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Abstract

data was available for a further 3 metabolites.

Wheat

Background: Biofortification of staple crops with essential micronutrients relies on the efficient, long distance
transport of nutrients to the developing seed. The main route of this transport in common wheat (Triticum
aestivum) is via the phloem, but due to the reactive nature of some essential micronutrients (specifically Fe and Zn),
they need to form ligands with metabolites for transport within the phloem. Current methods available in
collecting phloem exudate allows for small volumes (uL or nlL) to be collected which limits the breadth of
metabolite analysis. We present a technical advance in the measurement of 79 metabolites in as little as

19.5 nL of phloem exudate. This was achieved by using mass spectrometry based, metabolomic techniques.

Results: Using gas chromatography-mass spectrometry (GC-MS), 79 metabolites were detected in wheat phloem.
Of these, 53 were identified with respect to their chemistry and 26 were classified as unknowns. Using the ratio of
ion area for each metabolite to the total ion area for all metabolites, 39 showed significant changes in metabolite
profile with a change in wheat reproductive maturity, from 8-12 to 17-21 days after anthesis. Of these, 21 were
shown to increase and 18 decreased as the plant matured. An amine group derivitisation method coupled with
liquid chromatography MS (LC-MS) based metabolomics was able to quantify 26 metabolites and semi-quantitative

Conclusions: This study demonstrates that it is possible to determine metabolite profiles from extremely small
volumes of phloem exudate and that this method can be used to determine variability within the metabolite

profile of phloem that has occurred with changes in maturity. This is also believed to be the first report of the
presence of the important metal complexing metabolite, nicotianamine in the phloem of wheat.
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Background

Deficiencies of Fe and Zn in humans have been identified
as a serious issue of concern for developing countries. In a
2002 World Health Organisation report it was estimated
that in 2000, 1.6 million people died as a direct result of
Fe and Zn deficiency and a further 60 million healthy life
years were lost [1]. Approximately 60% of the health life
years lost occurred in developing countries within Africa
and South-East Asia [1]. Biofortification of staple crops
has been identified as a possible way of combating
the issue of micronutrient deficiency [2] and attempts
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to increase the levels of mineral and vitamin micronutri-
ents in the harvested and edible plant parts using genetic
or agronomic techniques is currently underway [3]. An
important part of the mineral biofortification process is
the transport of these elements from the source to the
sink (i.e. from soil, through to the roots, stems and leaves,
and then to the seed). Within a plant, the long distance
transport pathways of the xylem and phloem are the
major routes for nutrient movement to developing seeds
[4]. In the case of wheat, the phloem is very important as
there is a xylem discontinuity at the base of the grain [5]
which results in all macro and micro nutrients first trans-
ferring to the phloem before unloading into the grain.
During the transport of Fe and Zn in the phloem these
minerals must be complexed due to their reactive nature
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[6]. A variety of metabolites have been theorised to
complex Fe, Zn and other essential minerals within
the phloem [7]. Of these, nictoianamine and cystine are
proposed to play a major role in the modelled transport of
Fe and Zn [7], and in rice, nicotianamine has been found
to complex Zn in the phloem [8].

