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Abstract

presences and absences as a binary trait.

Background: The problem of probabilistic inference of gene content in the last common ancestor of several extant
species with completely sequenced genomes is: for each gene that is conserved in all or some of the genomes, assign
the probability that its ancestral gene was present in the genome of their last common ancestor.

Results: We have developed a family of models of gene gain and gene loss in evolution, and applied the
maximum-likelihood approach that uses phylogenetic tree of prokaryotes and the record of orthologous relationships
between their genes to infer the gene content of LUCA, the Last Universal Common Ancestor of all currently living
cellular organisms. The crucial parameter, the ratio of gene losses and gene gains, was estimated from the data and
was higher in models that take account of the number of in-paralogs in genomes than in models that treat gene

Conclusion: While the numbers of genes that are placed confidently into LUCA are similar in the ML methods and in
previously published methods that use various parsimony-based approaches, the identities of genes themselves are
different. Most of the models of either kind treat the genes found in many existing genomes in a similar way,
assigning to them high probabilities of being ancestral (“high ancestrality”). The ML models are more likely than others
to assign high ancestrality to the genes that are relatively rare in the present-day genomes.

Reviewers: This article was reviewed by Martijn A Huynen, Toni Gabaldén and Fyodor Kondrashov.

Background

The inference of the Last Universal Common Ancestor
(LUCA) of all modern cellular organisms can be
approached in two ways. The “forward in time” approach
uses the knowledge about conditions on the prebiotic
Earth, tries to understand what kinds of replicating sys-
tems could emerge under these conditions, and pro-
poses the mechanisms for these genetic systems to evolve
into LUCA. The “backward in time” approach uses the
information about currently living organisms — in par-
ticular, about completely sequenced genomes of Bacte-
ria, Archaea, Eukarya, and even viruses — to reconstruct
the traits of LUCA. The latter class of methods takes

*Correspondence: mushegian2@gmail.com

Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
3Department of Microbiology, Immunology and Molecular Genetics,
University of Kansas Medical Center, Kansas City, Kansas 66160, USA
Full list of author information is available at the end of the article

( ) BiolVled Central

us directly to the last common ancestor of the cur-
rently living life forms, rather than to an ancestor of
such ancestor [1], and the approach taken here is of that
kind.

The problem of inference of ancestral gene content has
been stated as follows: for each gene in every sequenced
genome, determine its state as either ancestral, i.e.,
present in LUCA, or non-ancestral, i.e., absent from
LUCA [1-4]. Since the task is prohibitively difficult for a
gene that is found in just one genome, a practical modi-
fication of the problem is to label each set of orthologous
genes, shared by several genomes, as either ancestral or
non-ancestral (see [5] for definition of orthology and dis-
cussion of issues in practical detection of orthologs). In
this study, we suggest a statistical approach to address
this problem. We utilize two kinds of data: (a) the evolu-
tionary history of a set of species, modeled as a species’
phylogenetic tree, the root of which is assumed to be
the LUCA; and (b) the record of presence and absence
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of orthologous genes in the same set of species, sum-
marized as phyletic vectors, in which each coordinate
represents the status of a gene in one species. As we
argue in the last section of this paper, such a framework
is a necessary prerequisite to more complex and realistic
models of evolution, in particular those that would give
the explicit account of horizontal gene transfer between
species.

In the context of our current inference problem, there
are two classes of evolutionary events that occur along the
branches of a tree: gene gain, in which the state of gene
changes from absence to presence (in the simplest binary
coding of presences and absences, gene gain is depicted as
change of state 0 — 1, and gene loss as 1 — 0). Any infer-
ence of the ancestral state of a gene relies on a quantitative
model of such changes.

Different methods for ancestral state reconstruction,
including maximum parsimony (MP) [2,6,7] and app-
roaches based on more extensive modeling, such as max-
imum likelihood (ML) and Bayesian inference, have been
introduced (e.g., [8]). The MP approach infers the ances-
tral states by starting with the current states of each gene
at the tips of the tree and proceeding backwards in time,
to the root, minimizing the total number of events (gains
and losses) during the evolutionary history of a given
set of species. As always with parsimony approaches, it
is possible that two or more scenarios consist of dif-
ferent events but have the same (minimal) number of
them; this requires additional criteria for breaking the ties.
More important, it is not clear that unweighted parsi-
mony, which in effect postulates that a gain and a loss
of a gene are equally likely, is best compatible with the
data. Mirkin et al. [2] proposed the weighted parsimony
approach, which takes into account the possible difference
between gene gain rate and gene loss rate. This was done
by using a parameter called gene penalty, defined as the
ratio of gene gain rate to gene loss rate. It was observed,
however, that the ancestral gene sets constructed with the
gain penalty g = 1 tended to have the smallest number
of genes whose predicted functions were biochemically
coherent enough to sustain life, suggesting that the num-
ber of gene gains and losses encountered by a system may
be at approximate equilibrium.

