
Poliakov et al. Biology Direct 2014, 9:16
http://www.biologydirect.com/content/9/1/16
HYPOTHESIS Open Access
Impairment of translation in neurons as a
putative causative factor for autism
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Abstract

Background: A dramatic increase in the prevalence of autism and Autistic Spectrum Disorders (ASD) has been
observed over the last two decades in USA, Europe and Asia. Given the accumulating data on the possible role of
translation in the etiology of ASD, we analyzed potential effects of rare synonymous substitutions associated with
ASD on mRNA stability, splicing enhancers and silencers, and codon usage.

Presentation of the hypothesis: We hypothesize that subtle impairment of translation, resulting in dosage
imbalance of neuron-specific proteins, contributes to the etiology of ASD synergistically with environmental
neurotoxins.

Testing the hypothesis: A statistically significant shift from optimal to suboptimal codons caused by rare
synonymous substitutions associated with ASD was detected whereas no effect on other analyzed characteristics of
transcripts was identified. This result suggests that the impact of rare codons on the translation of genes involved
in neuron development, even if slight in magnitude, could contribute to the pathogenesis of ASD in the presence
of an aggressive chemical background. This hypothesis could be tested by further analysis of ASD-associated
mutations, direct biochemical characterization of their effects, and assessment of in vivo effects on animal models.

Implications of the hypothesis: It seems likely that the synergistic action of environmental hazards with genetic
variations that in themselves have limited or no deleterious effects but are potentiated by the environmental
factors is a general principle that underlies the alarming increase in the ASD prevalence.

Reviewers: This article was reviewed by Andrey Rzhetsky, Neil R. Smalheiser, and Shamil R. Sunyaev.

Keywords: Synonymous mutations, Single nucleotide polymorphism, Codon usage, Splicing enhancer, Splicing
silencer, mRNA secondary structure, Transcription factor binding, Neurotoxin
Background
Autism prevalence in USA increased from 1 in 2,000 in
1970 to 1 in 68 in 2010 [1]. The CDC estimate for Autistic
Spectrum Disorders (ASD) among school aged children
(8 years) has increased by 78% during 2002–2008 (from 1
in 156 to 1 in 88) [2]. A major increase in the prevalence
of autism was observed over the last two decades also in
Asia and Europe [3].
The causes of such an apparent explosion of ASD are

a subject of intense debate. Several recent studies exam-
ined the rate of de novo mutations in autistic children
and their possible importance in the etiology of ASD
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[4-7]. Comparison of ASD-affected individuals and their
parents and/or unaffected siblings revealed modest but
significant excess of de novo mutations in ASD, particu-
larly in genes that are specifically expressed in the brain
[4]. These findings imply a substantial genetic compo-
nent in the etiology of ASD but fail to shed light on the
recent dramatic increase in the prevalence of autistic
disorders. In general, the rate of mutations linked to
classic Mendelian and complex diseases does not seem
to have significantly increased within the relevant time
span [8-10]. For example, the rate of de novo mutations
associated with Huntington’s disease has been estimated
at steady 8–10% of all cases over the last decade [11,12].
Congruent with this observation, no obvious increase in
the incidence of common diseases with a major genetic
component, e.g. schizophrenia, haemophilia A or cystic
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fibrosis, has been detected over the last 50 years [13-15].
Thus, germline mutations alone hardly can explain the
recent explosion of autism [16]. Another potential factor,
change in diagnostic criteria, such as inclusion of milder
cases, might explain at best approximately 25% of the
observed increase in ASD incidence [17-20].
By exclusion, it has been proposed that environmental

factors including chemicals and microbes could be the
primary culprits in the ASD surge [3,18,21-23]. Recent
twin studies have shown that susceptibility to ASD has
moderate heritability (38%) and a substantial shared twin
environmental component (58%) [24]. Early twin studies
had estimated the heritability of autism to be as high as
90 percent, due to much lower estimates of concordance -
both members of a twin pair having the disorder - in fra-
ternal twins [25-28]. New studies found the concordance
among fraternal twins to be four to five fold higher
[24,29]. Such a dramatic difference could be explained by
smaller sample size in previous twin studies and/or a
genuine drop in heritability caused by additional environ-
mental factors that became involved in the etiology of aut-
ism in the last twenty years [3].
The changes in environmental factors that occurred

during the last two decades have been substantial and
numerous. The primary suspects so far are mercury [23],
agricultural pesticides [30], air pollutants and solvents
[31,32], proximity of maternal residence at the time of
delivery to freeways [33], toxins present in plastic and
treatment of mothers with selective serotonin reuptake
inhibitors, thalidomide, valproic acid and misoprostol
[34-36]. However, none of these environmental factors
has been firmly established as a contributor to the ASD
surge [37].

