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RTEL1 tagging SNPs and haplotypes were
associated with glioma development
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Tingting Geng4, Guangbin Cui5, Chao Chen2* and Guodong Gao1*
Abstract: As glioma ranks as the first most prevalent solid tumors in primary central nervous system, certain single-
nucleotide polymorphisms (SNPs) may be related to increased glioma risk, and have implications in carcinogenesis.
The present case–control study was carried out to elucidate how common variants contribute to glioma
susceptibility. Ten candidate tagging SNPs (tSNPs) were selected from seven genes whose polymorphisms have
been proven by classical literatures and reliable databases to be tended to relate with gliomas, and with the minor
allele frequency (MAF) > 5% in the HapMap Asian population. The selected tSNPs were genotyped in 629 glioma
patients and 645 controls from a Han Chinese population using the multiplexed SNP MassEXTEND assay calibrated.
Two significant tSNPs in RTEL1 gene were observed to be associated with glioma risk (rs6010620, P = 0.0016, OR:
1.32, 95% CI: 1.11-1.56; rs2297440, P = 0.001, OR: 1.33, 95% CI: 1.12-1.58) by χ2 test. It was identified the genotype
“GG” of rs6010620 acted as the protective genotype for glioma (OR, 0.46; 95% CI, 0.31-0.7; P = 0.0002), while the
genotype “CC” of rs2297440 as the protective genotype in glioma (OR, 0.47; 95% CI, 0.31-0.71; P = 0.0003).
Furthermore, haplotype “GCT” in RTEL1 gene was found to be associated with risk of glioma (OR, 0.7; 95% CI,
0.57-0.86; Fisher’s P = 0.0005; Pearson’s P = 0.0005), and haplotype “ATT” was detected to be associated with risk of
glioma (OR, 1.32; 95% CI, 1.12-1.57; Fisher’s P = 0.0013; Pearson’s P = 0.0013). Two single variants, the genotypes of
“GG” of rs6010620 and “CC” of rs2297440 (rs6010620 and rs2297440) in the RTEL1 gene, together with two
haplotypes of GCT and ATT, were identified to be associated with glioma development. And it might be used to
evaluate the glioma development risks to screen the above RTEL1 tagging SNPs and haplotypes.

Virtual slides: The virtual slides for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/
1993021136961998

Keywords: Tagging single nucleotide polymorphism (tSNP), Glioma, RTEL1, Haplotype, Case - control studies
Introduction
The overall incidence of brain tumors for benign and
malignant tumors combined is 18.71 per 100,000
person-years; 11.52 per 100,000 person-years for benign
tumors and 7.19 per 100,000 person-years for malignant
tumors [1]. Though the age- standardized incidence re-
cently reported varied greatly than ever, non-malignant
tumours still accounted for 66% of all newly diagnosed
primary brain tumours with the age-standardized
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incidence rate of 3.57 per 100,000 person-years, while
malignant tumours incidence rate was 1.82 per 100,000
person-years (crude incidence rates were 3.69 and 1.92
per 100,000 respectively) [2]. Gliomas, most aggressive
malignant brain tumours (astrocytic, oligodendroglial,
oligoastrocytic and ependymal origin), represent 20.8%
of all brain tumours [2], and account for almost 80%
of primary malignant brain tumors, usually resulting
in poor survival compared to other types of brain tu-
mors [3].
Current evidence suggests that inherited risks play a

significant role in glioma susceptibility, as with other
cancers, and a majority of the inherited risk is due to
the co-inheritance of multiple low-risk variants. These
variants are commonly seen gene variants and hence
can be identified through association studies [4]. The
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epidemiology of glioma has focused on identifying fac-
tors that can be modified to prevent this disease [5-7].
Recently studies of genetic risk factors for brain tumors
have expanded to genome-wide association studies, and
have focused on identifying germline polymorphisms as-
sociated with the risk of glioma as well as using molecular
markers to classify glial tumors in more homogenous
groups [6,7].
A research group from the University of Texas M.D.

Anderson Cancer Center conducted a meta-analysis of
two genome-wide association studies (GWAS) by geno-
typing 550 K tagging single nucleotide polymorphisms
(tSNPs) in a total of 1,878 cases and 3,670 controls, with
validation in three additional independent series totaling
2,545 cases and 2,953 controls. They identified five risk
loci for glioma including rs6010620 intronic to RTEL1
gene (P = 2.52 × 10-12) to be associated with glioma risk
[6]. Another study in Chinese also identified rs60106203
for glioma risk (P = 2.793 × 10-6), and the locus also asso-
ciated with glioblastoma risk (P = 3.573 × 10-7) [8]. The
subsequent study found that rs6010620 was statistically
significantly associated with glioma risk in US female
population [9]. Recently, a new independent GWAS of
glioma using 1,856 cases and 4, 955 controls has found
evidence of strong replication for three of the seven pre-
viously reported associations at 20q13.33 (RTEL),
5p15.33 (TERT), and 9p21.3 (CDKN2BAS), and consist-
ent association signals for the remaining four at 7p11.2
(EGFR both loci), 8q24.21 (CCDC26) and 11q23.3
(PHLDB1) [7]. These data tend to show that common
susceptibility alleles contribute to the risk of developing
glioma and provide insight into disease causation of this
primary brain tumor.
As the Chinese Han population is by far the population

with the largest number in the world, we comprehensively
analysized in this study the associations between RTEL1 ge-
notypes and haplotypes with glioma risk, to uncover how
germ-line genetic variants of the RTEL1 gene play a com-
plex role in the development of glioma, to offer important
insights into the etiology of glioma in the certain Chinese
Han population.