Methods based on maximum likelihood are of inter-
est because they can take into account more informa-
tion about the process of gene gains and gene losses,
and because they can reflect the uncertainties in decid-
ing the state of the gene at each ancestral node in the
tree by assigning probabilities of presence and absence
of each gene at this node. The likelihood framework
can also incorporate the knowledge of branch lengths
in the species tree and the lineage-specific differences
between the frequencies of various classes of events across
different genes.
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Likelihood-based reconstruction of ancestral molecular
traits have been attempted in the recent years (see [9-13]),
focusing mostly on inferring the ancestral nucleotide
or protein sequences on the basis of sequences from
present-day species. These approaches model the evolu-
tionary history of an orthologous nucleotide or amino acid
site as a continuous-time Markov process, in which the
substitution rates are associated with time (tree branch
length) and are estimated by maximizing the likelihood
of the given phylogenetic tree and the sequences of a
specific gene of interest. The most likely ancestral state
of each site is then chosen by evaluating the marginal
probability for each state. Many of these models can
be modified to deal with the ancestral gene content
problem.

Cohen et al. [8] have used a likelihood framework to
analyze the binary gene presence-absence vectors for mul-
tiple orthologous genes in a set of existing species with
completely sequenced genomes. Their analysis allowed
the gene gain and loss rates to be unequal, and the results
indicated that the gain and loss rates that vary between
different gene families explain the observed data better
than the constant gain and loss rates. In another study,
presences and absences were replaced with multiple states
for the gene family size, to describe the history of a gene in
relation to duplications and gene losses in the MP frame-
work, without explicitly reconstructing gene content in
LUCA [7].

Here we extend this class of models to examine the
changes between the states of gene absence, of a single-
copy gene presence, and presence of a group of in-
paralogs, in the maximum likelihood framework. The
calculation of the probability of the ancestral presence
(“ancestrality”) of each gene uses the information on the
changes in the number of in-paralogs of a gene in evolu-
tion. We explore several likelihood models of increasing
complexity. Our results indicate that, when more than two
states of genes are allowed, the estimated gene loss rates
tend to be higher than estimated gene gain rates, with the
loss-to-gain rate ratios around 6 for the majority of COGs.
All models give relatively close estimates for the number
of genes in LUCA, around 500 genes, but the identities
of genes that are confidently placed into LUCA are dif-
ferent under different models. Probabilistic approach of
that kind is a necessary step towards more detailed, quan-
titative reconstructions of gene content and metabolic
networks in LUCA.

Results

Probability of state transitions along a branch

The probabilistic models can be used to infer whether
there has been a change in the gene family size between
the ancestor and the descendant along each branch in
the species tree. This is done by substituting the rate
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parameters that optimize the likelihood function in the
transition probability matrix P(¢) (refer to the Methods
section for the definitions), where ¢ is the length of the
branch. Using these transition probabilities, the proba-
bilities of each state at LUCA can be calculated. Each
of the models discussed in this work suggests that, even
as gene losses and gene gains occur in evolution (the
off-diagonal entries in the transition probability matrix),
the most likely outcome along any branch is that the
gene family size remains the same, with higher prob-
abilities for maintaining gene absence than for main-
taining gene presence. Another common property of
all models (with the exception of model (B1), which is
constrained to have the same rates of gene gain and
gene loss) is that gene losses are typically from two to
four times as likely as gene gains. The median transi-
tion probability matrices (with the highest probability in
each row highlighted) for a branch with the length 0.35
(the median of the observed branch lengths in the tree)
are

0 1
(Bl) P(0.35) = | 0]0.8598 0.1402 |,
1/0.1402 0.8598
0 1
(B2) P(0.35) = | 0/0.8783 0.1217 |,
1/0.3720 0.6279
| o 1 m
0[0.8690 0.1112 0.0198
(ML PO35) =11 10,3698 0.4600 01702 |’
m|0.4007 0.1975 0.4018
and
| o 1 m
2) P035) — | 00-8901 0.0930 0.0169

1]0.3554 0.4755 0.1691
m|0.1841 0.4280 0.3879

Additionally, transition probabilities of models (M1)
and (M2) suggest that the state of multiple in-paralogs
is more prone to changes along a branch than the state
of a single-copy gene. The second rows of these proba-
bility matrices indicate that acquiring a new gene is less
likely than duplicating the existing gene in the species,
and that the loss of an existing gene is more likely than
its duplication. The main difference between the mod-
els (M1) and (M2) is in the gene loss transition prob-
abilities when there are multiple copies in the ancestor.
In model (M2), it is less likely that a gene loses all its
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copies along a branch, whereas in (M1) the probability
of losing all copies of genes along a branch is about the
same as the probability of maintaining multiple copies of
the gene.

The ancestral probabilities

For each model discussed in the previous section, the
probability that each COG appeared in LUCA can be
inferred. A gene set LUCA-MLx consists of genes whose
ancestral probabilities are at least x in their preferred
model among (M1) and (M2). Table 1 (column II) shows
the number of gene sets that are inferred as ancestral
under the different values of x from 0.5 to 1. We construct
an ancestral COG list using the probability 0.7; whenever
the probability level is not stated, we refer to LUCA-ML
0.7 as LUCA-ML.

Our LUCA-ML is not the same as LUCA1.0 recon-
structed in [2], most likely because the two ancestors were
inferred using different methods, which were moreover
applied to different sets of species and COGs. LUCA-ML
0.7 and LUCA-ML 0.6 share, respectively, about 57% and
50% of their genes with LUCA 1.0, and more than 65% of
LUCA 1.0 are included in each of our ML ancestral gene
sets.