Presentation of the hypothesis
Recently, it has been shown that mutations in transla-
tional repressors FMRP, TSC1/2 and PTEN [38,39] as
well as de novo disruptions of FRMP-regulated genes [7]
are associated with ASD, suggesting that defects in
translation repression could be a causative factor. Given
the accumulating data on the possible role of translation
in the etiology of ASD, we analyzed rare synonymous
substitutions linked to disorders of the ASD spectrum
(delineated from rare gene variations, see below for more
details) because these mutations could directly reflect
selection at the levels of transcription and/or translation
[40]. We assessed potential impact of ASD-associated
synonymous substitutions on mRNA stability, splicing
enhancers/silencers and codon usage (see below for
more details). The results indicate a statistically signifi-
cant shift in codon usage associated with ASD: a sub-
stantial majority of rare synonymous variants change an
optimal codon to a sub-optimal one. We hypothesize
that subtle impairment of translation resulting from the
codon usage shift contributes to the ASD surge through
interaction with increasingly used neurotoxic compounds.

Testing the hypothesis
Features of synonymous variants associated with ASD
Rare synonymous variations in human genes associated
with ASD (the AV set) were selected from the AutDB
database [41] and from a set of rare synonymous varia-
tions unique to ASD patients that was compiled by
Kelleher and co-workers from the AGRE database [42]
(Table 1). These variations were polarized under the
assumption that a rare variant implicated in ASD is a
derived state whereas the alternative common allele is
the ancestral state [41,42]. Altogether, 87 synonymous AVs
in 19 genes were used for further analysis (Additional
file 1). We also reconstructed a set of fixed synonymous
substitutions for the same set of human genes (Table 1)
using multiple alignments of orthologs from humans,
chimp and gorilla. For each gene, we compared triplets
of species including two sister species (human and
chimp) and an outgroup (gorilla). A substitution was as-
sumed to have occurred in the human lineage if the nucle-
otides in the chimp lineage and in the gorilla outgroup
were identical but differed from the nucleotide in the hu-
man lineage. The use of parsimony is justified in this case
because the distances between the three species of great
apes are short [43]. We additionally analyzed common
synonymous single nucleotide polymorphisms (SNPs)
from the dbSNP database for the same group of genes
(Table 1), a set of substitutions that is expected to be
strongly enriched for neutral or nearly neutral variants
[44]. These common SNPs were polarized using chimp/
gorilla as an outgroup. Furthermore, we examined 99
recently identified de novo synonymous mutations in
ASD patients [6,7]. The vast majority of these mutations
are unlikely to cause any functional consequences [6,7,45]
and accordingly these mutations were used as an add-
itional control.
We compared the properties of the AV to those of

the other mutations (Table 2). The AV are enriched in
C:G > T:A transitions (Table 2) but the difference from
the set of reconstructed mutations, common SNPs and
de novo mutations was not significant [46] (Table 2).
The frequency of mutations in the CpG context is
higher in the AV set (48%) compared to the set of re-
constructed mutations (25%), and this difference was
statistically significant after correction for multiple com-
parisons (Table 2). The excess of mutations in CpG sites
might reflect subtle differences in the methylation pattern
between the AVs and the reconstructed mutation group
although problems with the parsimony reconstruction,
such as excess of multiple parallel mutations in CpG co-
dons in chimp and gorilla, cannot be ruled out. No signifi-
cant differences in the CpG site mutations were observed



Table 1 The 19 genes with ASD-associated rare synonymous variations

Gene Source
database

GenBank protein GI/brief description # rare synonymous
variants (AVs)

# reconstructed
synonymous mutations

# common
synonymous SNPs

AUTS2 AutDB 17225457/autism-related protein 1 1 2 2

CADPS2 AutDB 148839294/calcium-dependent secretion activator 2 2 5 3

FOXP2 AutDB 298566291/forkhead box protein P2 1 4 2

FMR1 AutDB fragile X mental retardation 1 1 4 3

GRM1 AGRE 166999098/metabotropic glutamate receptor 1 4 8 5

GRM5 AGRE 4504143/metabotropic glutamate receptor 5 7 3 5

HRAS AGRE 34222246/GTPase HRas 1 0 1

MAP2K1 AGRE 5579478/dual specificity mitogen-activated protein
kinase 1

1 0 1

MAP2K2 AGRE 13489054/dual specificity mitogen-activated protein
kinase 2

3 4 4

MECP2 AutDB 1708973/Methyl-CpG-binding protein 2 9 2 1

NLGN3 AutDB 262359971/neuroligin-3 1 0 1

NRXN1 AutDB 154813843/neuronal cell surface protein NRXN1-α 5 10 2

PIK3CA AGRE 54792082/phosphatidylinositol 4,5-bisphosphate 3-kinase
catalytic subunit

4 2 3

RBFOX1 AutDB 22538409/RNA binding protein fox-1 homolog 1 3 6 1

SHANK2 AutDB 254763402/SH3 and multiple ankyrin repeat domains
protein 2

8 6 3

SHANK3 AutDB,
AGRE

380748963/SH3 and multiple ankyrin repeat domains
protein 3

27 4 9

TSC1 AGRE 4507693/tuberous sclerosis gene TSC1 3 2 2

TSC2 AGRE 116256352/tuberous sclerosis 2 protein 5 11 8

UBE3A AGRE 19718764/ubiquitin-protein ligase E3A 1 3 5
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between the AV set and de novo synonymous mutations or
common SNPs (Table 2). Regardless of its biological
relevance, the observed excess of mutations in the CpG
dinucleotides and obvious biases in substitution patterns
(Table 2) should not be ignored in any analysis of AVs.
These biases were taken into account in the analysis of
Table 2 Features of the analyzed synonymous variations/mut