Phloem is a complex matrix which consists of water,
sugars, amino acids, organic acids, secondary metabolites,
peptides and hormones along with ions and a number
of macromolecules, including proteins, small RNAs
and mRNAs [9,10]. Recent reviews have highlighted
the importance of phloem composition in long distance
transport and signalling throughout the plant [9,10] and
these reviews have also examined the difficulty and issues
related to collection of phloem for analysis. There are
three main techniques in which phloem can be collected
for direct analysis: 1) cutting the stem and collecting the
liquid that exudes; 2) making use of an Ethylenediamine-
tetraacetic acid (EDTA) solution to allow a freshly cut
plant part to continue to exude; 3) using insect stylectomy
to collect phloem exudate (see [11] for further details).
The first two methods have limitations when applied to
cereal crops. Cutting the stem for collecting phloem is
limited to a small selection of plant species such as castor
bean [12] and cucurbits [13] and is not possible for
cereals. In wheat, phloem will not exude from cuts made
to the stem or leaves under field or glasshouse conditions,
however phloem will exude from the grain pedicel after
the removal of the seed [14]. This limits the accessibility
to wheat phloem and also involves interference with the
developing ear. EDTA facilitated exudation also has its
limitations, owing to the difficulty in quantifying phloem
volume for accurate concentration measurements and also
because EDTA facilitated exudation may be contaminated
by components from damaged cells other than the phloem
and the apoplastic space [11]. Insect stylectomy using
aphids and planthoppers has been used to access the
phloem of cereal crops for the analysis of some meta-
bolites within the phloem [8,15]. The main limitation of
stylectomy based collection is the small volumes involved.
With exudation rates ranging from 4.2 to 354 nl h™" [16]
volumes collected are in the low pl to nl range [16,17].
Due to these small volumes, accurate measurement of
phloem collections has been difficult which has limited
the scope of metabolomic profiling of the phloem. In most
reports of metabolites in phloem collected by stylectomy,
collections were made over several hours to enable suffi-
cient volumes to be collected for analysis, as measured
using 0.5 pl micro capillaries [8,18]. In more recent work,
an alternative technique for measuring phloem volume
has been used to measure diurnal variability in amino acid
concentrations in volumes as little as 2.1 nl [15]. In this
current research, we demonstrate the use of accurate vol-
ume measurements for the quantitative analysis of amine-
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containing metabolites detected by LC-MS and semi-
quantitative analysis of the metabolite profile of wheat
phloem using GC-MS. We also present the results of
semi-quantitative analysis of changes in the metabolite
profile during the grain loading period.

Results

GC-MS metabolite profiling

GC-MS metabolomic profiling was tested as this has
been used previously to profile the metabolites in plant
tissues. For example, tissue level changes as a tolerance
response to Fe deficiency in peas [19]. Additional file 1:
Table S1 details all 79 metabolites identified by GC-MS
and for some metabolites, multiple derivatives are cre-
ated and these are shown in Additional file 1: Table S2
as they were included in calculations of the ion ratio. Of
the 79 metabolites identified it was found that 40 had
non-normal distributions and attempts were made to
transform the data prior to statistical analysis. Of the 40
metabolites, 2 were not able to be transformed to pro-
duce a normal distribution (Additional file 1: Table S3)
and so were not included in statistical testing.

Of the 79 metabolites detected, there were 26 un-
known compounds found and these were not identified
using either in-house or commercial libraries nor the
GOLM Metabolome Database [20], so they are listed
with the following notation. UN1_10.61_158 = Unknown
1 with a retention time of 10.61 minutes with a unique
ion at 158 m/z. The area of a particular fragment ion
was selected and was subsequently adjusted for each
sample by dividing it by the volume of phloem collected
and then the ratio of this area to the total area for all
identified ions in the sample was calculated and used for
statistical comparison between different stages during
grain loading.

The results from independent student ¢-tests on me-
tabolites showing significant changes between peak
grain loading (9-11 DAA) and the end of grain loading
(18-20 DAA) are shown in Tables 1 and 2. The results
listed in Table 1 show the 18 metabolites had a statistically
significant decrease in the phloem as grain loading pro-
gressed, from 9-11 DAA to 18-20 DAA. Ornithine
had the greatest reduction showing a 4.6 fold de-
crease. 3-amino-piperidin-2-one, UN08 and Glutamine
also declined by 3.5-, 34- and 3.4-fold respectively
(Table 1). There were another 7 metabolites that had more
than a two-fold decrease as grain loading progressed
(Table 1).