Patients and methods
Study population
A total of 629 patients with glioma, includes well-
differentiated pilocytic astrocytoma [World Health Orga-
nization (WHO) grade I], low grade ependymomas [WHO
grade II], low grade astrocytomas [WHO grade II], low
grade oligodendrogliomas [WHO grade II], anaplastic as-
trocytomas [WHO grade III] and glioblastoma multiforme
(GBM) [WHO grade IV] [10], between November 2008
and December 2012 were recruited into an ongoing mo-
lecular epidemiological study at the Department of Neuro-
surgery of the Tangdu Hospital affiliated with The Fourth
Military Medical University (FMMU) in Xi’an city, China.
All glioma cases had no previous history of other cancers,
or prior chemotherapy or radiotherapy. There were no
age, sex, or disease stage restrictions for case recruitment.
There were no age, sex, or disease stage restrictions for
case recruitment. All the slides of glioma tissues were re-
evaluated according to WHO classifications [10] by two
pathologists, with differences resolved by careful discus-
sion. The median age was 43 years (age range, 1–81). The
clinicopathological features and the treatment strategies of
all the patients were indicated in Table 1.
A total of 645 healthy unrelated individuals as the con-

trols between June 2010 and August 2012 were recruited
from the medical examination center at Tangdu Hos-
pital, for genetic association research of human complex
diseases, such as lung cancer, stomach cancer, and gli-
oma. The median age was 45 years (age range 4–83).
The detailed recruitment and exclusion criteria were
used. Generally, subjects with chronic diseases and con-
ditions involving vital organs (heart, lung, liver, kidney,
and brain) and severe endocrinological, metabolic, and
nutritional diseases were excluded from this study. The
purpose of the above exclusion procedures was to
minimize the known environmental and therapeutic fac-
tors that influence the variation of human complex
diseases.
In our study population, all analyses were restricted to

the Han Chinese living in Xi’an city and its surrounding
areas. A written informed consent was obtained from all
the subjects or their custodians, and we collected all the
blood samples from the controls and the patients before
chemotherapy or radiotherapy. All specimens were han-
dled and made anonymous according to the ethical and
legal standards. The protocol was approved by the Med-
ical Ethics Committee of the Fourth Military Medical
University.

Demographic and clinical data
Demographic and personal data were collected through
an in-person interview using a standardized epidemio-
logical questionnaire, including age, sex, ethnicity, resi-
dential region, smoking status, alcohol use, education
status, and family history of cancer. For patients,
detailed clinical information was collected through a
medical chart review or consultation with treating physi-
cians. Plasma carcinoembryonic antigen and alpha-
fetoprotein were tested in control subjects to make sure
they did not have any cancers.

Blood samples collection, DNA extraction and SNP
selection and genotyping
Peripheral blood was taken from the 629 glioma patients
and 645 apparently healthy individuals, and from the
elbow vein or the head superficial vein, and treated



Table 1 Clinicopathological features of 629 glioma patients

Clinicopathological features WHO I WHO II WHO III WHO IV

Pilocytic
astrocytoma

Astrocytoma Oligodendroglioma Ependymoma Anaplastic
astrocytoma

Glioblastoma
multiforme

Case Number

Total 20 433 24 34 81 37

Male 11 241 13 17 39 21

Female 9 192 11 17 42 16

Mean age (Age range) (ys)

Total 12(2-51) 42(1-81) 46(17-76) 29(1-71) 50(2-81) 47(6-70)

Male 13(3-35) 41(1-81) 53(35-76) 34(5-60) 50(2-73) 48(17-70)

Female 9(2-51) 42(2-79) 41(17-55) 20(1-71) 52(10-81) 44(6-67)

KPS

≥70 19 423 24 33 79 35

<70 1 10 0 1 2 2

Surgery

Gross total resection 20 412 22 32 76 36

Partial resection 0 10 2 1 3 1

Biopsy 0 11 0 1 2 0

Adjuvant treatment

Radiotherapy 0 280 18 17 4 0

Chemotherapy 0 55 1 1 0 0

Radiotherapy and Chemotherapy
combination

0 98 5 16 77 37

KPS Karnofsky performance score.
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immediately with an anticoagulant containing sodium
citrate (22 g/L) and sodium chloride (8.5 g/L). The blood
samples were then stored at -70˚C before use. Genomic
DNA was isolated from the samples by using an extrac-
tion kit (GoldMag, China). DNA concentration and pur-
ity were determined by an ultraviolet spectrophotometer
(Eppendorf, Hamburg, Germany).
Candidate tSNPs in the seven genes were selected from

previously published polymorphisms associated with glioma.
Table 2 Primers used in the study

SNP_ID 1st-PCR primer sequences 2nd-PC

rs2992 G/A ACGTTGGATGTCAAGTATCTGCTCTGTGGG ACGTTG

rs12022378 C/T ACGTTGGATGAGATGCCTGGACCAGCTCT ACGTTG

rs12917 T/C ACGTTGGATGCGAGGCTATCGAAGAGTTCC ACGTTG

rs12645561 T/C ACGTTGGATGTTACAGTTCTCTTTCACAG ACGTTG

rs7003908 C/A ACGTTGGATGGGGGAGAAAATATTCCTGTT ACGTTG

rs6010620 G/A ACGTTGGATGGCCTGTTTTCCCTTTTTGAG ACGTTG

rs2297440 T/C ACGTTGGATGACGAGGTCTGGTGGCACAT ACGTTG

rs4809324 C/T ACGTTGGATGGAGAAGTCAAGTGACATCAG ACGTTG

rs3770502 A/G ACGTTGGATGCTATATGGGTGCAGATGCAG ACGTTG

rs9288516 A/T ACGTTGGATGACAGGCCAAGGGCAATAATC ACGTTG

UEP Unextended mini-sequencing primer.
Validated tSNPs were selected with a minor allele frequency
(MAF) > 5% in the HapMap Asian population. A total of 10
tSNPs were selected for further genotyping. Genomic DNA
was extracted from whole blood using the phenol-
chloroform extraction method. DNA concentration was
measured by spectrometry (DU530 UV/VIS spectrophotom-
eter, Beckman Instruments, Fullerton, CA, USA). A
multiplexed SNP MassEXTEND assay was designed with
the Sequenom MassARRAY Assay Design 3.0 Software [11].
R primer sequences UEP sequences