1. Rare variations from
AutDB/AGRE (AVs)

C:G > T:A 64

C:G > A:T 7

C:G > G:C 4

T:A > C:G 10

T:A > G:C 1

T:A > A:T 1

PMCχ2 = 0.390, Pctcχ2 =

Mutations in CpG’s (total #mutations) 42 (out of 87)

PFisher for two columns (C’s)

A Monte Carlo modification of the Pearson χ2 test (MCχ2) of spectra homogeneity,
implemented in the COLLAPSE program [46]. Two-tailed Fisher exact test was used
codon usage, splicing enhancers/silencers and free energy
as described below.
For the analysis of the changes in codon usage, we used

multiple sources of codon frequencies in brain-specific
genes (denoted here as F). The codon frequencies were
inferred from two sets of brain-specific genes that were
ations

2. Reconstructed
mutations

3. Common SNPs 4. De novo
mutations

44 34 66

6 8 6

3 6 6

20 9 16

3 3 3

3 1 2

0.378, PZd = 0.464

20 (out of 79) 24 (out of 61) 42 (out of 99)

C1 vs. C2 C1 vs. C3 C1 vs. C4

0.002 0.316 0.462

CTC χ2 and Zd measures were used for comparison of mutation frequencies as
to compare frequencies of substitutions in CpG sites.
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delineated using expressed sequence tags [47] and micro-
array data [48,49]. Codon frequencies were also calculated
for the set of 19 AV genes (Table 1). The shift in codon
usage (SH) between common allele variants (C-CV) and
polarized rare synonymous variants (C-AV) was calculated
using the equation:

SH ¼
XN

i¼1

FiC‐CV‐FiC‐AV
� �

FiC‐CV
ð1Þ

where FiC-CV and FiC-AV are frequencies of codons C-CV
and C-AV, and N is the number of variations (muta-
tions) in the analyzed dataset. Under the assumption
that more frequent codons are translated more efficiently
[40,48,50-54], positive SH values imply that translation of
mutated codons is less efficient.
A Monte Carlo procedure was used to estimate the

significance of the differences in SH. Random synonym-
ous mutations were simulated taking into account the
frequencies of substitutions for each nucleotide and the
context of the mutating sites in the case of CpG dinucleo-
tides (distinguishing mutations in the first and second
CpG positions). A distribution of SH _r values was calcu-
lated for 10,000 groups of random mutations. Each of the
resulting random mutation spectra contained the same
number of mutations as the observed AV set with the
same distribution of mutation types (Table 2) over ran-
domly chosen synonymous sites for each gene. The dis-
tribution of SH _r was used to calculate the probability
P(SH ≤ SH_r). This probability is equal to the fraction of
random spectra in which SH_r is the same as or greater
than the SH. Similarly, P(SH ≤ SH_r) values for the sets of
reconstructed synonymous mutations, common SNPs and
de novo mutations were calculated.
The same Monte Carlo approach was applied to analyze

the potential impact of AVs on mRNA free energy and on
splicing enhancers. The mRNA sequences of 19 genes
(Table 1) were computationally “folded” and the predicted
minimum free energy of the secondary structure was
calculated using an algorithm that employs nearest neigh-
bor parameters to evaluate free energy [55,56]. Similar to
codon usage, the change in free energy divided by the
value of the free energy of common allele variants was
used as SH = Σ (FEC_CM – FEC_AV)/FEC_CM (FEC_CM is the
minimum free energy of a common variant, FEC_AV is the
free energy of AV). Lists of splicing enhancers/silencers
were from [57,58]. The SH was defined as the number of
changes of splicing enhancers/silencers (gains or losses of
splicing enhancers/silencers as the result of variations).

No effect of AVs on splicing enhancers/silencers, mRNA
secondary structure and exonic transcription factor binding
Selection at synonymous sites in mammals is a long-
standing problem. It has been shown that some
synonymous sites in mammalian genes are subject to
selective pressure, possibly because of constraints act-
ing on regulatory elements (such as splicing enhancers)
located within exons [51,58-64]. Exonic splicing enhancers
(ESEs) and silencers (ESSs) appear to be present in most,
if not all, mammalian exons [59-61]. In the present ana-
lysis, no connection between ESEs/SSEs and the AVs was
detected: P(SH ≤ SH_r) = 0.213 for the ESE/SSE set [58]
and P(SH ≤ SH_r) = 0.713 for the RESCUE-ESE set [57].
It also has been proposed that purifying selection on

synonymous sites had to do with changes in mRNA stabil-
ity [40,51,65-67]. Thus, we compared the predicted mRNA
structures for the polarized rare synonymous variations in
the AV set and the common variants. No significant
stabilization or destabilization of the mRNA structure in
the AVs was detected [P(SH ≤ SH_r) = 0.189]. Thus, stabil-
ity of mRNA structure or ESEs/ESSs does not seem to be
significantly affected by the AVs.
Recently, it has been shown that exonic transcription

factor binding directs codon choice through the dual
function of many codons that additionally contribute to
transcription factor binding site [68]. The dual function
codons are concentrated primarily in the 5′-terminal re-
gions of protein-coding sequences. Therefore we ad-
dressed the possibility that AVs affected transcription
factor binding. The distribution of AVs across the coding
regions of the 19 genes was nearly uniform (Additional
file 2) which is inconsistent with a significant effect of
AVs on transcription factor binding sites.