There were 21 metabolites that had a significant in-
crease in the phloem as grain loading progressed from
8—-12 DAA to 17-21 DAA (Table 2). Of these, shikimic
acid had the greatest increase (2.9 fold), while quinic
acid, succinate and glycine also had more than a 2 fold
increase (2.5, 2.3 and 2.2 respectively, Table 2).
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Table 1 The mean and standard error of the difference and Fold change for metabolites, profiled using GC-MS, that
significantly decreased (p <0.05) in the phloem from 9-11 DAA (n =15) to 18-20 DAA (n=16)

Metabolite Transformation Levene’s test for equality t-test for equality of Mean Std. error Fold

of variances sig. means sig. (2-tailed)  difference  difference  change
3-amino-piperidin-2-one 2TMS SQRT 0.227 0.000 —0.34838 0.07402 -34
Alanine 2TMS SQRT 0.000"" 0.009 -0.23127 0.08092 -19
Arginine 3TMS Ln 0.286 0.000 -0.84617 0.20727 -23
Glutamate 3TMS None 0.003*" 0.005 -1.11392 0.35445 -23
Glutamine 3TMS CBRT 0.296 0.001 —0.34581 0.09220 -26
Histidine 3TMS Ln 0.994 0.032 —0.62065 027622 =19
Homoserine 3TMS None 0613 0.000 —-0.08141 0.01851 -19
Lysine 4TMS None 0.180 0.006 —0.57860 0.19365 -14
Ornithine 3TMS None 0.001"" 0.007 —-0.17965 0.05689 -46
Pyroglutamate 2TMS None 0444 0.018 -3.21496 1.28551 =13
Serine 3TMS None 0.073 0.000 —4.85198 1.16680 -16
Trehalose 8TMS Ln 0.952 0.000 —1.25509 0.19795 =35
UNO1_1061_158 CBRT 0.360 0.000 -0.07041 0.01492 -23
UNO07_17.62_275 Ln 0.177 0.002 —0.68564 0.20462 -20
UNO08_17.96_360 CBRT 0673 0.001 —0.19065 0.05177 -34
UNQ9_18.15_275 CBRT 0.363 0.003 —0.08408 0.02541 =20
UN11_1948_299 CBRT 0.003"" 0.003 —-0.08195 0.02451 =20
UN26_14.48_229 Ln 0.034" 0.001 -0.61709 0.15206 -19

Also shown are the p values for Levene’s test of equality of variance, where values are less than 0.05 (equal variances not assumed =""), equal sample variances
were not assumed when calculating t-test. (xTMS = Trimethylsilyl derivative where x = the number of TMS groups; yMX = methoxyamine derivatised product where

y=1or2).

LC-MS

Quantification of amine group containing metabolites
in the phloem exudates was conducted according to
Boughten et al. [21]. The concentrations of the metabo-
lites identified are detailed in Table 3. Two metabolites
were not able to be quantified due to issues with standard
stability affecting the calibration curve and the response
relative to the ISTD is presented instead. To the authors
knowledge this is the first time that nicotianamine (NA)
has been directly quantified. For metabolites where an
authentic standard was not available or could not be gen-
erated, the ratio of ion area to internal standard was used
to generate a relative response. For the LC-MS analysis,
phloem collection volumes used were between 43.4 nl and
180.34 nl, with an mean of 95.7 nl+ 61.43. Due to the
exploratory nature of this analysis, only four samples were
analysed, two from each maturity, and no significant
changes were observed (data not shown). Therefore only
the average for all samples is presented in Table 3.

Discussion

The analysis of the metabolite profile of phloem has
been restricted in the past due to limitations in the
amount collected and the availability and sensitivity of
analytical techniques. With exudate flow rates in wheat
ranging from 0.07 to 5.9 nl min~" [16], volumes that are

collected per sample are normally less than a pl. For pre-
vious work examining metabolite profiles in the phloem,
volume measurement has been done in a variety of ways
[22-24]. Phloem volumes or sample amounts are esti-
mated using the length of the liquid within the microcap
[24], the weight of sample collected [23] or by collecting
to the volume of the microcap [22]. For a series of
papers examining metabolites in phloem [25-27], phloem
volumes of between 10 and 60 nl were collected using
0.5 pl microcaps but to our knowledge there is no men-
tion of how volume was estimated in the microcap. Even
in the original method, these papers all refer to where
volumes of 5 nl were collected using a 0.5 pl microcap
[28] and there are no details of how the sample volume is
derived. The measurement of sample volume is a key part
of improving the accuracy of analysis and enables better
detection of changes in metabolite profile.