GATGACTGGGTGCATCCTGAGAG cgatAGCAGGGGTGACGTATGTAGAA

GATGCAATTACAGCCCACCTCTTG cctaaAGCCCACCTCTTGCATCGT

GATGAGATGGCTTAGTTACCGACC gctaGAAAACGGGATGGTGAA

GATGGCAGAGCCTAGTTTCATGAC TTGCTCATTACTGTAAGAAATAATAC

GATGTCCTACCTCACGAACTCAGC AGCAATTGCCTAAGAGTC

GATGCCTCTCAACATCTCAGCAAC tGATCATGCAAAGCAGG

GATGCACTGTCCTTTGCGTCCTC gtTCCTCCCTCACCAGC

GATGAGCCGGTGCACAGATTCCAA gagggCAAGGGCCTGGAATCTGT

GATGACAGGCGTGAACCACTGTA ACCCGGCCCCTCCAC

GATGGCTTCCTAAGATTTCCTATTC CATTTCAAAAGAAATGGAGAAT



Table 3 Tagging SNPs information that were examined

SNP No. Gene chr Position MA MAF
(CHB)

MAF HWE
P

P OR (95%CI) P
adj.

Genotype
rateCase Control

rs12022378 AP4B1 chr1 114448389 C 0.411 0.360 0.393 0.4943 0.0889 1.15(0.98-1.35) 0.889 99.34

rs12917 MGMT chr10 131506283 T 0.31 0.105 0.082 0.2082 0.0497 0.76(0.58-1) 0.497 99.67

rs12645561 NEIL3 chr4 178260872 T 0.114 0.275 0.268 0.1388 0.6903 0.97(0.81-1.15) 6.903 99.34

rs7003908 PRKDC chr8 48770702 C 0.283 0.236 0.209 0.1246 0.1074 0.86(0.71-1.03) 1.074 99.83

rs6010620 RTEL1 chr20 62309839 G 0.393 0.269 0.327 0.194 0.0016 1.32(1.11-1.56) 0.016 99.83

rs2297440 RTEL1 chr20 62312299 C 0.226 0.266 0.325 0.3127 0.001 1.33(1.12-1.58) 0.01 100

rs4809324 RTEL1 chr20 62318220 C 0.12 0.114 0.120 0.6994 0.6328 1.06(0.83-1.35) 6.328 99.67

rs2992 UBXN6 chr19 4443046 A 0.295 0.436 0.433 0.4229 0.8701 0.99(0.84-1.16) 8.701 99.67

rs3770502 XRCC5 chr2 217045059 A 0.208 0.148 0.160 0.7558 0.4221 1.09(0.88-1.36) 4.221 99.83

rs9288516 XRCC5 chr2 217053264 A 0.489 0.480 0.450 0.4774 0.1288 0.89(0.76-1.04) 1.288 99.67
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SNP genotyping was performed using the Sequenom
MassARRAY RS1000 with standard protocol recommended
by the manufacturer [11]. Data management and analyses
were performed using Sequenom Typer 4.0 software as pre-
viously described [11,12].

Statistical analysis
Statistical analyses were performed using Microsoft
Excel and SPSS 16.0 statistical packages (SPSS, Chicago,
IL). All P values in this study were two-sided. A P ≤ 0.05
was considered the threshold of statistical significance.
Genotypic frequencies in control subjects for each tSNP
were tested for departure from Hardy–Weinberg equi-
librium (HWE) using an exact test. Genotype frequen-
cies and allele frequencies of glioma patients and control
subjects were compared using the χ2 test [13]. Odds ra-
tios (ORs) and 95% confidence intervals (CIs) were cal-
culated by unconditional logistic regression analysis with
adjustment for age and sex [14]. We did not divide sub-
jects into subgroups because of limited sample size. The
possibility of sex differences as a source of population
sub-structure was evaluated by a genotype test for each
tSNP in male and female controls, and the number of
significant results at the 5% level was compared with the
number expected by the χ2 test. We did not detect
population stratification because all participants’ eth-
nicity was Han Chinese. The four genetic models (domi-
nant, recessive, additive and genotypic) were applied by
PLINK software (http://pngu. mgh. harvard.edu/purcell/
plink/) to assess the association of single tSNP with the
risk of glioma. ORs and 95% CIs were calculated by un-
conditional logistic regression analysis adjusted for age
and sex [14,15].
We used the Haploview software package (version 4.2)

and SHEsis software platform (http://www.nhgg.org/ana-
lysis/) for analyses of linkage disequilibrium, haplotype
construction, and genetic association at polymorphism
loci [16,17] ORs and 95% CIs were calculated by
unconditional logistic regression analysis with adjust-
ment for age and gender [14]. Additionally, the likeli-
hood ratio test was performed to determine the
genotype frequencies among various grade groups. The
χ2 test was also used for comparison of categorical vari-
ables. A P value of <0.05 (two-tailed) was considered sta-
tistically significant.

Results
A total of 629 cases (310 male, 319 female; median age
at diagnosis 41 ± 18 yrs) and 645 controls (329 male, 316
female; median age at 45 ± 12 yrs) were included in the
current study. Basic characteristics of the cases are listed
in Table 1 including gender, age, and pathology. As listed
in Table 2, a multiplexed SNP MassEXTEND assay was
designed with Sequenom MassARRAY Assay Design 3.0
Software. Ten SNPs of seven candidate genes were geno-
typed in glioma patients and the control group, the
average tSNPs call rate was 99.6% in cases and controls,
and all of the tested tSNPs are in Hardy–Weinberg equi-
librium (HWE) in the control population of this study
(Table 3). Two significant tSNPs in the RTEL1 gene were
observed to be associated with glioma risk at a 5% level
(rs6010620, P = 0.0016, OR: 1.32, 95% CI: 1.11-1.56;
rs2297440, P = 0.001, OR: 1.33, 95% CI: 1.12-1.58) by χ2

test.
Association results between tSNP genotypes and the

risk of glioma were listed in Table 4. We found that the
genotype “GG” of rs6010620 as the protective genotype
for glioma (OR, 0.46; 95% CI, 0.31-0.7; P = 0.0002), and
the genotype “CC” of rs2297440 as the protective geno-
type in glioma (OR, 0.47; 95% CI, 0.31-0.71; P = 0.0003).
We assumed that the minor allele of each tSNP was a

risk allele compared to the wild type allele. Four tSNPs
were detected to be associated with glioma by model as-
sociation analyses including rs6010620 and rs2297440 in
the RTEL1 gene, rs12022378 in the DCLRE1B gene, and
rs12917 in the MGMT gene (Table 5). We observed two

http://pngu. mgh. harvard.edu/purcell/plink/
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Table 4 Association between tSNP genotypes and the risk
of glioma