The AVs result in less frequent codons
In some metazoan species (e.g. Drosophila and nematode),
synonymous codon usage appears to evolve under select-
ive pressure to optimize the efficiency of translation of
highly expressed genes (the translational selection model)
[69]. The impact of translational selection on synonymous
codon usage in mammals is uncertain, and codon usage is
often considered to be effectively neutral [47,51,69,70].
However, recent analyses indicate that selection on
translation efficiency in mammals could be measurable
as suggested by the detected correlations between codon
adaptation index and several variables related to the func-
tional importance of proteins including gene essentiality,
expression level and evolutionary rate [52,53]. Most of the
AVs cause replacement of more frequent codons by less
frequent codons (68 out of 87 AVs). However, this trend
might result from mutational biases [47], especially
given that many variations occurred in CpG dinucleotides
(Table 2). We used Monte Carlo stimulations to estimate
the significance of changes in codon usage, taking into ac-
count DNA context properties of mutations (see above).
The distribution of shifts in codon usage for random mu-
tations (SH_r) is shown in Figure 1. The SH value for the
AVs is 22.7, and only a small fraction of SH_r (0.007)
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Figure 1 Distribution of the mean codon usage shift (SH_r) for 10,000 groups of generated mutations. Codon usage shift (SH) for
observed synonymous mutations: 22.7, P(SH ≤ SH_r) = 0.007. Monte Carlo stimulation was used to estimate the significance of changes in codon
usage, taking into account DNA context properties of mutations (see text for details). Codon frequencies for the brain-specific genes were
estimated by Semon and co-workers [47].
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showed equal or greater values (Figure 1). Thus, the ob-
served shift in codon usage associated with AVs is un-
likely to be due to chance [P(SH ≤ SH_r) = 0.007]. We
complemented this analysis using codon frequencies in
the set of 19 AV-containing genes (Table 1) and the
microarray-based set of brain-specific genes [48], with
nearly identical results [P(SH ≤ SH_r) = 0.006 for the 19
gene set and P(SH ≤ SH_r) = 0.005 for the alternative
brain-specific gene set].
A comparable codon usage shift was not observed for

de novo mutations [P(SH ≤ SH_r) = 0.171]. These de novo
mutations are an important control because the vast ma-
jority of them are not related to ASD and rather reflect
properties of spontaneous mutations in humans [6,7,45].
No significant codon usage shift was detected for the set
of reconstructed synonymous mutations [P(SH ≤ SH_r) =
0.636] and the set of common SNPs [P(SH ≤ SH_r) =
0.291] either. Thus, the shift in codon usage toward rare
codons is not a general property of spontaneous muta-
tions in the analyzed set of 19 ASD-associated genes
(Table 1).
One obvious limitation of this analysis is the small

numbers of variations/mutations (Table 2). To assess the
impact of the dataset size, we applied the jackknife pro-
cedure: X mutations were randomly removed from the
AV set and P(SH ≤ SH_r) was estimated for this smaller
subset of AVs. This procedure was repeated 1000 times
for each X (X = 10, 20, 26, 30, 40; X = 26 corresponds to
the smallest set of common synonymous SNPs, Table 2).
The results of the jackknife analysis are shown in
the Table 3. For X = 10, 20, 26, 30, the vast majority
of P(SH ≤ SH_r) values were smaller than 0.05 (significant
codon usage shift); only for X = 40, the results were not-
ably less reliable even though for all X values, the mean
P value was below 0.05 (Table 3). Thus, the relatively
small size of the AV dataset and other datasets analyzed
here does not preclude reliable conclusions on the sig-
nificance of the codon usage shift. It should be noted
that careful selection and validation of the genes associ-
ated with ASD and the AVs themselves provided by the
authors of the initial datasets [41,42] compensated for
the small size of the AV set.