One of the main issues for the accurate measurement
of sub-pl volumes is evaporation and work carried out
previously has demonstrated an increase in the osmotic
potential when phloem samples are collected in air [29,30].
To counter the effects of evaporation, collection of exudate
under oil is the accepted method [11] but in more recent
work by our laboratory, we have demonstrated that ac-
curate measurement under oil has technical difficulties
due to the potential for measurement errors arising from
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Table 2 The mean and standard error of the difference and Fold change for metabolites, profiled using GC-MS, that
significantly increased (p <0.05) in the phloem from 9-11 DAA (n =15) to 18-20 DAA (n=16)

Metabolite Transformation  Levene’s test for equality  t-test for equality of Mean Std. error Fold
of variances sig. means sig. (2-tailed) difference difference  change
Citric acid 4TMS None 0512 0.000 0.23250 0.05283 1.8
Fructose_MX1 None 0.002" 0.000 027792 0.05953 18
Fumarate 2TMS None 0.000*" 0.004 0.00942 0.00289 1.6
Gluconic acid-1,5-lactone 4TMS None 0.066 0.002 0.34643 0.09990 1.7
Glucose MX1 None 0.008"" 0.002 063124 0.17488 1.7
Glycine 3TMS None 0.026"" 0.000 0.17284 0.03384 2.2
Hexadecanoate 1TMS SQRT 0.004"" 0.017 0.27188 0.10404 1.9
Methionine 1TMS None 0337 0.024 0.00554 0.00233 13
Octadecanoate 1TMS SQRT 0.028"" 0.021 021070 0.08527 18
Phenylalanine 2TMS None 0.654 0.018 1.07470 042754 1.5
Putrescine 4TMS None 0.697 0.000 0.82294 0.13397 19
Quinic acid 5TMS SQRT 0.010"" 0.007 0.32413 0.10951 25
Shikimic acid 4TMS SQRT 0.060 0.000 0.23331 0.05785 29
Succinate 2TMS None 0.000"" 0.010 0.05240 0.01802 23
Tyrosine 3TMS None 0.180 0.000 1.09938 0.24564 1.8
UN04_15.56_185 None 0.000"" 0.019 0.10668 0.04183 1.8
UN10_19.08_217 None 0.106 0.007 044254 0.15290 14
UN16_25.71_339 None 0016*" 0.015 0.00806 0.00302 1.7
UN17_27.24_375 None 0.003*" 0.000 0.01570 0.00379 1.8
UN18_2891_437 None 0.011"" 0.001 0.01317 0.00358 16
UN20_32.34_503 InvCBRT 0.020*" 0.049 -0.62079 0.29828 1.8

Also shown are the p values for Levene’s test of equality of variance, where values are less than 0.05 (equal variances not assumed =""), equal sample variances
were not assumed when calculating t-test. (xTMS = Trimethylsilyl derivative where x = the number of TMS groups; yMX = methoxyamine derivatised product where

y=1or2).

the optical nature of the measurement and the surface
shape of the oil used in the collection step [16]. Recent
work has made advances in volume measurement: work
examining the diurnal effect on the concentration of
amino acids in the phloem, made use of a correction fac-
tor for air based droplet volume measurements [15]. This
technique used measurements made under oil, which
reduces the effect of evaporation, as a comparison for
collections measured in air and enable a correction factor
to be derived. We have further refined this technique of
volume measurement using digital photography and soft-
ware to further reduce the effect of evaporation and to
quantify the accuracy of the volume measurement [16].
This method has been used successfully to quantify inor-
ganic components in the phloem of wheat and to detect
significant changes with maturity [31]. Oil has also been
identified as a potential contaminant for certain metabol-
ite analyses [15], and we have also found that for GC-MS
profiling, paraffin oil is a significant contaminant sup-
pressing metabolite signal from the phloem causing an
increase in the baseline due to the elution of multiple
hydrocarbons present in paraffin oil (refer to Additional

file 1 for trace images). This observation was consistent
with the GC-MS analysis of petroleum based oil as a con-
taminant [32].