Gene content of LUCA-ML 0.7 and LUCA-1.0

The proportion of all COGs that is scored as ancestral is
similar in the two reconstructed ancestors - 23% of total in
the case of LUCA 1.0 (517 COGs) compared to 26% (597
COGs) in LUCA-ML 0.7. On the other hand, the identity
of the COGs in the two sets differs considerably, with only
346 COGs found in both sets.

Table 1 Number of ancestral COGs included in LUCA-MIx
for various probability values for x

1 ] L1l \" \

0.5 1155 716 439 78
0.55 890 477 413 104
0.6 783 389 394 123
0.65 667 304 363 154
0.7 597 251 346 171
0.75 509 195 314 203
0.8 443 154 289 228
0.85 372 105 267 250
0.9 319 73 246 271
0.95 267 46 221 296
1 47 0 47 470

MLx, where the parameter x is the smallest ancestrality that the COG must have
to be included into LUCA. The numbers of COGs in different MLx and their
overlap with LUCA 1.0 [2] are also shown. Column | - x; Column Il - number of
COGs in LUCA-MLx; Il - Number of COGs found in LUCA-MLx, but not found in
LUCA 1.0; IV - Number of COGs found in both LUCA-MLx and LUCA 1.0; V -
Number of COGs found in LUCA 1.0, but not found in LUCA-MLx.
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Figure 1 shows the distribution of input set of COGs as
well as inferred ancestral sets by the number of genomes
in which they are found under different models. The num-
ber of COGs in LUCA 1.0 and LUCA-ML 0.7 are similar
for those COGs that are found in more than 80 genomes,
but differ considerably for rare COGs; model (M2) and
other ML approaches tend to place higher proportion of
sparsely distributed COGs into LUCA.

High-level classification of the known and predicted
molecular functions of the ancestral COGs is shown in
Table 2.

Poorly characterized conserved genes (categories R
and S) are more frequent among the COGs that were
scored as ancestral by the ML approach only, which cor-
relates with higher proportion of rare COGs in these
categories and relative favoring of these COGs by the ML
approaches. These “high-ancestrality” COGs from the R
and S categories account for about 16% of all COGs in
these functional groups, and more insight into their func-
tion will be useful for better understanding of ancestral
biochemistry.

The other extreme in “ancestrality” is represented
by the COGs that belong to the category ] (Trans-
lation Machinery and Ribosome Biogenesis), as well
as category E (Amino Acid Biosynthesis). The vast
majority of all COGs in these two categories were pre-
dicted to be ancestral by all approaches, which may be
attributed in large part to their broad distribution in the
genomes.

Figure 2 shows the distribution of all COGs by prob-
ability of being ancestral under each model, as well as
the number of ancestral COGs under different probability
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Figure 1 Distribution of all COGs under models B2 and M2, as
well as high-ancestrality COGs (LUCA-ML and LUCA1.0), by the
number of genomes in which they are present.
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Table 2 Distribution of COGs based on their functions

| Il 11l \" Vv
A 1 0 0

B 1 0 0 1

C 179 20 26 24
D 16 6 2 1

E 183 67 19 16
F 70 31 12 6
G 99 13 6 6
H 112 24 18 16
I 48 10 7 3

J 104 64 12 10
K 65 10 7 10
L 123 16 12 22
M 75 9 1 4
N 13 1 0 1

o] 81 12 13 5

p 113 16 9 10
Q 25 1 1 1

R 297 29 16 49
S 343 6 4 55
T 37 2 6 5

V] 15 4 0 3

V 24 5 0 2
X 237 0 0 1

Column | - Broad functional categories according to the COG resource; Column Il -
Total number of COGs in each category; Column IIl - Number of COGs in both
LUCA 1.0 and LUCA-ML 0.7; Column IV - Number of COGs found in LUCA1.0, but
not found in LUCA-ML 0.7; Column V - Number of COGs found in LUCA-ML 0.7,
but notin LUCA 1.0.

cutoffs. The probabilities are well distributed throughout
the range, but a considerable fraction of them (at least
15%) are clustered around 0.5. This is the “gray zone”
of ancestrality, which may be resolved by future analysis,
some directions of which are discussed below.
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Figure 2 Probability distribution of the COG ancestrality under
various models. The first panel shows the frequency of COGs with
the different probability of occurrence at LUCA, and the second panel
shows the number of COGs above the different probability thresholds.
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Methods

Data and inputs

COG dataset

A publicly available release of the NCBI COG dataset [14],
consisting of 14714 COGs and representing 346378 pro-
teins in 87 bacterial and 16 archaeal genomes, was used in
this work. Eukarya are generally (even if not universally)
considered to be derived life forms, likely to have arisen
from a merger of a bacterium and an archaeon [15-17], so
we did not use their gene content in this study. Among the
14714 COGs, 1795 are found only in Archaea and 10658
are found only in Bacteria; if the root of the species tree
is conventionally placed between Bacteria and Archaea,
these genes are unlikely to be included into LUCA with a
probability higher than 50%. We did not consider these,
Bacteria-only and Archaea-only, classes of COGs in our
present analysis. Among the remaining 2261 COGs, 47
appear in all genomes and would be reconstructed as
ancestral under any model, unless horizontal gene trans-
fer is taken into account (see Discussion and conclusions).
The remaining 2214 COGs are found in archaeal as well
as in bacterial genomes and include 185257 genes. Just
421 COGs contain exactly one ortholog per genome. In
contrast, 1793 COGs (81%) have in-paralogs, i.e., a group
of genes more closely related to each other than to any
homolog in another species, in at least some genomes; on
average, there are about 6 paralogs per COG, and if there
are paralogs in a COG, they are found on average in 12
species.