Implications of the hypothesis
We show here that rare synonymous variations in 19
genes associated with ASD cause a significant shift of
codon usage towards rare codons and therefore might
reduce the efficiency of translation. An example of such
rare synonymous variation was found in the MDR1 gene;
this rare synonymous variation results in the protein
product with altered drug and inhibitor interactions
[71,72]. We hypothesize that the impact of rare codons
on the translation of genes involved in neuron develop-
ment, even if slight in magnitude, could contribute to
the pathogenesis of ASD in the presence of an aggressive
chemical background (Figure 2). In several single-gene
disorders with a high prevalence of autism, the mutated
gene products are negative regulators of protein synthesis
[38]. For example, the product of the FMR1 gene, the
fragile X mental retardation protein (FMRP), binds to
specific mRNAs and represses their translation. The
FMRP protein is estimated to interact with more than
400 mRNAs [73]. These findings are consistent with the
observation that de novo disruptions of genes regulated
by the FRMP translation repressor are prevalent in chil-
dren with ASD [7]. Kelleher and Bear proposed that the
“autistic neuron” is a result of perturbed translation and
the defects in translation repression might represent
one possible etiological factor of autism [7,38,74,75].
Rare codons can substantially alter the dosage of

proteins through different mechanisms, in particular
ribosome pausing and “drop off” from the mRNA, often



Table 3 Jackknife analysis of the rare synonymous variations in genes associated with ASD (the AV set)

Number of removed AVs Mean P(SH ≤ SH_r) Standard error Fraction of cases with P(SH ≤ SH_r) ≤ 0.05

10 0.0031 0.0004 0.988

20 0.0233 0.0007 0.939

26 (corresponds to the common SNP dataset) 0.0279 0.002 0.886

30 0.0323 0.002 0.839

40 0.0451 0.003 0.718

Codon frequencies for the brain-specific genes were estimated by Semon and co-workers [47].
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followed by decay of the mRNA and the partly completed
protein product [76,77]. Dosage imbalance of proteins as-
sociated with neuron development is known to be import-
ant in many psychiatric disorders [78-80]. Currently, there
seem to be no direct indications that dosage imbalance of
neuron-specific proteins is involved in ASD. However,
indirect evidence includes multiple reports on apparent
involvement of molecular chaperones, in particular the
heat shock protein 70 kDa family (Hsp70) that facilitates
cotranslational folding of large, slowly translated and
aggregation-prone proteins [81-83]. Prolonged episodes of
fever are known to cause induction of heat shock protein
response along with a two-three fold increased risk of in-
fantile ASD [84-86]. Neurotoxicity also leads to heat shock
protein response including Hsp70 induction [87]. Eleva-
tion of the Hsp70 level in rat brain homogenates has been
detected in response to the treatment with the neurotoxin
propionic acid [88] that has been used to develop a rat
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tion of Hsp70 [90]. In utero exposure to valproic acid, a
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in the etiology of this disease.
Under the present hypothesis (Figure 2), the ASD surge

is, at least partially, caused by the interplay between hu-
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that in themselves have limited or no deleterious effects
but are potentiated by the environmental factors is a gen-
eral principle that underlies the alarming increase in the
ASD prevalence.
Some aspects of this hypothesis can be tested via further

epidemiological studies, direct biochemical experiments
aimed at the elucidation of the effects of synonymous sub-
stitutions, in particular in relation to stress and chaperone
activity, and the in vivo effects of these mutations in ani-
mal models.

Reviewers’ comments
Reviewer #1: Andrey Rzhetsky, University of Chicago,
United States of America
Every hypothesis should have an opportunity to be pre-
sented for future testing with data; I would support an
opportunity to voice this particular suggestion. I enjoyed
reading the introduction to the paper–it covers well the
diversity of proposed hypothetical genetic and environ-
mental etiologies for ASD.
However, the particular hypothesis proposed by the

authors does not really explain the mechanism of dis-
ease. In its essence, this is a limited genetic explanation
(limited to a subset of protein-coding nucleotide substi-
tutions). It does not account for increase of the apparent
ASD rate (except the factors reviewed in the introduction,
but the hypothesis is disconnected from these factors).
Essentially, the authors suggest that mildly deleterious
synonymous substitutions in protein-coding genes related
to neurodevelopmental functions change the efficiency
of translation process. The idea is that closer-to-the-
optimum (corresponding to the maximum-concentration
tRNA isoacceptor) codons are replaced with less optimal
ones, slowing translation. It is unclear what the authors
think about more serious defects in the same genes (non-
synonymous, nonsense, missense, etc.)? Would they result
in the same phenotype or be lethal or neutral?
Authors’ response: The presented hypothesis is not

actually disconnected from the factors that are implicated
in the increased incidence of ASD. Indeed, the hypothesis
focuses on the interplay between genetic changes that
could moderately affect translation in synergy with neu-
rotoxins that elicit heat shock protein response and also
affect translation, in particular through the change in
the abundance of the nascent chain chaperone, heat
shock 70 kDa protein 8 (HSPA8) which is required for
the translation of many large or aggregation-prone pro-
teins. We speculate that these two factors synergistically
lead to protein dosage imbalance that contributes to the
autistic phenotype. A recent systematic review of poten-
tial associations between environmental toxins and
ASD demonstrated that the etiology of ASD is likely to
involve, at least in a subset of children, complex interac-
tions between genetic factors and environmental toxicants
that might act synergistically or in parallel during crit-
ical periods of neurodevelopment [94]. The role of non-
sense and missense mutations in these interactions is
indeed far from being clear. There are indications that
some de novo non-synonymous substitutions could be
associated with various intellectual disabilities but the
functional impact of these mutations is not well under-
stood [45]. In general, ASD is a complex, multifactorial
disorder [95-98] which makes construction of straight-
forward explanatory models highly problematic. Cur-
rently, we are still at the stage of searching for factors
that are significantly and substantially associated with
ASD.
On a more technical level, I would draw attention to