When using phloem samples that were measured in
air we were able to identify, using GC-MS, 79 different
metabolites (Additional file 1: Table S1) and of these, 38
showed significant variability in phloem composition
with a change in maturity (Tables 1 and 2). Of these
metabolites with significant changes, 21 increased and
18 decreased in the phloem as the plant aged. For sam-
ples analysed using an LC-MS method specific for amine
containing compounds, we were able to identify 30 me-
tabolites and of these quantify the concentration of 27
metabolites within the phloem (Table 3). For the GC-MS
metabolite profiling analysis, full quantification of all
metabolites is not feasible. This is due to the large number
of metabolites detected by GC-MS, making it unfeasible
to establish calibration curves for all metabolites detected
and so peak area is used for semi-quantitative analysis.
Due to the use of peak area, metabolites cannot be com-
pared to one another as the peak area is dependent on the
derivitisation process, and all metabolites have a different
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Table 3 Amine group containing metabolites identified in
the phloem of wheat as measured by LC-MS collected at
two maturities (n =4), unless otherwise stated mean and
standard error of all quantitated metabolites are
reported as mMol L™’

Metabolite Mean SE
Ammonia (ISTD RR) 338 1.275
Glutathione (ISTD RR) 0.58 0.0905
Glutamine 1708 50.895
Valine 755 17.52
Histidine 64.7 25.24
Serine 63.1 25455
Glutamate 36.3 1532
Arginine 39.8 3.74
Alanine 420 6.045
Proline 212 8.125
Phenylalanine 58.1 18.365
Threonine 49.7 15515
Isoleucine 443 11.275
Leucine 43.7 16.34
Tryptophan 441 8405
Lysine 48.0 10315
Glycine 399 18.275
Tyrosine 27.7 9495
Aspartic acid 18.7 7.205
Methionine 188 8.31
Asparagine 74 2.77
B-Alanine 1.7 0.595
GABA 1.1 045
Ornithine 1.2 0.58
Citrulline (umol L™ 2323 39.14
Nicotianamine (umol L’W)* 2554 96.71
Cysteine (umol L™ 709 1391
4-Hydroxy-proline (umol L™') 385 9.675

Metabolites that were measured but did not have an external standard are
reported as a ratio of response in relation to the internal standard (ISTD RR).
*n =3, outlier was removed.

response factor. For specific metabolites, it may be
possible to set up calibration curves for quantification
of phloem concentrations by GC-MS and so allow further
exploration of results of interest identified from metabol-
ite profiling.

One result of interest is the significant changes in
sugars other than sucrose within the phloem. For most
work on the phloem, only sucrose is reported [22,33,34].
It has been established that sucrose is the dominant
sugar involved in sugar transport [35] and it is assumed
that hexoses (glucose and fructose) are not normally
present, and when they are, they are mostly seen when
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using EDTA facilitated exudation [35]. Glucose and fruc-
tose have been shown to exist (5.5% and 1.5%) in the
phloem of perennial ryegrass (Lolium perenne L.) col-
lected from aphid stylectomy [36]. A change in sugar
composition was found when plants were defoliated with
a decrease of more than 80% for sucrose concentration
and decreases of 42% and 47% in glucose and fructose
concentrations, respectively [36]. This may indicate a
source other than leaf for hexoses within the phloem.
The results from the GC-MS analysis highlighted a sig-
nificant increase in glucose and fructose levels within
the phloem during the grain loading period (Table 2).

