model

the time-dependent QTL effects and covariance matrix,
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we implement the simplex or Newton-Raphson algo-
rithm in the estimation process with the EM algorithm
[28,29]. As shown in [9], the closed forms for estimating
the determinant and inverse of the AR(1) covariance
matrix can be derived, whose implementation will
increase the computational efficiency of functional
mapping.
A numerical derivative approach was derived to calcu-

late the sampling errors for the MLEs of the parameters
contained within the mixture model (2). The partial
derivative of a given function with respect to some para-
meters x and z is given by

∂
∂ ∂

= + + − + −

− − + − −

2
1 2 1 2

1 2 1

 
x z

x z f x z

f x z f x

{[ ( , ) ( , )]

[ ( , ) ( ,

   

   zz −  2 1 2)]} / ( , )

If x and z are the same parameters, the above formula
simplifies to

∂

∂
= + − − +2

2
2

2
 

x

x f x f x( ) ( ) ( ) 



where ℓ is the log-likelihood function and x and z are
any parameters of interest in the current model. Taking
the inverse of the negative values of the partial deriva-
tive matrix, the estimate of the asymptotic sample cov-
ariance matrix can be obtained.

Model Selection
To obtain the best fit of the data, the optimal number of
markers involved in the partial regression analysis of
composite functional mapping and optimal order of the
Legendre polynomial to model the marker effects should
be determined. We used the Bayesian information cri-
terion (BIC) [30] as the model selection criterion of the
optimal marker number and polynomial order. The BIC
is defined as

BIC

dimension

= −

+

∧ ∧

= =

= =
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= =jl l j l
L
1 1

2 are the MLEs of parameters
under the Legendre polynomial of order  dimension,
{ , } ;

; jl l j l
L

= =1 1
2 represents the number of independent

parameters under order  , and n is the total number
of observation at a particular time point. The optimal
model is one that displays the minimum BIC value.
Note that the model selection procedure also incorpo-
rates the choice of the best number of markers (flanking
a given test interval) as co-factors in composite func-
tional mapping.

Hypothesis Tests
Existence of a QTL
Within the framework of functional mapping, a number
of biologically meaningful hypotheses can be tested [15].
To understand the genetic architecture of a growth trait,
we need to first test the existence of a QTL that affects
the dynamic process and shape of the trait. The follow-
ing hypotheses are formulated to test the genetic control
over the entire dynamic process of a trait:

H a b r a b r

a b r

a b rL L L

0 11 11 11 21 21 21

1 1 1

1 1 1
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H
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2 2 2

1

≡
at least one of the above

equalities ddoesnot hold.

(6)

The H0 states that there are no QTL affecting growth
curves (the reduced model), whereas the H1 proposes
that such QTL do exist (the full model). The test statis-
tic for the hypotheses (6) is calculated as the log-likeli-
hood ratio of the reduced to the full model:

LR = −
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2
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where the tildes and hats denote the MLEs of the
unknown parameters under the H0 and H1, respectively,
and M-2 is the marker information excluding the two
tested markers. The critical value of the LR test statistic
can be determined by estimating its behavior under the
null hypothesis for a whole genome. An empirical
approach based on permutation tests by destroying the
relationships between the phenotypic values and tested
marker interval genotypes [31-33] is usually used to deter-
mine the critical threshold of the LR for interval mapping.
But this approach cannot be directly used for composite
interval mapping in which additional markers (excluding
the two tested markers) serve as co-factors to be asso-
ciated with the phenotypic values. [19] proposed a simula-
tion approach to examine the distribution of the LR
values under the null hypothesis. The phenotypic values
simulated under the null hypothesis should reflect the
effects of the markers as co-factors. This can be done by
assuming that the time-dependent phenotypic values in
environment ℓ follow a multivariate normal distribution
with mean vector

L L as l ik s
k

m

klt x t( ) ( )
∧ ∧′ + ′

=
∑

1
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and the covariance matrix with the AR(1) structure.
The threshold for the tested interval is estimated as the
5% percentile of the LR values from 1000 simulation
replicates. A genome-wide critical threshold is deter-
mined by scanning through the entire linkage map,
although this process is computationally extensive.