SNP ID Genotype No. (frequency) Logistic regression

Case Control OR (95% CI) P value

rs12022378 CC 114(18.2) 87(13.6) 0.71(0.51-0.99) 0.0418

rs12022378 CT 265(42.2) 288(44.9) 1.01(0.8-1.29) 0.9127

rs12022378 TT 249(39.6) 267(41.6) 1(referent)

rs12917 TT 6(1) 10(1.6) 1.7(0.61-4.72) 0.3011

rs12917 TC 91(14.5) 115(17.9) 1.29(0.96-1.74) 0.0956

rs12917 CC 530(84.5) 519(80.6) 1(referent)

rs12645561 TT 43(6.8) 56(8.7) 1.26(0.83-1.93) 0.2784

rs12645561 TC 251(40) 241(37.6) 0.93(0.74-1.18) 0.5537

rs12645561 CC 334(53.2) 344(53.7) 1(referent)

rs7003908 CC 31(4.9) 43(6.7) 1.44(0.89-2.33) 0.1387

rs7003908 CA 201(32) 217(33.7) 1.12(0.88-1.42) 0.3536

rs7003908 AA 397(63.1) 383(59.6) 1(referent)

rs6010620 GG 75(11.9) 40(6.2) 0.46(0.31-0.7) 0.0002

rs6010620 GA 261(41.5) 267(41.5) 0.89(0.71-1.12) 0.3212

rs6010620 AA 293(46.6) 337(52.3) 1(referent)

rs2297440 CC 73(11.6) 40(6.2) 0.47(0.31-0.71) 0.0003

rs2297440 CT 263(41.8) 263(40.8) 0.86(0.68-1.08) 0.1902

rs2297440 TT 293(46.6) 342(53) 1(referent)

rs4809324 CC 11(1.8) 7(1.1) 0.62(0.24-1.6) 0.3162

rs4809324 CT 129(20.5) 133(20.7) 1(0.76-1.31) 0.9901

rs4809324 TT 488(77.7) 504(78.3) 1(referent)

rs2992 AA 126(20.1) 117(18.2) 0.98(0.71-1.35) 0.9003

rs2992 AG 292(46.5) 328(50.9) 1.19(0.92-1.52) 0.1822

rs2992 GG 210(33.4) 199(30.9) 1(referent)

rs3770502 AA 12(1.9) 15(2.3) 1.18(0.54-2.54) 0.6809

rs3770502 AG 177(28.1) 161(25) 0.86(0.67-1.1) 0.2198

rs3770502 GG 440(70) 468(72.7) 1(referent)

rs9288516 AA 128(20.4) 153(23.8) 1.28(0.93-1.74) 0.1249

rs9288516 AT 308(49.1) 312(48.4) 1.08(0.84-1.4) 0.5539

rs9288516 TT 191(30.5) 179(27.8) 1(referent)

OR odd ratio, CI confidence interval.
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tSNPs in RTEL1 gene to be associated with the risk of
glioma by recessive model (rs6010620, OR, 2.09; 95% CI,
1.39-3.13; P = 0.0004, and rs2297440, OR, 2.02; 95% CI,
1.35-3.04; P = 0.0007). Rs12022378 in the DCLRE1B
gene was also found by recessive model associated with
glioma risk (OR, 1.42; 95% CI, 1.05-1.93; P = 0.0246).
Rs6010620 and rs2297440 were also detected by Domin-
ant Model with increased risk of glioma (rs6010620, OR,
1.26; 95% CI, 1.01-1.57; P = 0.041, and rs2297440, OR,
1.3; 95% CI, 1.04-1.62; P = 0.022). Another SNP, rs12917
in the MGMT gene, was associated with decreased gli-
oma risk by recessive model analysis (OR, 0.73; 95% CI,
0.54-0.98; P = 0.036). Rs6010620, rs2297440 and rs12917
were also found to be associated with glioma risk
by additive model analyses (rs6010620, OR, 1.32; 95%
CI, 1.11-1.57; P = 0.0015, rs2297440, OR, 1.34; 95% CI,
1.12-1.59; P = 0.001 and rs12917, OR, 0.75; 95% CI,
0.58-0.99; P = 0.038). Genotypic model analyses results
shown that three tSNPs were significant to be as-
sociated with glioma risk (rs6010620, OR, 1.48; 95% CI,
1. 2-1.83; P = 0.0002, rs2297440, OR, 1.47; 95% CI, 1.19-
1.82; P = 0.000, and rs12022378, OR, 1.19; 95% CI, 1.0-
1.4; P = 0.043).
Only one block was detected in RTEL1 gene by

haplotype analysis. Global result for the block was: total
case = 1286, total control =1256, global χ2 = 13.0855
while df = 2, Fisher’s P value = 0.0015, and Pearson’s
P value = 0.0014. The results of the association between
the RTEL1 gene haplotypes and the risk of glioma are
listed in Table 6. Haplotype “GCT” in RTEL1 gene was
found to be associated with risk of glioma (OR, 0.7; 95%
CI, 0.57-0.86; Fisher’s P = 0.0005; Pearson’s P = 0.0005).
Haplotype “ATT” was found to be associated with risk of
glioma (OR, 1.32; 95% CI, 1.12-1.57; Fisher’s P = 0.0013;
Pearson’s P = 0.0013).
Furthermore, the associations between different clinico-

patholiogical features and genotype frequency of GG in
rs6010620, together with CC in rs2297440 in glioma pa-
tients (n = 75, 73, respectively) were analyzed. GG fre-
quency in various grade goups were determined, being
16.0% (12/75), 46.7% (35/75), 16.0% (12/75), and 21.3%
(16/75), respectively, in grade I,II,III, and IV group (P > 0.05),
and CC frequency in various grade goups were deter-
mined as 14.7% (11/73), 56.2% (35/73), 17.8% (13/73), and
19.2% (14/73), respectively, in grade I, II, III, and IV group
(P >0.05) (Table 7). No significant association was found
between genotype frequency of GG or CC, and other pa-
rameters including WHO grading, gender, age at diagno-
sis, or Karnofsky performance score (KPS).