Species tree

The reference species tree (see Figure 3) was constructed
by concatenating the sequence alignments of 11 COGs
that are present in all 103 genomes, have no duplications
and no evidence of horizontal gene transfer [18]; ten of
them are ribosomal proteins and one is a tRNA modifi-
cation enzyme. The super-alignments were used to build
the consensus tree with 1000 bootstrap replicates using
PROML (maximum-likelihood module) in the PHYLIP
package [19]. This reference species tree has its canoni-
cally defined root (representing the LUCA) between Bac-
teria and Archaea.

Phyletic vectors

For each gene in each genome, one of the states 0, 1 or m
is assigned, depending on whether there are 0, 1 or mul-
tiple copies (in-paralogs) of the gene in this genome. The
list of 0, 1 and m, ordered by species and representing the
known state of gene/COG in the present-day genomes is
called phyletic 0, 1, m-vector. In the case when there are
multiple copies of a gene in a species, the gene gain pro-
cess can be modeled either as a single event 0 — m,
or as a sequence of several events, for example 0 — 1
event (gene gain in a strict sense) and 1 — m (gene
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duplication, lineage-specific expansion, or gain of gene
copies) event. Likewise, gene losses can be modeled either
as a single event m — 0, or as two classes of events,
those of complete gene deletion (1 — 0 gene loss) and
lineage-specific in-paralog loss (m — 1). Probabilities of
those different events may be different. Indeed, it stands
to reason that it may be easier to lose a single-copy gene
than a whole group of in-paralogs, and it may be easier to
increase the number of in-paralogs of an already-existing
gene than to acquire the first copy. (Note that the model
does not utilize the instantaneous rate of a molecular
gain or loss event in an individual genome, but rather
the rate of fixation of the new gene state in the popu-
lation, and we always use “gene gain” and “gene loss” in
this latter sense). This agrees with the results showing
that the distribution of gene numbers within gene fam-
ilies and orthologous groups often can be approximated
by a power law [20-24]. More recently, it has been shown
that the rate of any gene-count change in protein families
is directly proportional to the family size [25], thus sup-
porting the Markovian nature of the process. In this paper,
we reconstruct the ancestral gene content using the like-
lihood model by incorporating the rate heterogeneities.
We do not model the horizontal transfer events sepa-
rately from other gene gains, but in the Discussion and
conclusions section we discuss how these transitions may
be incorporated in the likelihood method in the future
work.

Substitution-rate matrix and transition-probability
matrices

For a given phyletic 0, 1, m-vector, we propose a family
of ML models that employ different sets of parameters.
The model can be specified by giving its substitution-rate
matrix Q = (q;j), which is a 3 x 3 matrix, whose rows rep-
resent the ancestral states and the columns represent the
descendant states, the off-diagonal entries g;; (i # j) rep-
resent the instantaneous rate of fixation of state change
from state i into state j in the species, and the diagonal ele-
ments g;; are chosen in such a way that the row sums are
0. The matrices are given by

| o 1 m
1 0—s1—& & f:o)
(M1,M2) Q= 1 l -li—q 1 ’

m 12 (&) —12 — C2
where the transition rates gj, [;, ¢;, i=1,2 are the
unknown parameters and for the model (M1) ¢; =
Cy) = C.

We compare these models with simpler models defined
on binary phyletic vectors, such as the substitution matri-
ces described by Cohen et al. [8]. We call these earlier
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Figure 3 The reference species tree. The reference species tree was constructed using the sequences of 11 universal genes COG00081,
COG00093, COG00096, COGO0097, COG00099, COG00102, COGO0103, COG00197, COG00244, COG00256, COGO0533.
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models (B1) and (B2), and their 2 x 2 substitution-matrices
are respectively

0 1
BL,B2) Q=\|0/—¢ ¢ |,
111 -1
where g, [ are unknown transition rates that can be

estimated and for the model (Bl) g =/=c.

The models developed in [8] and our models (B1) and
(B2) are identical in the form, but they generally speak-
ing give different rate estimates because they were derived
from different datasets (we used a version of the COG
resource that has more genomes and more genes).

Using the substitution-rate matrices, the probabilities
of transition between states along a branch with length ¢

can be calculated. The set of probabilities is represented
by a matrix P(¢) called the transition-probability matrix,
whose i7" entry represents the probability of transition
from state i to state j along the branch with length ¢,
measured in the time units. With the assumption of con-
tinuous Markov chains (i.e., P(t; +t2) = P(t1)P(t2) for any
two time intervals ¢) and £), we have P(t) = exp(Qt) =
I+ Qt + (Qt)% + - - -, with the infinite sum of the matri-
ces always converging (refer to [11, Chapter 1] for details).
Expressions for the models (B1) and (B2) have been given
in [8].