Pleiotropic Effect of a QTL
If a significant QTL is found, then we can test whether
this QTL has a pleiotropic effect on growth trajectories
in any two different environments l1 and l2. This test is
formulated as

H a b r a b r

a b r

H

l l l l l l

l l l

0 1 1 1 2 2 2

1

1 1 1 1 1 1

1 1 1

: ( , , ) ( , , )
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=

≡
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equalities does not hold

(8)

for environment l1, and

H a b r a b r

a b r

H

l l l l l l

l l l

0 1 1 1 2 2 2

1

1 1 1 2 2 2

2 2 2

: ( , , ) ( , , )

( , , )

:

=

≡

at leasst one of the above

equalities does not hold

(9)

for environment l2. If the null hypotheses above (8
and 9) are both rejected, this implies that the significant
QTL detected affects pleiotropically growth trajectories
in the two environments. Otherwise, this QTL is opera-
tional only in one environment, which causes genotype
by environment interactions for growth trajectories. The
thresholds for each of the hypotheses (8 and 9) corre-
sponding to two different environments can be deter-
mined using the simulation approach as described
above.

QTL by Environment Interaction
In practice, although the QTL is pleiotropic, its effect on
growth trajectories may depend on the environment due
to QTL by environment interactions. This can be tested
for any two environments l1 and l2 using
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The rejection of the above null hypothesis means that
a significant genotype by environment interaction exists
due to allelic sensitivity to a varying environment. The
log-likelihood ratio test statistics for hypothesis (10) can
be determined from simulation studies.

Results
The model described above was used to analyze a real
example from a soybean genome project at Nanjing
Agricultural University, China. Two original inbred lines
of soybean, Kefeng No. 1 and Nannong 1138-2, as par-
ents were crossed to generate an F1 population which
was selfed for 7 generations to produce an RIL popula-
tion composed of two groups of homozygous genotypes
each containing two identical alleles from a different
parental line. Let 1 and 2 denote the homozygotes
derived from the Kefeng No. 1 alleles and Nannong
1138-2 alleles, respectively. A total of 184 RILs were
genotyped for 488 molecular markers (restricted frag-
ment length polymorphisms, simple sequence repeats
and amplified fragment length polymorphsim) that con-
struct a linkage map with 25 linkage groups covering
4,151.2 cM of the soybean genome [34].
The RILs were planted in a simple lattice design with

multiple replicates randomly grown in a plot at the
Jiangpu Agricultural Experiment Station of Nanjing
Agricultural University, China. The plants were mea-
sured for their plant height growth for six to eight
times with the first time at the 28th day after emer-
gence and successive seven times every 10 days there-
after. The same study was repeated for year 2005 and
2006. Thus, different years are viewed as two different
environments.
By taking the means for the same RIL over replicates,

plant heights are plotted against time in two different
years (Fig. 1). The variation among RILs tends to
increase with time for raw data (Fig. 1, upper panel),
but seems to be constant over time when the data are
log-transformed (Fig. 1, lower panel). Thus, we can use
AR(1)-based functional mapping to analyze the trans-
formed growth data. Through incorporating the TBS
model [24], biological meanings of the growth para-
meters can be preserved. From Fig. 1, it is seen that
plant height growth in each year can well be fit by a
logistic curve (3) containing parameters (a, b, r).
Composite functional mapping will map QTL × year
interactions for plant height growth trajectories of soy-
beans planted in two different years. However, because
this approach is computationally very expensive, we will
first run traditional functional mapping by [9] and
[10,11], aimed to scan growth QTLs throughout the
genome. If multiple peaks on the same chromosome are
detected from functional mapping, composite functional
mapping will be performed to resolve the existence of
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multiple possible linked QTLs. Log-likelihood ratios
from functional mapping were plotted against 25 linkage
groups (Fig. 2), from which several peaks were detected
on chromosomes 3, 6, and 24. As compared with the
critical threshold determined from 100 permutation
tests, these peaks were thought to harbor significant
QTLs. Yet, these linkage groups have multiple peaks,
which is thus subjected to a reanalysis by composite
functional mapping.
In composite functional mapping, the growth equation
was incorporated to specify the QTL effect, whereas the
Legendre polynomial was used to model the marker
effects by choosing different numbers of markers as co-
factors within a changing window length (in cM) of the
test interval of the QTL. The best number of co-factors
is determined under different orders of the Legendre
polynomial using the BIC criterion (Table 1). The opti-
mal order is found to be 5 for the soybean data. Under
these optimal circumstances, only one QTL on each
linkage group (3, 6, and 24) was detected by composite
functional mapping. The estimates of the locations of
these QTLs are given in Table 2, along with the