Discussion
As known, biomarker detection and screening is an emer-
ging field for oncology [18-23]. Especially for gliomas con-
siderable progresses have been made in identifying,
characterizing, and attempting to apply molecular
markers, e.g. in the previous study, we initially found the
increased expression of miR-372 in glioma tissues was sig-
nificantly correlated with advanced tumor progression
and aggressive clinicopathological features [24]. And sub-
sequently a series of have determined the associations
between lots of SNPs in ABCB 1, NR 1/2, VEGFR 3, etc.
and therapy outcome [25-27].
In this case–control study in Han Chinese population, we

found two susceptibility tSNPs in RTEL1 gene that were as-
sociated with increased risk of glioma (rs6010620 and
rs2297440). The genotype “GG” of rs6010620 was the pro-
tective genotype for glioma, and the genotype “CC” of



Table 5 Association between tSNPs and the risk of glioma and their heterozygote and homozygote odds ratios, per
allele odds ratios and confidence intervals

SNP No. Dominant model Recessive model Additive model Genotypic model

OR 95% CI P-value OR 95% CI P-value OR 95% CI P value OR 95% CI P value

rs12022378 1.08 0.86 1.36 0.4966 1.42 1.05 1.93 0.0246 1.14 0.97 1.33 0.1031 1.19 1.01 1.40 0.0426

rs2992 0.90 0.71 1.14 0.3963 1.14 0.86 1.51 0.3714 0.99 0.85 1.16 0.9496 1.02 0.87 1.19 0.8340

rs12917 0.73 0.54 0.98 0.0359 0.70 0.25 1.94 0.4882 0.75 0.58 0.98 0.0383 0.81 0.49 1.36 0.4362

rs12645561 1.02 0.82 1.28 0.8315 0.74 0.49 1.12 0.1499 0.96 0.81 1.15 0.6584 0.87 0.70 1.08 0.2142

rs7003908 0.87 0.69 1.10 0.2372 0.74 0.46 1.19 0.2102 0.87 0.73 1.05 0.1492 0.84 0.66 1.08 0.1684

rs6010620 1.26 1.01 1.57 0.0410 2.09 1.39 3.13 0.0004 1.32 1.11 1.57 0.0015 1.48 1.20 1.83 0.0002

rs2297440 1.30 1.04 1.62 0.0221 2.02 1.35 3.04 0.0007 1.34 1.12 1.59 0.0010 1.47 1.19 1.82 0.0003

rs4809324 1.03 0.79 1.34 0.8386 1.76 0.67 4.60 0.2490 1.06 0.83 1.36 0.6257 1.33 0.82 2.14 0.2513

rs3770502 1.16 0.91 1.48 0.2314 0.79 0.37 1.72 0.5557 1.11 0.89 1.38 0.3668 0.91 0.62 1.34 0.6410

rs9288516 0.90 0.70 1.14 0.3803 0.84 0.64 1.10 0.1972 0.90 0.77 1.05 0.1896 0.90 0.77 1.05 0.1789

OR odd ratio, CI confidence interval.
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rs2297440 was the protective genotype in glioma. We also
observed in the RTEL1 gene a haplotype “GCT” that was as-
sociated with a decreased the risk and a haplotype of “ATT”
with an increased risk of developing glioma.
As described initially, however, we failed to determine

the associations between genotype frequency of GG or
CC, and other parameters including WHO grading, gen-
der, age at diagnosis, or KPS status. Additionally, we also
tried to elucidate the relationship of genotype frequency
of GG or CC, with overall surviaval (OS) in the corre-
lated patients. During the follow-up period, only 11 of
the patients with genotype of GG or CC had died
[6 (8%) from the 75 patients with genotype GG, and
5 (6.8%) from the 73 patients with genotype CC], and
most of the patients are alive and are being traced
continuously.
Albeit the correlated survival data in the present study

are still accumulating, our findings in this study have
provided new evidence for the association between com-
mon SNPs (or haplotypes) and the risk of glioma in the
Chinese Han population, suggesting an important deter-
minant of glioma development by RTEL1 gene. RTEL1
gene locates in 20q13.3 with the length of 40.889 kb, in-
cluding 40 exons. Known functions of RTEL1 include
nucleic acid binding, ATP-dependent DNA helicase ac-
tivity, DNA repair, apoptosis and anti-apoptosis, and so
on. Previous study proposed that RTEL1 maintains gen-
omic stability by suppressing homologous recombination
Table 6 Haplotype frequencies of RTEL1 gene and association

Haplotype Freq(case) Freq(ctrl) Chi2

A T T 0.7294 0.6728 10.3722

G C C 0.1135 0.1194 0.1959

G C T 0.1524 0.2054 11.9905

Note: Loci chosen for hap-analysis: rs6010620, rs2297440 and rs4809324 (RTEL1); OR
[28,29], and implements the second level of meiotic
crossover control by promoting non-crossovers [30,31].
A recent review point out that RTEL1 was an essential
helicase for telomere maintenance and the regulation of
homologous recombination [32,33]. RTEL1 didn’t in-
volve any KEGG pathway (http://www. genome.jp/kegg/)
so far. The frequencies of rs6010620 risk genotypes were
highly correlated with high-grade disease (P < 0.001), in-
dicating that genetic variations at the locus has subtype-
specific effects on the risk of developing glioma [34].
RTEL1 gene was over expressed in human gastrointes-
tinal tract tumors [35]. Polymorphism in the RTEL1
gene was associated with glioblastoma survival [36].
Some limitations are inherent in this case–control

study and must be noted here. Glioma patients were not
sub-grouped by age or gender, and gender-specific sig-
nificant variants were not tested. We selected tSNPs
with frequencies higher than 5% in HapMap Asian pop-
ulations to affirm the statistical power was large enough
for analyzing data. We also designed a haplotype-based
study to ensure sufficiently high power to detect the risk
of glioma associated with candidate tSNPs. Another po-
tential concern was population admixture, which is a
known confounding factor for association analysis and
may also result in inflated type-I error (false positive). In
this study, glioma patients and controls were used in the
same hospital to avoid the possibility that one may have
a more pronounced selection bias. However, this bias is
with risk of glioma in cases and controls