Likelihood reconstruction and ancestral state inference

Given the species tree and the phyletic 0, 1, m-vector
of a gene/COG, we want to find the most likely ances-
tral state of the gene described by the vector under the
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given model. The ML framework allows us to assign a
probability for each state of the gene at each node in the
tree, moving from the states in the present-day genomes
(leaves of the tree) in the direction of the root. The prob-
ability of a state at each ancestral node depends on the
probabilities of this state at its two descendants. Figure 4
shows an illustrative example of a tree with five extant
species, the states of a particular gene in these five species
given by the phyletic vector X = (0,1,1,2,1). Let 1, £,
.-+, tg be the known branch lengths (estimated simul-
taneously with constructing the species tree), ys, y7 and
ys be the unknown gene family sizes of the three inter-
nal ancestral nodes of the tree, and let yo be the gene
family size at the LUCA, each of y; taking values from
{0, 1, m}. Consider model (M1) with the parameter space
of substitution rates between states, 0 = (gl, 2,0, 0h, c),
and let Y be the unknown vector (yo, y6, y7, ¥8). The like-
lihood, f(X]6), of observing the data X is given in terms
of all combinations of possible states for yo, ys, y7 and
¥s, as

fXIB)=) fXIY,0)f (Y)
Y
= ZZZ Z[”yopyoye (26) Pysy; (£7) Py;0 (21) Py
Yo Yo Y7 )8

X (tZ)P%l (tS)pyoys (tS)pys2 (t4)py31 (tS)] ,

where f(Y) represents the prior probability of Y, and
f(X1Y,0) is the conditional probability of observing X

Yo

0 1 | 2 |

Figure 4 A toy example showing the parameters for calculation
of the likelihood function. The elements of the phyletic vector of a
gene are shown at the leaves. Branch lengths t, t, - - -, tg are known.
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given Y and 6. Also, 7y, is the prior probability of the gene
family size at the root (i.e,, the probability that yo = &,
where k € {0,1,m}) and p;;(¢) for i,j € {1,2,m} are the
elements from the transition probability matrix P(¢). The
likelihood is simplified as

FX10) =Y myLo (30, (1)

Yo

where Lg (y0) is the likelihood of observing X, given that
the gene family size at the root is yp [11, Chapter 4].
To reconstruct the gene family size of the last universal
common ancestor, the root node yg, we calculate

Tyo=kLo (o)

=k|X,0) =
S (o = kIX,0) X0

)

The probabilities for each of the states k € {0,1,m} are
calculated, and the state with the highest probability is
assigned to the LUCA. The parameters in the Q matrix
are estimated by maximizing the likelihood function given
in Equation (1). Then, the probability density function for
yo (probabilities of ancestral states at LUCA) is calculated
using the Equation (2).

Prior probabilities

In this study, we are interested in inferring the presences
and absences of ancestors of the present-day genes in
LUCA. The states at the LUCA are, most likely, 0 or 1,
but there is also a possibility that some of the genes had
closely related paralogs already in LUCA. We assigned the
following prior probabilities 7y, :

Tyo=0 = 0.5, Ty,=1 = 0.45 and 7wy = 0.05.

The values of the priors for presence is in the ratio of 9:1
for single gene versus at least two in-paralogs at LUCA,
i.e., the proportion of ancestral COGs with in-paralogs is
several times smaller than for the extant COGs set (81% of
COGs that we considered have in-paralogs). This reflects
our sense that LUCA, though not necessarily of a mini-
mal size, is more likely to have had a relatively small rather
than a very large genome. Note that these assumptions
are distinct from the knowledge that LUCA definitely
included a collection of very ancient paralogs — for exam-
ple, the main catalytic domains of aminoacyl-tRNA syn-
thetases that belong to only two monophyletic sequence
families [26]; the paralogs of this kind are represented by
distinct COGs.

Additionally, we weight the prior probabilities with the
frequency of occurrence of each gene across the present-
day genomes. For example, if a COG is found in 87 current
genomes out of 103, a prior probability of 87/103 = .84
is multiplied by the probability of the presence at LUCA,
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and the product is scaled appropriately, such that the
probabilities of presence and absence sums to 1. This
becomes necessary especially for genes found in nearly-
all species, for which the stochastic nature of the Markov
process occasionally results in a implausible inference of
absence at the LUCA. Multiplying by the frequencies of
occurrences corrects this problem (data not shown).

Model comparison

For each COG, the model that is the best fit to its phyletic
vector can be found by calculating the Akaike Information
Criterion (AIC) [27], which is

AIC = —21 + 2p,

where [ is the optimum log likelihood under the model,
and p is the number of parameters. In models (M1) and
(M2), we have p = 5 and p = 6 respectively, and for mod-
els (B1) and (B2), we have p = 1 and p = 2 respectively.
The AIC criterion can be applied only to compare models
that use the same datasets and hence we use the crite-
rion to decide for each gene, which model among (M1)
and (M2) (or among (B1) and (B2)) it prefers. The R code
implementing the models and the estimation of the max-
imum likelihood parameters is available at https://github.
com/lavkan/LUCA.

Discussion and conclusions

In this work, we proposed the maximum likelihood-based
models, which use the consensus phylogeny and the states
of genes (absence, presence and copy number) at the
leaves of the phylogenetic tree to infer the status of each
gene in the common ancestor of all examined species - in
this case, the Last Universal Common Ancestor of living
organisms. Perhaps the main general conclusion from this
work is that models with more parameters, i.e., those in
which the rates of transition between various gene states
are estimated separately, are more likely to place rare
genes in the common ancestor, provided that these genes
are found in different clades.