estimates of growth curve parameters for different geno-
types at each of the QTL detected (Table 2). It seems
that these estimates are reasonably precise because their
standard errors estimates are small.
Figure 3 illustrates the growth curves of QTL genotypes
in years 2005 and 2006 drawn with the estimates of
curve parameters in Table 2. All the QTLs detected dis-
play increasing additive effects with time. At the QTLs
on linkage groups 3 and 6, parent Kefeng No. 1 contri-
butes favorable alleles to increasing plant growth,
whereas such favorable alleles are derived from parent
Nannong 1138-2 at the QTL on linkage group 24. After
significant QTLs were detected, hypothesis tests (8 and
9) were used to investigate whether these QTLs trigger
pleiotropic effects on growth trajectories for soybeans in
different years. At each of the detected QTLs, the null
hypotheses of both (8 and 9) are rejected, which sug-
gests that they are all pleiotropic QTLs affecting growth
trajectories in both years. A further test with hypothesis
(10) suggests that, although two of these QTLs (on
chromosomes 3 and 6) are pleiotropic, the magnitude
and temporal pattern of their additive genetic effects on

Figure 1 Growth curves for plant heights in a recombinant inbred lines of soybeans planted in years 2005 and 2006.
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growth traits vary from year to year (see Fig. 3). Such
interactions between the QTLs and years determine
year-specific differences in growth trajectories of plant
heights in soybeans. The QTL on chromosome 24 affect
plant growth trajectories in a consistent pattern over
years, displaying no genotype × year interactions.
By estimating and testing the inflection point of a logis-
tic curve using ln b/r, we further investigate how the
detected QTLs exert significant impacts on the timing
of maximum growth rate (Fig. 3). The inflection point

of growth curves in 2005 displays a difference of three
days between the two genotypes (32 vs. 29) at the QTL
on chromosome 3, whereas this difference in 2006 is as
large as 21 days (45 vs. 24). For the QTL on chromo-
some 6, we detect a similar pattern for the difference in
the inflection point, i.e., 4 days (31 vs. 27) in 2005 and
25 days (41 vs. 16) in 2006. Yet, unlike these two QTLs,
there is no year-specific difference in the inflection
point for the QTL on chromosome 24, which does not
exhibit a significant effect on this developmental charac-
teristic in both years. Although favorable alleles that
increase plant growth are contributed by parent Kefeng
No. 1 for QTLs detected on chromosomes 3 and 6, par-
ent Nannong 1138-2 contributes such a favorable allele
for the QTL on chromosome 24 (Fig. 3).

Discussion
Genetic mapping has proven to be a powerful approach
for map individual genes or quantitative trait loci
(QTLs) that control a quantitatively inherited trait [35].
However, this approach would not gain too much
insight into the genetic control mechanisms for

Figure 2 The profile of the log-likelihood ratios (LR) between the full model (there is a QTL) and reduced (there is no QTL) model for
plant height growth trajectories across the genome in soybeans planted in years 2005 and 2006. The genomic position corresponding
to the peak of the curve is the maximum likelihood estimate of the QTL localization. The vertical broken lines indicate the positions of markers
on this chromosome shown beneath. The map distances (in centiMorgan) between two markers are calculated using the Haldane mapping
function. The thresholds for acclaiming the genome-wide existence of a QTL are obtained from 100 permutation tests.

Table 1 BIC values under different models of composite
functional mapping by choosing markers within different
window lengths (in cM) as co-factors. Different orders of
the Legendre polynomial are considered under each
model.

Order of Legendre Polynomials

Chromosome Window Width
(cM)

2 3 4 5

3 25 -5833.70 -5815.68 -5925.53 -5941.03

6 10 -7264.87 -7286.02 -7434.39 -7441.61

24 5 -7056.95 -7062.54 -7211.4 -7292.07
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Table 2 The MLEs of genotypic curve parameters at the two QTLs detected on chromosomes 3, 6, and 24 and
sampling errors (in parentheses) of the estimates by composite functional mapping under the optimal order of the
Legendre polynomial and the optimal number of co-factors (see Table 1) for plant height growth trajectories of
soybeans in two different years (2005 and 2006).