Fisher’s P Pearson’s P Odds ratio [95% CI]

0.0013 0.0013 1.32 [1.12,1.57]

0.6581 0.6581 0.95 [0.74,1.21]

0.0005 0.0005 0.70 [0.57,0.86]

odd ratio, CI confidence interval.



Table 7 Associations between different
clinicopatholiogical features and genotype frequency of
GG in rs6010620, and CC in rs2297440 of RTEL1 gene in
glioma patients (n = 75, 73, respectively)

Clinicopatholiogical
features

GG frequency P
value

CC frequency P value

n (%) n (%)

WHO grade

I 12 (16.0) >0.05 11 (14.7) >0.05

II 35 (46.7) 35 (56.2)

III 12 (16.0) 13 (17.8)

IV 16 (21.3) 14 (19.2)

Age

≥40 36 (48.0) NS 40 (54.8) NS

<40 39 (52.0) 33 (45.2)

Gender

Male 30 (40.0) NS 31 (42.5) NS

Female 45 (60.0) 42 (57.5)

KPS

≥70 72 (96.0) >0.05 70 (95.9) >0.05

<70 3 (4.0) 3 (4.1)

NS not significant, KPS Karnofsky performance score.
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unlikely to be of significance because they did not differ
in the distributions of demographic variable and geno-
type frequencies. We limited all subjects’ ethnicity to
Han Chinese, and a living area to Xi’an City and its sur-
rounding area, thus there is no substantial population
admixture in our study populations.
In the upcoming studies, our team will go on to follow

up the subjects recruited into the present study, and
carry out additional research with larger subject num-
bers and grade types to further characterize the relation-
ship among grades within the individuals, clinical
features and the mentioned RTEL1 tagging SNPs & hap-
lotypes. Furthermore, to elucidate the role of the RTEL1
gene in gliomagenesis, serum RTEL1 expression levels
between different mutations or haplotype groups will be
compared. And, we will also investigate the association
between germline RTEL1 variants and somatic RTEL1
mutations, and the relationship between serum RTEL1
expression and somatic RTEL1 expression in the same
glioma subjects.
Conclusion
In conclusion, our comprehensive analysis of tSNPs sug-
gests that the genotypes of “GG” of rs6010620 and “CC”
of rs2297440 (rs6010620 and rs2297440) in the RTEL1
gene, together with two haplotypes of GCT and ATT,
were identified to be associated with glioma develop-
ment. And it might be used to evaluate the glioma
development risks to screen the above RTEL1 tagging
SNPs and haplotypes.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
CC and GG were the overall principle investigator of the study who
designed the study and were responsible for study design, and interpreted
the results. GL and TJ participated in the design and coordination,
performed the molecular genetic evaluation, and drafted the manuscript.
And ZZ, GC, HY, together with TG performed the statistical analysis, and
joined into drafting the manuscript. All the patients were followed up by YT,
SH and HL. GL, CC and GG all contributed to improving the draft of the
manuscript. All authors have read and approved the final manuscript.

Acknowledgments
This work is supported by grants from the National Natural Science
Foundation of China (No. 81272776), China Postdoctoral Science Foundation
funded projects (No. 20100471628 and No. 201104634), Wu Jieping Medical
Foundation funded Project (320.6750.12161), Shaanxi Province Programs for
Science and Technology Development (No. 2012 K 13-01-13 and 2011 K12-
47) and the Talents Program 2010, Tangdu hospital, the Fourth Military
Medical University. We are grateful to all the patients and individuals for their
participation. We would also like to thank the clinicians and other hospital
staff who contributed to the blood sample and data collection for this study.

Author details
1Department of Neurosurgery, Tangdu hospital, the Fourth Military Medical
University, Xi’an 710038, China. 2National Engineering Research Center for
Miniaturized Detection Systems, School of Life Sciences, Northwest
University, Xi’an 710069, China. 3Department of Clinical Experimental Surgery,
Tangdu hospital, the Fourth Military Medical University, Xi’an 710038, China.
4Shaanxi Lifegen Co. Ltd, Xi’an 710069, China. 5Department of Radiology,
Tangdu hospital, the Fourth Military Medical University, Xi’an 710038, China.

Received: 6 April 2013 Accepted: 12 May 2013
Published: 17 May 2013

References
1. Ostrom QT, Barnholtz-Sloan JS: Current state of our knowledge on brain

tumor epidemiology. Curr Neurol Neurosci Rep 2011, 11:329–335.
2. Gigineishvili D, Shengelia N, Shalashvili G, Rohrmann S, Tsiskaridze A,

Shakarishvili R: Primary brain tumour epidemiology in Georgia: first-year
results of a population-based study. J Neurooncol 2013, 112:241–246.

3. Bondy ML, Scheurer ME, Malmer B, Barnholtz-Sloan JS, Davis FG, Il’yasova D,
Kruchko C, McCarthy BJ, Rajaraman P, Schwartzbaum JA, Sadetzki S,
Schlehofer B, Tihan T, Wiemels JL, Wrensch M, Buffler PA: Brain tumor
epidemiology: consensus from the Brain Tumor Epidemiology
Consortium. Cancer 2008, 113:1953–1968.

4. Liu Y, Shete S, Hosking F, Robertson L, Houlston R, Bondy M: Genetic
advances in glioma: susceptibility genes and networks. Curr Opin Genet
Dev 2010, 20:239–244.