the statistical testing suggested in the manuscript.
“Statistical significant shift from optimal” codon fre-
quencies may well agree with a random drift: assum-
ing that all codons are in near-optimum (which is not
true, of course) the overwhelming majority of possible
random synonymous substitutions will inevitably push
the distribution of codons away from optimum. I think,
this particular test does not really support or refute the hy-
pothesis. Essentially, it says that random synonymous nu-
cleotide changes are very unlikely to result in low-entropy
optimal codon distribution.
Authors’ response: The problem with models of ran-

dom mutations does exist in many applications [99,100].
For example, a model proposed by McFarland and co-
workers [100] accounts for three types of synonymous
substitutions: transversions, CpG to TpG transitions,
and all other transitions. We implemented a more com-
plex statistical model of random mutations which takes
into account the frequencies of substitutions for each
nucleotide and the context of the mutating sites in the
case of CpG dinucleotides (distinguishing mutations
in the first and second CpG positions, see text for
more detail). We believe that this model captures stat-
istical properties of background mutation process in
detail and is similar to the model developed for human
germ-line mutations [100,101]. Although under this
model, we showed the shift of the generated random
mutations away from the optimum for AVs, the shift
was substantially smaller than that observed with the
actual AVs in the ASD patients (Figure 1). Notably,
this was not the case for some other conditions. For
example, for de novo mutations found in patients with
schizophrenia, the opposite shift from less optimal to
more optimal codons was observed (see more details
in our response #3 to Dr. Smalheiser below), and in
this case, random mutations under the same model
also exhibit such a shift. Thus, the outcome of the
model of random mutations strongly depends on the
frequencies and context of the analyzed variations/
mutations.
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Reviewer #2: Neil R. Smalheiser, University of Illinois at
Chicago, United States of America
This article provides strong evidence that synonymous
genetic variants associated with autism tend to produce
less-favored codon usage, which provides further evidence
in favor of the notion that impaired translation is a key
risk factor, and possibly a core pathogenetic feature, of
autism.
I recommend that the authors make the following

clarifications:
1. Can you comment on Shank3, which has 27 syn-

onymous variants? Is there any chance that this single
case is skewing the results from the entire set? Is there
anything in particular about Shank3 that makes it par-
ticularly susceptible to control via translational rate?
Authors’ response: SHANK3 is indeed an outlier in

terms of the number of AVs (Table 1), one possible ex-
planation is that this gene has a long coding sequence
(5244 nucleotides). In order to test for potential skew of
the results by the excessive amount of rare variations in
this gene, we performed an additional experiment. We
randomly sampled S% out of 27 AVs observed in SHANK3
without changing the rest of the AV set (S = 10%, 25%,
33%, 50%). This sampling was repeated 100 times for each
value of S. In all 400 experiments, the P value was less
than 0.01, even for S = 10% (3 AVs in SHANK3). This re-
sult indicates that the excess of mutations in SHANK3
does not significantly influence in any way conclusions of
our study.
2. To extend the comment about Shank3, is there any-

thing ELSE in terms of features of the autism gene set
which would render them particularly susceptible to
control via codon usage? These might be covariates that
work together with codon usage and are worth knowing
about, if they exist.
Authors’ response: We certainly agree that this is the

key issue. We looked for such correlates of codon usage
but failed to detect anything obvious. Nevertheless, we
speculate that heat shock protein response (e.g., HSPA8
upregulation) is involved as an amplifier of the codon
usage effect for large, aggregation-prone proteins and
membrane proteins that are translocated in a semi-folded
state.
3. Can you contrast the autism data with some other

diseases that do NOT show the same trend? Maybe a
brain disease whose incidence has not been increasing
recently, and maybe a non-brain disease, etc. It would be
very helpful to define neuropsychiatric disorders accord-
ing to those which do, and which do not, show a relation
of synonymous variants to less favored codons.
Authors’ response: This is an important question that

certainly has to be addressed in the future. So far we an-
alyzed limited sets of de novo mutations and synonym-
ous variations associated with schizophrenia extracted
from three previous studies [102-104]. For de novo syn-
onymous mutations, we did not find any significant
codon usage shift [P(SH ≤ SH_r) = 0.868 for 27 mutations
in 27 genes, SH = −6.12]. For the rare synonymous varia-
tions we did not find any trends either [P(SH ≤ SH_r) =
0.804 for 5 mutations in 2 genes, SH = 0.98]. Thus, unlike
the case of ASD described in the present paper, we did
not observe any significant shift towards more rare codons
although these preliminarily results should be interpreted
with caution given the small sample sizes.
4. The title talks about translation “in neurons”, but is