QTL Genotype

Chromosome Marker Interval QQ qq

Year a b r a b r

3 GMKF104b-GMKF177 2005 81.790 66.583 0.131 56.889 47.148 0.133

(4.013) (5.148) (0.006) (3.283) (2.520) (0.007)

2006 40.314 8.799 0.048 19.148 3.865 0.057

(3.142) (1.538) (0.006) (3.398) (1.081) (0.004)

6 A748V-A397I 2005 82.223 33.853 0.112 54.908 22.763 0.115

(10.290) (1.364) (0.001) (4.534) (1.422) (0.002)

2006 56.924 6.072 0.044 26.879 2.460 0.055

(3.711) (0.417) (0.001) (2.540) (0.193) (0.003)

24 sat_231- LE23T 2005 62.894 46.764 0.124 100.571 72.397 0.122

(7.006) (9.020) (0.006) (10.245) (13.981) (0.006)

2006 69.695 223.809 0.175 101.781 308.94 0.174

(9.148) (52.231) (0.010) (12.711) (69.850) (0.010)

Figure 3 Growth curves of two genotypes at each of the QTLs detected on linkage groups 3, 6 and 24 for years 2005 (purple) and
2006 (blue). For each year, the solid and dot curves correspond to a genotype composed of alleles from parents Kefeng No. 1 and Nannong
11382, respectively. The times at the inflection point of a growth curve are shown by vertical lines.
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phenotypic variation if some statistical and biological
issues related to the approach are not resolved. Zeng
and others are among the first who systematically inves-
tigate the effects of multiple linked QTLs on the power
of genetic mapping, and further proposed so-called
composite interval mapping to separate linked QTLs
through using the markers outside the test interval to
make the background control of the genome [18,19,36].
Many other approaches that take into account a specific
statistical, computational or genetic issue of genetic
mapping have been developed [37-43]. All these
approaches have been instrumental for the characteriza-
tion of QTLs that control quantitative traits of interest
to agriculture, biology and health sciences [44,20,45,46].
More recently, genetic mapping has been integrated

with some fundamental biological principles, aimed to
generate biologically more meaningful discoveries
related to trait formation and development. One of the
most important products for this integration is the for-
mulation of a series of statistical models, called func-
tional mapping [9,15,16,24,8]. Functional mapping
capitalizes on the mathematical aspects of biological
processes to model the temporal pattern of genetic
effects exerted by a QTL in time course. It offers tre-
mendous advantages in the generation of testable biolo-
gical hypotheses and synthesis of different disciplines for
a more comprehensive understanding of biology. Func-
tional mapping have now been extended to explore the
roles gene-gene, gene-environment, gene-sex interac-
tions play in directing growth trajectories of a complex
trait [15,10,11]. Combined with composite interval map-
ping, functional mapping has been shown to have more
power to separate linked QTLs on the same chromo-
some [14]. This composite functional mapping uses a
parametric approach to model the temporal effect of the
QTL effect and a nonparametric approach based on the
Lengendre polynomial [22,47,13] to model the temporal
effects of different markers as co-factors. Parametric
modeling preserves the biological relevance of the origi-
nal functional mapping, whereas nonparametric model-
ing increases the flexibility of functional mapping and
its computational efficiency.
In this report, we incorporate composite functional

mapping to map QTLs that interact with environments
to regulate the process of trait development. While tra-
ditional functional mapping detected significant signals
for the existence of QTLs for plant height growth trajec-
tories in a recombinant inbred line (RIL) population of
soybeans, the new composite functional mapping shows
great power to separate multiple linked QTLs on the
same chromosome. In total, we detected three signifi-
cant QTLs on chromosomes 3, 6 and 24 that affect
height growth in different years. These QTLs were also

found by an allometric model [29]. By integrating envir-
onmental factors, the new model detected these QTLs
to be operational in both years. However, the magni-
tudes of their effects vary between different years, show-
ing significant QTL by year interactions. It seems that
plant height growth is under strong genetic control. In
the functional mapping of rice, [27] found several signif-
icant QTLs for plant heights in two contrasting climates
although the expression of these QTLs is not environ-
ment-dependent.
Currently, there are three different hypotheses pro-

posed to explain the mechanisms of genotype × envir-
onment interactions-heterozygosity, allelic sensitivity,
and gene regulation [48,49]. The new model provides a
genome-wide search for QTLs that act in terms of the
second hypothesis, i.e., the environment-dependent
change of a trait is caused by differentiate expression of
a QTL in different environments. However, it is possible
to modify the model to test the other hypotheses. For
example, the gene regulation hypothesis can be tested
by assuming different but epistatically interacting QTLs
for mean growth curves and individual growth curves
across different environments [50,51]. Our approach
combines powerful statistics and molecular genetics
with developmental and ecological mechanisms underly-
ing biological features, relationships and processes to
shed light on the genetic basis of complex traits. Such a
mechanistic strategy will be powerful to address funda-
mental questions about plant development and plastic
response to changing environments.
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