5. Wrensch M, Jenkins RB, Chang JS, Yeh RF, Xiao Y, Decker PA, Ballman KV,
Berger M, Buckner JC, Chang S, Giannini C, Halder C, Kollmeyer TM, Kosel
ML, LaChance DH, McCoy L, O’Neill BP, Patoka J, Pico AR, Prados M,
Quesenberry C, Rice T, Rynearson AL, Smirnov I, Tihan T, Wiemels J, Yang P,
Wiencke JK: Variants in the CDKN2B and RTEL1 regions are associated
with high-grade glioma susceptibility. Nat Genet 2009, 41:905–908.

6. Shete S, Hosking FJ, Robertson LB, Dobbins SE, Sanson M, Malmer B, Simon
M, Marie Y, Boisselier B, Delattre JY, Hoang-Xuan K, El Hallani S, Idbaih A,
Zelenika D, Andersson U, Henriksson R, Bergenheim AT, Feychting M, Lönn
S, Ahlbom A, Schramm J, Linnebank M, Hemminki K, Kumar R, Hepworth SJ,
Price A, Armstrong G, Liu Y, Gu X, Yu R, Lau C, Schoemaker M, Muir K,
Swerdlow A, Lathrop M, Bondy M, Houlston RS: Genome-wide association
study identifies five susceptibility loci for glioma. Nat Genet 2009,
41:899–904.

7. Rajaraman P, Melin BS, Wang Z, McKean-Cowdin R, Michaud DS, Wang SS,
Bondy M, Houlston R, Jenkins RB, Wrensch M, Yeager M, Ahlbom A, Albanes
D, Andersson U, Freeman LE, Buring JE, Butler MA, Braganza M, Carreon T,
Feychting M, Fleming SJ, Gapstur SM, Gaziano JM, Giles GG, Hallmans G,



Li et al. Diagnostic Pathology 2013, 8:83 Page 8 of 8
http://www.diagnosticpathology.org/content/8/1/83
Henriksson R, Hoffman-Bolton J, Inskip PD, Johansen C, Kitahara CM, Lathrop
M, Liu C, Le Marchand L, Linet MS, Lonn S, Peters U, Purdue MP, Rothman
N, Ruder AM, Sanson M, Sesso HD, Severi G, Shu XO, Simon M, Stampfer M,
Stevens VL, Visvanathan K, White E, Wolk A, Zeleniuch-Jacquotte A, Zheng
W, Decker P, Enciso-Mora V, Fridley B, Gao YT, Kosel M, Lachance DH, Lau C,
Rice T, Swerdlow A, Wiemels JL, Wiencke JK, Shete S, Xiang YB, Xiao Y,
Hoover RN, Fraumeni JF Jr, Chatterjee N, Hartge P, Chanock SJ: Genome-
wide association study of glioma and meta-analysis. Hum Genet 2012,
131:1877–1888.

8. Chen H, Chen Y, Zhao Y, Fan W, Zhou K, Liu Y, Zhou L, Mao Y, Wei Q, Xu J,
Lu D: Association of sequence variants on chromosomes 20, 11, and 5
(20q13.33, 11q23.3, and 5p15.33) with glioma susceptibility in a Chinese
population. Am J Epidemiol 2011, 173:915–922.

9. Wang SS, Hartge P, Yeager M, Carreón T, Ruder AM, Linet M, Inskip PD,
Black A, Hsing AW, Alavanja M, Beane-Freeman L, Safaiean M, Chanock SJ,
Rajaraman P: Joint associations between genetic variants and
reproductive factors in glioma risk among women. Am J Epidemiol 2011,
174:901–908.

10. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A,
Scheithauer BW, Kleihues P: The 2007 WHO classification of tumours of
the central nervous system. Acta Neuropathol 2007, 114:97–109.

11. Gabriel S, Ziaugra L, Tabbaa D: SNP genotyping using the Sequenom
MassARRAY iPLEX platform. Curr Protoc Hum Genet 2009, 60:2.12.1–2.12.18.

12. Thomas RK, Baker AC, Debiasi RM, Winckler W, Laframboise T, Lin WM,
Wang M, Feng W, Zander T, MacConaill L, Lee JC, Nicoletti R, Hatton C,
Goyette M, Girard L, Majmudar K, Ziaugra L, Wong KK, Gabriel S, Beroukhim
R, Peyton M, Barretina J, Dutt A, Emery C, Greulich H, Shah K, Sasaki H,
Gazdar A, Minna J, Armstrong SA, Mellinghoff IK, Hodi FS, Dranoff G, Mischel
PS, Cloughesy TF, Nelson SF, Liau LM, Mertz K, Rubin MA, Moch H, Loda M,
Catalona W, Fletcher J, Signoretti S, Kaye F, Anderson KC, Demetri GD,
Dummer R, Wagner S, Herlyn M, Sellers WR, Meyerson M, Garraway LA:
High-throughput oncogene mutation profiling in human cancer.
Nat Genet 2007, 39:347–351.

13. Adamec C: Example of the use of the nonparametric test. Test X2 for
comparison of 2 independent examples. Cesk Zdrav 1964, 12:613–619.

14. Bland JM, Altman DG: Statistics notes. The odds ratio. BMJ 2000, 320:1468.
15. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J,

Sklar P, de Bakker PI, Daly MJ, Sham PC: PLINK: a tool set for whole-
genome association and population-based linkage analyses. Am J Hum
Genet 2007, 81:559–575.

16. Barrett JC, Fry B, Maller J, Daly MJ: Haploview: analysis and visualization of
LD and haplotype maps. Bioinformatics 2005, 21:263–265.

17. Shi YY, He L: SHEsis, a powerful software platform for analyses of linkage
disequilibrium, haplotype construction, and genetic association at
polymorphism loci. Cell Res 2005, 15:97–98.

18. Wang L, Li PF, Geng M, Cao YC, Yin YC: Correlation between
chemosensitivity to anticancer drugs and telomerase reverse
transcriptase mRNA expression in gastric cancer. Diagn Pathol 2013, 8:33.