Despite more detail of the evolutionary process
embodied in our models than in simpler parsimony-based
models, we do not feel yet that the results accurately
represent the hypothetical organism of the ancient past.
The detailed analysis of the biological functions of genes
that “make it” into LUCA must await several further
improvements. Some of such future directions are out-
lined presently.

First, our current models assume that the rates of gene
gain and gene loss are constant across all branches of
the phylogenetic tree for each COG. This assumption is
clearly a simplification, and future models should include
rate heterogeneity, for example, as delineated in [28]. It
would be interesting to see which effect these modifica-
tions have on the ancestral gene counts.
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Second, better theory may be applied to the choice
of priors, apart from just using the frequency of gene
presence in the current genomes.

Third, if a gene does not belong to any orthologous
group, nothing can be said about its ancestrality. This
problem of lost genes can be partly corrected in sev-
eral ways. Likelihood correction for missing data (See
references [15] and [16]) may be employed to improve
the estimate of the number of genes in LUCA, though of
course it will not directly reveal the identity of the lost
genes. It should be noted also that a COG by construction
includes at least three genes, one in each of three taxo-
nomically diverse lineages [29], but there are also pairs of
genes, “pre-COGs”, that have the potential to form COGs
when new genomes are added to the dataset; studying the
“pre-COGs”, in particular those found in two very distant
species, may provide additional clues to the ancestral gene
repertoire.

Fourth, there is the gray zone of ancestrality, which con-
tains a large proportion of all COGs (Figure 2). It is worth
trying to resolve the contents of this zone better. Several
approaches can be envisioned here; perhaps most use-
ful among them would be to include the analysis of the
biological coherence of the inferred ancestral COG set
(see [30] for similar considerations at a more recent evo-
lutionary scale). For example, if many genes that belong
to a known biosynthetic or signaling pathway have high
ancestrality, but one or a few are in the “gray zone”, the
additional evidence of functional linkage and tendency for
co-inheritance may be used to move the latter group of
genes into LUCA.

Fifth, broader and denser sampling of genomes should
improve the accuracy of the inference, by adding more
COGs to the dataset and by discovering new members of
already existing COGs.

These modifications to our approach, however useful,
still set to one side the problem of the uncertainty of
the species tree topology. In fact, the foundational idea
that the evolution of the living forms on Earth is prop-
erly represented by a strictly bifurcating, cycle-free graph
known as the Tree of Life is itself under re-evaluation,
primarily because of considerable evidence of horizon-
tal gene transfer, which occurs in the present-day species
[31,32] and must have been even more prevalent at the
earlier stages of evolution [33,34]. Radical proposals to
abandon the tree-like phylogenetic representations have
been made [35,36]. If taken to the extreme, the idea of
rampant ancient horizontal gene transfer suggests that all
bets are off in phylogenetic inference at a long evolution-
ary distance: large portions of evolutionary history may
be completely erased by HGT [37]. On the other hand,
taking account of the HGT events, for example by com-
paring the species tree to the sequence alignment-based
tree of each protein family [38,39] may help to refine the
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inference of gene content in LUCA. Figure 5 illustrates
a tentative strategy for such a refinement: if a gene can
be shown to have been horizontally transferred from the
left-hand clade in the tree to the right-hand clade, all coor-
dinates of the phyletic vector of this gene corresponding
to the species within that right-hand clade have to be reset
to zero, and the ancestral state inference has to be done on
the edited vector. The net effect of this approach will be to
reduce the number of genes in LUCA.

These developments will result in a more accurate infer-
ence of gene content in LUCA, which can be tested for
functional coherency and perhaps even submitted, in the
not-too-distant future, to synthetic biologists for practical
reconstruction.

Reviewers’ comments
General note from the authors: We thank Dr. Huynen,
Dr. Gabaldén and Dr. Kondrashov for reviewing our

1 1 0 1 0O 0 0 0 O 0

Figure 5 The strategy of editing phyletic vectors on the basis of
information about HGT. A horizontal gene transfer event (red
arrow) from ancestral species A to species B is inferred on the basis of
comparison of the topologies of the species tree and the sequence
family tree (not shown in this figure). The bottom vector is obtained
by replacing all the presences by absences in all descendants of B, and

the inference of ancestral state can be updated on this edited vector.
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manuscript. All three reviewers are wondering about the
computational experiments that we are proposing to do
but have not done ourselves. Unfortunately, none of the
authors are in a position to continue work on this project
at the moment. On the other hand, we see no upside in
keeping quiet about the work that has been done already,
as well as about the future directions that we or oth-
ers could take with the models that we have developed.
We also realized that the oroginal title of the manuscript,
“Probabilistic reconstruction of gene content in the Last
Universal Common Ancestor of Life” was claiming more
than was actually delivered, and therefore changed it to
“Models of gene gain and loss for probabilistic recon-
struction of gene content in the Last Universal Common
Ancestor of Life”.

Reviewer 1: Martijn A Huynen, Nijmegen, Netherlands

The manuscript by Kannan et al, extends a probabilistic
framework for ancestral genome content reconstruction
to also include varying numbers of genes per ortholo-
gous group per genome. This extension is valuable, the
manuscript is well written, the methods are well explained
and the main conclusion about the presence in LUCA of
sparsely distributed COGs appears justified. In general I
would have liked to see however either a more thorough
analysis of the performance of their model under vary-
ing assumptions or datasets. I specifically wonder how
the number of included species affects the results, and
how including e.g. more Archaeal genomes (e.g. from the
‘TACK superphylum’) affect LUCA.