that warranted? What is the evidence that neurons are
the critical compartment? All neurons? But not glial cells?
Neuronal cell body vs. local translation in dendrites or at
synapses? Most of the autism gene set are not brain spe-
cific, either, so it is conceivable that changes in other
organs are contributory (e.g., liver, if it is detoxifying
environmental toxins?).
Authors’ response: The problem of cell/tissue speci-

ficity of gene sets is indeed important. We used pub-
lished gene sets from two studies [41,42] assuming that
these were well curated and have biological implica-
tions in ASD. One of the theories of autism develop-
ment involves excessive neuron number and atypical
neural “connectivity” [105-107]. Some microglia acti-
vation was observed in autistic brains together with ab-
errantly close microglia-neuron associations whereas
the organization of microglia itself appeared normal
[108]. Although aberrant synaptic pruning was implied
in pathogenesis of autism, it might be too early to ad-
dress finer defects inside neurons [109]. However, re-
cent studies have shown clear benefits of glutamate
blockers in a number of animal models of ASD and fra-
gile X syndrome [110-112]. Antagonists of metabotro-
pic glutamate receptor subtype 5 (mGluR5) currently
are in clinical trials for fragile X syndrome (~30% of
patients meet the diagnostic criteria for autism) [113],
a major genetic cause of intellectual disabilities. This
signaling pathway is related to the regulation of synap-
ses and neuronal circuits, and therefore neurons are
the likely primary target of translational defects in aut-
ism. However, liver function is directly connected to
brain health and function and recently a case study has
been published in which liver transplant reversed autistic
symptoms and mental delays in a child [114]. Thus, we
cannot exclude a role of protein expression in liver in the
etiology of ASD although there are no detoxification en-
zymes on our list of genes with ASD-related mutations
(Table 1).
5. The least satisfying part of the paper is the discus-

sion/speculation how translational defects might inter-
act with environmental toxins. If the relation between
synonymous changes and codon usage is truly specific
to autism, that might explain why the incidence of
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autism is selectively increasing (when combined with
environmental factors). It would help to have a better
framework of exactly how the two effects might interact
or synergize, than you have currently.
Authors’ response: We believe that we did our best to

outline potential biological links between the shift in
codon usage and putative environmental factor(s), with-
out overstating the case which is far from being clear at
this stage. We suggest that heat shock response in a
high neurotoxin load environment would synergize with
the codon usage effect. One example of an increasingly
used toxin is sodium azide that, in addition to its well-
known effects as an inhibitor of cytochrome c oxidase
[90,115,116] and a stimulant of soluble guanylate cy-
clase [117], has been shown to inhibit translation initi-
ation at millimolar concentrations [118]. Furthermore,
micromolar exposures in cell cultures to sodium azide
have been reported to cause cytoplasm to nucleus trans-
location of inducible forms of Hsp70 and of Hsp40, and
overall upregulation of heat shock protein response
[90], and accordingly, would affect translation through
nascent chain chaperone function of inducible forms of
Hsp70 and other heat shock proteins [81,82]. Given the
apparent importance of defects in translation and in
particular in translation repression [7,38], increased ex-
posure to sodium azide might contribute to the ob-
served increased prevalence of ASD synergistically with
rare synonymous variations and mutations impairing
translation, even without an increase in the rate of such
variations/mutations. Sodium azide is widely used as in-
hibitor of bacterial growth, pesticide, and most import-
ant, propellant for car air bags with an uncertain fate in
the environment [119]. All these indications notwithstand-
ing, it should be noted that sodium azide is discussed as a
potential culprit in the ASD surge as an example. Many
other growing environmental hazards could be at fault
alternatively or additionally.
6. Is this paper relevant to your arguments? Petrovski

S, Wang Q, Heinzen EL, Allen AS, Goldstein DB. Genic
intolerance to functional variation and the interpretation
of personal genomes. PLoS Genet. 2013; 9(8): e1003709.
Authors’ response: This paper is indeed relevant be-

cause it emphasizes that de novo synonymous mutations
are likely to be a good control set; we now cite this refer-
ence in the discussion of this issue.
7. In your final paragraph, you state that it is “clear”

how to test your hypothesis. I think it would be better to
spell out some specific tests anyway, especially focusing
on the best and most critical tests.
Authors’ response: One of the venues for future research

could be development of animal models to directly test
our hypothesis. In our opinion, valproic acid and sodium
azide are appropriate neurotoxins to study autistic behav-
ior in mice [91]. One could analyze phenotype of already
developed SHANK3 mutant mice in the presence of neu-
rotoxins [120]. Another possibility is to construct mutated
SHANK3 mice with changes in codon usage, e.g. using
some of the 27AVs from our list.