19. Lind-Landström T, Varughese RK, Sundstrøm S, Torp SH: Expression and
clinical significance of the proliferation marker minichromosome
maintenance protein 2 (Mcm2) in diffuse astrocytomas WHO grade II.
Diagn Pathol 2013, 8:67.

20. Wang Q, Deng J, Yuan J, Wang L, Zhao Z, He S, Zhang Y, Tu Y: Oncogenic
reg IV is a novel prognostic marker for glioma patient survival.
Diagn Pathol 2012, 7:69.

21. Gömöri E, Pál J, Kovács B, Dóczi T: Concurrent hypermethylation of
DNMT1. MGMT and EGFR genes in progression of gliomas. Diagn Pathol
2012, 7:8.

22. Truong LN, Patil S, Martin SS, LeBlanc JF, Nanda A, Nordberg ML, Beckner
ME: Rapid detection of high-level oncogene amplifications in ultrasonic
surgical aspirations of brain tumors. Diagn Pathol 2012, 7:66.

23. Gulati S, Ytterhus B, Granli US, Gulati M, Lydersen S, Torp SH:
Overexpression of c-erbB2 is a negative prognostic factor in anaplastic
astrocytomas. Diagn Pathol 2010, 5:18.

24. Li G, Zhang ZG, Tu YY, Jin TB, Liang HJ, Cui GB, He SM, Gao GD: Correlation
of microrna-372 upregulation with poor prognosis in human glioma.
Diagn Pathol 2013, 8:1.

25. Beuselinck B, Karadimou A, Lambrechts D, Claes B, Wolter P, Couchy G,
Berkers J, Paridaens R, Schöffski P, Méjean A, Verkarre V, Lerut E, de la Taille
A, Tourani JM, Bigot P, Linassier C, Négrier S, Berger J, Patard JJ, Zucman-
Rossi J, Oudard S: Single-nucleotide polymorphisms associated with
outcome in metastatic renal cell carcinoma treated with sunitinib.
Br J Cancer 2013, 108:887–900.

26. Pu X, Roth JA, Hildebrandt MA, Ye Y, Wei H, Minna JD, Lippman SM, Wu X:
MicroRNA-related genetic variants associated with clinical outcomes in
early-stage non-small cell lung cancer patients. Cancer Res 2013,
73:1867–1875.

27. Peng J, Yang LX, Zhao XY, Gao ZQ, Yang J, Wu WT, Wang HJ, Wang JC,
Qian J, Chen HY, Jin L, Bai CX, Han BH, Wang WM, Lu DR: VCP gene
variation predicts outcome of advanced non-small-cell lung cancer
platinum-based chemotherapy. Tumour Biol 2013, 34:953–961.

28. Barber LJ, Youds JL, Ward JD, McIlwraith MJ, O’Neil NJ, Petalcorin MI, Martin
JS, Collis SJ, Cantor SB, Auclair M, Tissenbaum H, West SC, Rose AM, Boulton
SJ: RTEL1 maintains genomic stability by suppressing homologous
recombination. Cell 2008, 135:261–271.

29. Uringa EJ, Lisaingo K, Pickett HA, Brind’Amour J, Rohde JH, Zelensky A,
Essers J, Lansdorp PM: RTEL1 contributes to DNA replication and repair
and telomere maintenance. Mol Biol Cell 2012, 23:2782–2792.

30. Youds JL, Mets DG, McIlwraith MJ, Martin JS, Ward JD, ONeil NJ, Rose AM,
West SC, Meyer BJ, Boulton SJ: RTEL-1 enforces meiotic crossover
interference and homeostasis. Science 2010, 327:1254–1258.

31. Mirabello L, Yu K, Kraft P, De Vivo I, Hunter DJ, Prescott J, Wong JY,
Chatterjee N, Hayes RB, Savage SA: The association of telomere length
and genetic variation in telomere biology genes. Hum Mutat 2010,
31:1050–1058.

32. Uringa EJ, Youds JL, Lisaingo K, Lansdorp PM, Boulton SJ: RTEL1: an
essential helicase for telomere maintenance and the regulation of
homologous recombination. Nucleic Acids Res 2011, 39:1647–1655.

33. Adelman CA, Boulton SJ: Metabolism of postsynaptic recombination
intermediates. FEBS Lett 2010, 584:3709–3716.

34. Simon M, Hosking FJ, Marie Y, Gousias K, Boisselier B, Carpentier C,
Schramm J, Mokhtari K, Hoang-Xuan K, Idbaih A, Delattre JY, Lathrop M,
Robertson LB, Houlston RS, Sanson M: Genetic risk profiles identify
different molecular etiologies for glioma. Clin Cancer Res 2010,
16:5252–5259.

35. Bai C, Connolly B, Metzker ML, Hilliard CA, Liu X, Sandig V, Soderman A,
Galloway SM, Liu Q, Austin CP, Caskey CT: Overexpression of M68/DcR3 in
human gastrointestinal tract tumors independent of gene amplification
and its location in a four-gene cluster. Proc Natl Acad Sci U S A 2000,
97:1230–1235.

36. Liu Y, Shete S, Etzel CJ, Scheurer M, Alexiou G, Armstrong G, Tsavachidis S,
Liang FW, Gilbert M, Aldape K, Armstrong T, Houlston R, Hosking F,
Robertson L, Xiao Y, Wiencke J, Wrensch M, Andersson U, Melin BS, Bondy
M: Polymorphisms of LIG4, BTBD2, HMGA2, and RTEL1 genes involved in
the double-strand break repair pathway predict glioblastoma survival.
J Clin Oncol 2010, 28:2467–2474.

doi:10.1186/1746-1596-8-83
Cite this article as: Li et al.: RTEL1 tagging SNPs and haplotypes were
associated with glioma development. Diagnostic Pathology 2013 8:83.
Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit


	Outline placeholder
	Abstract
	Virtual slides

	Introduction
	Patients and methods
	Study population
	Demographic and clinical data
	Blood samples collection, DNA extraction and SNP selection and genotyping
	Statistical analysis

	Results
	Discussion
	Conclusion
	Competing interests
	Authors’ contributions
	Acknowledgments
	Author details
	References