Authors’ response: We agree that the breadth and den-
sity of taxon sampling are important and should be
improved. This will positively impact most aspects of the
model, as well as produce more orthologous groups to
work with.

Alternatively I would have liked an expansion of the
methods to also include Horizontal Gene Transfer. It
is nice to propose a strategy, but why then not imple-
ment it and study its effects? I do find the current
manuscript lacking in sufficient novelty of methods &
results. Furthermore some aspects of the results are only
intelligible for people who work with COGs on a daily
basis.

Authors’ response: We tried to improve the presenta-
tion by taking into account specific comments as well as
editing the manuscript again.

More specific questions: I am not convinced by the
argument: “The values of the priors for presence is in
the ratio of 9:1 for single gene versus two in-paralogs at
LUCA”.

Authors’ response: Admittedly, as with many other
aspects of the model, it would be better to derive the
prior probabilities, perhaps even gene-specific ones, from
the data. This is for the future. The statement in the
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manuscript about “two in-paralogs” is now changed to “at
least two”, consistent with yy = m index.

Why would LUCA be smaller than current genomes?
What happens when that ratio is decreased?

Authors’ response: The assumption that ~10% of genes
in LUCA have in-paralogs, obviously, adds >10% to its
gene count. In our experiments, LUCA tends to be on
the smaller side but within the range of current genomes
of extracellularly living parasitic bacteria. More accurate
count awaits the improvements that we discuss in the
paper, including the resolution of the “gray zone”, i.e.,
COGs with ancestrality close to 0.5.

It would be nice to get an intuitive explanation why
“model (M2) and other ML approaches tend to place
higher proportion of sparsely distributed COGs” in
LUCA.

Authors’ response: We think that this is because our
models capture the reality better, accounting not only for
the number of splits in the tree (as parsimony approaches,
especially the unweighted ones, essentially do) but also for
branch lengths and for repeated gains/losses.

Why is there such a weird “shoulder” on the left side
of the Figure 1: i.e. why is the fraction of ancestral COGs
higher for COGs that occur in 14 species than for COGs
that occur in 40 species?

Authors’ response: This may be traced back to the
uneven sampling of species in the tree. Te 40-species
COGs are enriched in proteobacteria-specific genes
(there are 48 species of proteobacteria in the dataset) and
are more often placed not earlier than the root of that
clade. The 14-species COGs tend to include orthologs
sparcely distributed in bacteria as well as archaea and have
relatively high ancestrality.

Can the phylogeny in Figure 3 be rooted in the way it
is used in the manuscript? It might be nice to mark the
various taxa (Archaea etc.). Where can one find what the
species abbreviations mean?

Authors’ response: In the initially submitted image, the
root was misplaced; this has been corrected now. Species
abbreviations can be found in ftp://ftp.ncbi.nih.gov/pub/
wolf/COGs/COG0508/genomes.CSV.

What does the second panel of Figure 2 signify?

Authors’ response: Explanation provided.

In general the legends with the figures are very short. I
take it e.g. that Figure two refers to the estimated number
of COGs in LUCA? It would be nice to be able to under-
stand the meaning of the figure from its legends, now one
has to search in the manuscript. Also a Legend of Table 2
that says: “Column I - Letters;” may be intelligible to the
people who work with COGs on a daily basis, but not to
people who this manuscript might hope to reach.

Authors’ response: We provided more detailed legends.

References: Power laws in gene family size distribu-
tions in genomes have first been observed by Gerstein
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(PMID:9417935) and have first been modeled by this
referee (PMID:9580988).

Authors’ response: Indeed, we should have included
these references in the first place, and we now do. Going
even further back, similar trends have been tabulated in
PMID: 8524875 (1995) and plotted in PMID: 7477316
(1995), though neither of these efforts commented on the
form of the distribution at the time.

Editorial: Page 2: this was done (missing capital) Why is
“is” on page 7 underlined?

Authors’ response: Corrected.

Reviewer 2: Toni Gabaldén, Centre for Genomics
Regulation (CRG), Spain

This paper applies different Maximum Likelihood
approaches, extensions of previously-proposed models,
to the problem of inferring the gene complement in the
Last Universal Common Ancestor, and compares the
results to previous estimates. The authors rightly recog-
nize the large limitations of their approach, which they
discuss to the point of finally assuming that their result
do not “accurately represent” LUCA. The enthousiastic
reader (I must admit I was one, deeply interested in the
issue of early evolution of life) is thus left with a bitter
taste, and, most importantly, with the question: what is
then the contribution to resolving the composition of
LUCA?

Authors’ response: We hope that the contribution is in
the probabilistic model itself and in its implications, in
the practical code (see note about the availability) and in
outlining some directions of the future research program.