Of particular interest are the results presented from
the LC-MS analysis quantifying NA and demonstrating
the presence of glutathione. These two metabolites have
been found to play important roles in complexing essen-
tial micronutrients during long distance transport in the
phloem [7,8,37,38]. In a theoretical model of metabolite
and micronutrient speciation in the phloem it was found
that 54.4% of Zn was likely to be bound to NA and the
remaining Zn complexed with amino acid complexes of
cysteine and cysteine with histidine (41.2% and 2.8%
respectively) [7]. In the case of Fe, 99% of the ferrous
ions would be complexed by NA and only 19.3% of
ferric ions would be complexed by NA while the remaining
ferric ions would be complexed with glutamate and citrate
(70% and 9.2% respectively) [7]. A potential fault with this
model is that it does not incorporate 2’-deoxymugineic
acid (DMA) as a potential candidate for complex for-
mation. In work performed on the phloem of rice, the
concentration of DMA was found to be between 152
uMol L' [39] and 150 uMol L~! [8]. This was much
higher than the NA values reported of 66 uMol L7t [39]
and 76 pMol L' [8]. In rice it has been found that the
main Zn complex ligand was NA whilst for Fe, DMA was
the main metabolite responsible for complexing this metal
[8]. Glutathione has been found to play a role in Cd trans-
portation as part of the detoxification process [40]. Gluta-
thione was tested as a chelating agent in the speciation
model but was found to complex less than 2% of Zn
though it was mentioned that if Cd was included this may
affect the model dynamics [7]. In this work we have re-
ported for the first time the concentration of NA in the
phloem of wheat with an average concentration of 255.4
uMol L' +96.71 which is within the range reported in
castor bean [37,38,41] but is much higher than what has
been reported in rice [8,39]. Previous work in our lab has
shown a significant increase in Zn and Mg in the phloem
during grain loading [31] and it’s also likely that there
is an associated increase in metal complexing meta-
bolites. This relationship has been demonstrated in
castor bean where the NA phloem concentrations re-
ported 4 and 8 days after imbibition were 206 uMol L™,
[38] which is close to what was observed in this work
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(255.4 uMol L' +96.71). Further exploration of NA flux
at different maturities may give further insight into the
role of NA in essential micronutrient transport.

It is anticipated that further method development
would enable the analysis and quantification of DMA
and glutathione within the phloem which would assist in
the development of a wheat specific speciation model
for the long distance transport of essential micronutri-
ents. The amine binding LC-MS method used here gave
in-conclusive results for DMA (data not shown) and a
different method is required.

The ability to obtain a profile of a broad range of me-
tabolites is a powerful tool not only for understanding
the transport of essential micronutrients to the grain
and other vegetative tissues, but also for examining
responses to toxic or deficient conditions. An example
of this is where it was possible to identify a metabolite
complex responsible for boron mobilisation in the
phloem [42] that could lead to efficiency in boron utili-
zation [43]. Metabolite profiling has also been used widely
on plant tissues to examine tissue level dynamics such as
changes involved in tolerance to nutrient deficient condi-
tions such as Fe deficiency in pea [19], and also metabolite
variation during the ripening process in capsicum [44].
The methods outlined in this study add further capability
to researchers interested in metabolite changes both on a
whole plant level during maturation and also when plants
are under abiotic or nutrient based stresses.

Conclusion

This study demonstrates the production of a complex
metabolite profile from extremely small volumes of phloem
exudate using GC-MS. We also demonstrate that this
method of metabolite profiling can be used to determine
significant maturity based variability within the metabolite
profile of the phloem. To our knowledge this is the first
report of the presence of and quantification of NA in the
phloem of wheat.

Materials and methods

Plant material

Wheat (Triticum aestivum L. genotype ‘Samnyt 16’) seed-
lings were grown in 70x100 mm pots in Debco™ Green
Wizard potting mix within a growth room. Growth room
conditions were 13/11 h light/dark at 20°C/10°C with a
minimum of 400 pmol m™> s light at the leaf surface.
Plants were transferred to a greenhouse where aphids
were applied and kept there for a maximum of 48 h.