Reviewer #3: Shamil R. Sunyaev, Brigham & Women’s
Hospital and Harvard Medical School, United States of
America
This manuscript addresses potential molecular mecha-
nisms underlying genetic susceptibility to autism. The
authors suggest that synonymous mutations impacting
translation efficiency may play a significant role. This is
a highly important area of research, and the authors
state an interesting hypothesis. However, I am not con-
vinced by the provided evidence.
1) There are no data on the importance of de novo

synonymous mutations in autism. The only convincing
enrichment has been observed for nonsense and frame-
shift mutations, the mutations of very large effects. There
is no signal for any other class of mutations. Incorporation
of an unpreferred codon is unlikely to be functionally
equivalent to a complete loss of function. Next, the enrich-
ment in nonsense mutations is probably limited to cases
where autism is associated with intellectual disability and
is not observed in patients with high non-verbal IQ. It is,
therefore, likely that cases of monogenic intellectual
disability are, at least partly, responsible for the observed
enrichment. As far as I know, there is no evidence that
synonymous mutations cause monogenic forms of intel-
lectual disability.
Authors’ response: We are not aware of synonymous

mutations that cause monogenic forms of intellectual
disability. In general, monogenetic disorders (e.g., fragile
X syndrome, Rett syndrome, and neurofibromatosis) that
have phenotypic overlap with autism imply impaired syn-
aptic development and function but the fraction of mono-
genic forms of intellectual disability among all forms of
this condition is not well defined [121,122]. Some studies
even question the possibility of any substantial impact of
monogenic forms of ASD [97]. ASD is known to be a
complex multifactorial disease [95-98,123] although sev-
eral rare single-gene disorders with a high prevalence of
ASD are known [38,113]. We speculate that the impact of
synonymous variations/mutations is small but sufficient to
produce phenotypic effects in synergy with the increasing
neurotoxin load. This hypothesis is effectively orthogonal
to the existence of monogenic conditions caused by
synonymous mutations.
2) It is clear that de novo mutations would be expected

to be biased towards unpreferred codons because fixation
biases due to selection or biased gene conversion reduce
frequencies of unpreferred codons. The authors observed
a bias in favor of unpreferred codons in synonymous mu-
tations involved in autism and in a corresponding trend in
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control mutations. The proper statistical test would be to
compare sets of mutations in patients and mutations in
unaffected controls (better in the same genes) matched for
paternal age. Comparisons with a model or segregating
human SNPs are not convincing.
Authors’ response: We are not sure that de novo syn-

onymous mutations are”… biased towards unpreferred
codons because fixation biases due to selection or biased
gene conversion reduce frequencies of unpreferred co-
dons”. We did not observe any significant trends in our
study. In fact, the bias “towards unpreferred codons” is
not obvious feature of de novo mutations, for example, a
recent analysis of large collections of de novo mutations
in diploid yeast cells did not reveal any obvious signs of
selection at the level of coding sequences as suggested
by tests of selection that are based on ratios of non-
synonymous/synonymous substitutions and radical/con-
servative non-synonymous mutations [124]. In this work
we observed a trend toward unpreferred codons for rare
genomic variations (the analyzed AV set) as defined by
two previous studies [41,42] and compared the trend in
this set with those in several control sets including de
novo mutations in ASD patients and common SNPs
(Table 2). We believe that de novo mutations in ASD
patients (Table 2) comprise the control set closest to the
set of rare synonymous variations in genes associated
with ASD (the studied AV set). However, we decided to
follow the suggestion of the reviewer and analyzed avail-
able sets of de novo synonymous mutations in unaffected
individuals from two previous studies [6,7]. This set con-
tains 103 mutations (31 mutations in CpG dinucleotides).
In this set of de novo synonymous mutations, we did not
observe any significant codon usage shift [P(SH ≤ SH_r) =
0.485]. The current data on de novo mutations do not
allow comparisons of “sets of mutations in patients and
mutations in unaffected controls (better in the same
genes) matched for paternal age”, however, we find it un-
likely that even much larger sets of de novo mutations
(controlled for genes and parental age) could change the
conclusions of the present work. Once again, the only
trend that we observed is the significant codon usage shift
for rare synonymous variations in genes associated with
ASD (the AV set, Table 1). However, it is possible to use
another control set for the AV set, namely rare synonym-
ous variations that have been detected in the AV set of
genes (Table 1) from unaffected siblings of ASD patients
(controls according to Kelleher and co-workers [42]).
Unfortunately, this set contains only 51 rare synonym-
ous variations that is why we have not included it in the
original version of this paper. Nevertheless, analysis of
these rare variations revealed a trend of codon usage
shift that is fully consistent with our hypothesis: the SH
value for the rare synonymous variations in unaffected
siblings was extremely small (SH = 1.4), in a sharp contrast
with the AV set (SH = 22.7). Moreover, the observed value
SH = 1.4 is significantly smaller compared to the corre-
sponding set of random synonymous mutations [mean
SH_r = 8.2, P(SH ≥ SH_r) = 0.045]. These observations sug-
gest that rare synonymous variations in unaffected siblings
of ASD patients have negligible effect on translation of the
respective mRNAs although these findings should be
interpreted with caution given the small sample size.

Additional files

Additional file 1: List of rare synonymous variations in genes
associated with ASD (the AV set) used in this study.

Additional file 2: Distribution of rare synonymous variations in
genes associated with ASD (the AV set) across protein-coding
sequences of the 19 genes.
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