Admitedly, the problem at hand is a daunting task and
one is ready to accept results that do not “accurately
represent” LUCA but which can be considered “reason-
able approximations”. The authors do not evaluate how
reasonable is their reconstruction other than by com-
paring it -mostly numerically but not qualitatively- with
previous approaches. To really assess whether the new
implementations in the probabilistic models are going in
the right direction towards reconstructing a more accu-
rate LUCA one would need to look into the properties
of the reconstructed genomes. I understand that is dif-
ficult to assess how reasonable an ancestral reconstruc-
tion is, but previously explored ideas include looking
for completeness of pathways (rather than rough cate-
gories) inferred to be present ancestrally (e.g. transla-
tion, replication, membrane, etc). The implementations
developed by the authors seem more realistic than pre-
vious assumptions but it would be necessary to test
whether their use actually translates into more reasonable
reconstructions.

Authors’ response: We agree. Someone will address
these questions in the future, perhaps even using the
framework contributed in this study.
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The authors acknowledge the uncertainty in the
prokaryotic tree of life. This includes not only the topol-
ogy, but also the branch lengths. They used their own
reconstructed tree from just 11 conserved COGs. How
this differs to other species trees available (e.g. that of
Cicarelli et. al. (Science 2005)) is not discussed, but I
understand there are topological and branch length dif-
ferences. Of importance for the discussion at hand is how
robust is the LUCA reconstruction to these given param-
eters (fixed priors, after all). The authors could easily test
whether some variations in the species tree (e.g. an alter-
native topology reconstructed by other authors, or with a
subset of the genes, or changing the scale of the branch
lengths) dramatically affects the reconstruction.

Authors’ response: There are small differences in the
topology and branch lengths between our tree and
Cicarelli’s, as they were inferred from the overlapping but
different character sets. We would like to emphasize the
likelihood models and their comparison in this work (see
change in the title and the edits of the manuscript), so the
topology of phylogeny is a subject for another day.

Another relevant aspect is the dataset used. It is clear
that this is the primary data and an accurate recon-
struction will depend on the availability of a sufficiently
dense and balanced sampling of extant genomes. To start
with they discard ~80% of the COGs because they are
only present in Archaeal or Bacterial genomes, I won-
der how many of them would still be “domain-specific”
when considering the 7000+ currently available prokary-
otic species. COG is a wonderful resource but it is
somehow out of date with other databases representing
a more complete view of currently-available genomes.
For instance EggNOG (http://eggnog.embl.de/version_3.
0/) uses an approach based on COG but it is com-
puted over 1000+ genomes, other resources may be even
more comprehensive. Do the authors consider the ver-
sion of COGQ as a sufficiently balanced sampling of extant
genomes? I think a subsample of similar size from the cur-
rently available genomes would be a fairer representation
of the diversity of the prokaryotic lineages, specially for
archaea. Similarly to the discussion with the tree, a recom-
putation of LUCA with another genome sampling may
have some effect which would be interesting to measure.
Altogether I think the presented models are a valuable
contribution to the field of reconstructing ancestral pro-
teomes, but with the data presented is difficult to assess
whether the resulting models are actually improving our
inference on the ancestral common ancestor. I encourage
the authors to pursue the goal of qualitatively assessing the
reconstruction, this will help them to assess progress with
the planned future implementations. Finally, the authors
ommit any discussion on the inferred characteristics of
the reconstructed LUCA. As mentioned before, some dis-
cussion on the processes inferred to be present in the
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reconstructed LUCA will be a way to assess and com-
pare the different approaches. Moreover the ultimate goal
of reconstructing LUCA is precisely to learn something
about the biology of ancestral organisms and their possi-
ble environment. I wish the authors had presented some
discussion in this regard. This would make the paper even
more interesting.

Authors’ response: We agree that the last publicly avail-
able release of NCBI COGs is outdated and EggNOG
would be better in all respects. This is one reason why
we stop short of actually describing the gene repertoire
of reconstructed LUCA in any detail (the other reason, of
course, is that neither we nor others have developed a fully
satisfactory way to account for the false positives due to
horizontal gene transfer events - see text).

Minor comments The authors implement their model
in R code “available upon request”. It would be recom-
mended to directly provide this through a public reposi-
tory of code, such as github or others.

Authors’ response: Done.

In the introduction the authors discuss some previ-
ously developed methods for the reconstruction of ances-
tral genomes. I missed some mention to alternative
approaches that are based on the analysis of gene trees
rather than on phyletic profiles, although they have beed
used for more recent ancestors (e.g. Gabaldén, T. and
Huynen, MA. (2003) Reconstruction of the protomito-
chondrial metabolism. Science 1;301(5633):609.).

Authors’ response: Cited, though in a different con-
text, i.e., when the biochemical coherence of the results is
discussed.

Reviewer 3: Fyodor Kondrashov, Center for Genomic
Regulation, Spain
This is a quaint paper that focuses on providing a maxi-
mum likelihood approach for the reconstruction of gene
content in LUCA. The nature of the study is method-
ological in nature such that the authors focus more on
providing a method rather than interpreting the results.
This feature of the manuscript, while being an advan-
tage in some cases, in my opinion is a weakness in this
case. Following a well-written introduction the results
of the application of the ML approach does not provide
any biological insight on the gene composition of LUCA.
Table 2, especially given the short-hand notation for COG
function, fails to excite a biologically oriented reader. In
principle, the strength of this paper would be the appli-
cability of the methodology by other users to obtain the
biological insight that I found lacking.

Authors’ response: We have tried to improve the legend
for all figures and tables.

Otherwise, this paper appears to represent a step in the
argument about the gene content of LUCA, which is of
interest to those studying this subject.
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