Aphid stylectomy

Aphid stylectomy procedures were adapted from the
method established by Downing and Unwin [45]. A
short video of the method is presented in Additional file
2 and a summary of the method is as follows. Aphids
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were taken from an anholocyclic Sitobion miscanthi
(Indian grain aphid) culture maintained at Flinders Uni-
versity on wheat plants kept under greenhouse conditions.
Only apterous aphids were used in the experiments.

Aphids were secured to wheat plants (immediately
below the head on the peduncle), a minimum of 12 h
prior to stylectomy, using specially prepared cages (refer
to Additional file 3 for construction specifications). Plants
were watered to saturation at time of aphid caging.
Stylectomy was performed using high-frequency micro-
cauterisation under a Leica microscope (M165 C or MZ16)
using an electrolytically-sharpened tungsten needle in
combination with a micromanipulator. Exudate sam-
ples were collected using glass micro-capillaries (30—
0017, Harvard Apparatus) pulled using a capillary puller
(Narishige). The relative humidity during collections
ranged from 41% to 50%.

Microscope measurement of nanolitre phloem exudate
volumes

Exudate volumes were measured using the method
published in [16]. In brief, exudate flow rates were esti-
mated from photo sequences taken, in air, using a Leica
microscope (M165C or MZ16) with an attached camera
(DFC295 or DFC280) and the multi-time module from
the Leica Application Suite software (v3.6.0). Photo
sequences were taken immediately after obtaining an
exuding stylet, approximately every 15 minutes during
collection and immediately prior to the end of the
collection. Photo sequences consisted of five photos
with a one second interval between photos. The droplet
radius for each photo in a sequence was measured using
the interactive measurement module within the Leica
Application Suite and an estimate of droplet volume cal-
culated. Using the time interval between each two photos
in a sequence the exudation flow rate was estimated from
the change in volume between photos. The average of the
estimated flow rate from all sequences in each collection
was multiplied by the respective collection length to give
an estimate of the collection volume. A correction factor,
as determined previously, was applied to correct for evap-
oration [16]. Samples were deposited into 200 pl glass vial
inserts (Agilent) containing 5 pl of Millipore Milli-Q™
water (>18.2 MQ cm™), centrifuged for 20 seconds at
14,000 rpm in a 1.5 ml microcentrifuge tube and insert
was transferred to 2 ml auto sampler vials (Agilent) and
stored at —80°C. After samples had been collected samples
were lyophilized in a freeze dryer prior to shipment for
metabolomics profiling and quantitation at Metabolomics
Australia, School of Botany, The University of Melbourne.
Table 4 shows the average and standard error for the time
that sample collection was started, average volume and
average maturity (DAA) for the samples allocated to the
maturity groupings analysed using LC-MS and GC-MS.
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Table 4 N, Mean and SE, for both maturity groups (DAA
group), for sample collection start times, phloem exudate
volumes and number of days after anthesis for samples
analysed by GC-MS and LC-MS

Analysis Variable DAA Group N Mean SE
GC-MS  collection start 812 DAA 16 16:0233.75 0:06:50.17
17-21 DAA 20 15354500 0:11:25.50
Corrected vol 8-12DAA 16 90.6 13.26
17-21 DAA 20 62.3 6.91
DAA 8-12DAA 16 99 022
17-21 DAA 20 185 017
LC-MS  collection start ~ 8-12 DAA 2 15:04:30 0:08:30
17-21 DAA 2 14:58:00 1:24:00
Corrected vol 8-12 DAA 2 140.6 39.79
17-21 DAA 2 509 748
DAA 8-12 DAA 2 10.0 0.00
17-21 DAA 2 185 0.50

GC-MS analysis of phloem exudate

GC-MS analysis of phloem exudate samples was carried
out using a method modified from [46]. The lyophilized
phloem samples were re-dissolved in 5 pL of 30 mg mL™"
methoxyamine hydrochloride in pyridine and derivatised
at 37°C for 120 min with mixing at 500 rpm. The samples
were then treated for 30 min with 10 pL N,O-bis-(tri-
methylsilyl)trifluoroacetamide (BSTFA) and 2.0 pL reten-
tion time standard mixture [0.029% (v/v) n dodecane,
n-pentadecane, n-nonadecane, n-docosane, n-octacosane,
n-dotriacontane, n-hexatriacontane dissolved in pyridine]
with mixing at 500 rpm. Each derivatised sample was
allowed to rest for 60 min prior to injection.

Samples (1 pL) were injected into a GC-MS system
comprised of a Gerstel 2.5.2 autosampler, a 7890A Agilent
gas chromatograph and a 5975C Agilent quadrupole MS
(Agilent, Santa Clara, USA). The MS was adjusted 171
according to the manufacturer’s recommendations using
tris-(perfluorobutyl)-amine (CF43). The GC was perfor-
med on a 30 m VE-5MS column with 0.2 um film thick-
ness and a 10 m Integra guard column (Agilent J&W GC
Column). The injection temperature was set at 250°C, the
MS transfer line at 280°C, the ion source adjusted to 250°C
and the quadrupole at 150°C. Helium was used as the
carrier gas at a flow rate of 1.0 mL min~". For the polar
metabolite analysis, the following temperature program
was used; start at injection 70°C, a hold for 1 min, fol-
lowed by a 7°C min™' oven temperature, ramp to 325°C
and a final 6 min heating at 325°C. Both chromatograms
and mass spectra were evaluated using the Chemstation
Data Analysis program (Agilent, Santa Clara, USA). Mass
spectra of eluting compounds were identified and val-
idated using the public domain mass spectra library
of Max-Planck-Institute for Plant Physiology, Golm,
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Germany (http://csbdb.mpimp-golm.mpg.de/csbdb/dbma/
msri.html) and the in-house Metabolomics Australia mass
spectral library. All matching mass spectra were add-
itionally verified by determination of the retention
time by analysis of authentic standard substances.
Resulting relative response ratios, that is, selected ion
area of each metabolite was normalized to phloem volume
for each identified metabolite. For metabolites which
had multiple TMS derivatives, normalized ion areas were
presented.

LC-MS analysis of phloem exudate

Quantification of amine containing metabolites in nl
phloem exudate was modified from the method reported
in Boughton et al. [21]. To the lyophilized phloem sample
4 yl of Borate buffer (200 mM at pH 8.8 with 1 mM ascor-
bic acid, 10 mM tris(2-carboxyethyl)phosphine (TCEP)
and 25 uM 2-aminobutyric acid (added as an ISTD) was
added, then 1 pl of 10 mM 6-Aminoquinolyl-N-hydroxy-
succinimidylcarbamate (AQC, dissolved in 100% aceto-
nitrile). The glass inserts were sealed with parafilm then
left to rest at room temperature for 30 minutes. Analysis
and quantification by LC-MS was done as previously
reported [21].

Statistical analysis

Statistics including Student’s ¢-test were calculated using
IBM SPSS statistics software (version 22). A normal dis-
tribution was determined to achieved when the z-scores
for the skew and kurtosis were less than 1.96 which the
cut off indicating a significant skew or kurtosis at the
95% level [47]. Of the metabolites identified, 40 were
found to have significant skew or kurtosis to their distri-
bution. These metabolites were transformed using the
following transformations in increasing power; 16 using
square root (SQRT), 8 using cube root (CBRT), 11 using
the natural logarithm (Ln) and 3 using the inverse cube
root (InvCBRT). A further 2 metabolites were unable to
be transformed successfully. For the Student’s t-test as
calculated using SPSS, results are produced with and
without the assumption of equal variance between treat-
ments and the Levene’s statistic gives an indication if
this assumption is met or rejected.

Additional files

Additional file 1: Further information on GC-MS analysis, including
example of separation traces with and without oil contamination,
full list of metabolites detected, replicated derivatives and
un-normalisable metabolites.

Additional file 2: Short video outlining the method of aphid
stylectomy.

Additional file 3: Specifications and method for constructing aphid
cages.
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