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Abstract

ovarian and breast cancer respectively.

Background: Molecular markers based on gene expression profiles have been used in experimental and clinical
settings to distinguish cancerous tumors in stage, grade, survival time, metastasis, and drug sensitivity. However,
most significant gene markers are unstable (not reproducible) among data sets. We introduce a standardized
method for representing cancer markers as 2-level hierarchical feature vectors, with a basic gene level as well as a
second level of (more stable) pathway markers, for the purpose of discriminating cancer subtypes. This extends
standard gene expression arrays with new pathway-level activation features obtained directly from off-the-shelf
gene set enrichment algorithms such as GSEA. Such so-called pathway-based expression arrays are significantly
more reproducible across datasets. Such reproducibility will be important for clinical usefulness of genomic markers,
and augment currently accepted cancer classification protocols.

Results: The present method produced more stable (reproducible) pathway-based markers for discriminating breast
cancer metastasis and ovarian cancer survival time. Between two datasets for breast cancer metastasis, the
intersection of standard significant gene biomarkers totaled 7.47% of selected genes, compared to 17.65% using
pathway-based markers; the corresponding percentages for ovarian cancer datasets were 20.65% and 33.33%
respectively. Three pathways, consisting of Type_1_diabetes mellitus, Cytokine-cytokine_receptor_interaction and
Hedgehog_signaling (all previously implicated in cancer), are enriched in both the ovarian long survival and breast
non-metastasis groups. In addition, integrating pathway and gene information, we identified five (ID4, ANXA4,
CXCL9, MYLK, FBXL?7) and six (SQLE, E2F1, PTTG1, TSTA3, BUB1B, MAD2L1) known cancer genes significant for

Conclusions: Standardizing the analysis of genomic data in the process of cancer staging, classification and analysis
is important as it has implications for both pre-clinical as well as clinical studies. The paradigm of diagnosis and
prediction using pathway-based biomarkers as features can be an important part of the process of biomarker-based
cancer analysis, and the resulting canonical (clinically reproducible) biomarkers can be important in standardizing
genomic data. We expect that identification of such canonical biomarkers will improve clinical utility of
high-throughput datasets for diagnostic and prognostic applications.

Reviewers: This article was reviewed by John McDonald (nominated by I. King Jordon), Eugene Koonin, Nathan
Bowen (nominated by I. King Jordon), and Ekaterina Kotelnikova (nominated by Mikhail Gelfand).
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Background

The identification of genome-wide expression profiles
that discriminate between disease phenotypes is now a
relatively routine research procedure. However, clinical
implementation has been slow, in part because mar-
ker sets identified by independent studies rarely display
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substantial overlap [1-4]. For example, van't Veer et al
[4], and Wang et al. [3] identified gene sets of size 70 and
76 to distinguish metastatic from non-metastatic breast
cancer, but the two sets had an overlap of only 3 genes
[5]. As another example, Dressman et al. [2] found a set
of 100 genes significant in predicting responses to cis-
platinum therapy for ovarian cancer using a stochastic
search method, which had no intersection with another
set of 86 genes predictive of ovarian survival found by
Crijns et al. [1] using functional class scoring analysis.
Though the latter pair of sets was not studied to predict
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identical phenotypes in ovarian cancer, their empty inter-
section still indicates the lack of uniformity in predictive
biomarkers among different experiments.

There is a well-recognized need for canonical biomar-
kers, which will make it possible to record marker-based
data interchangeably among different laboratories, using
well-recognized quantitative features to encode cancer
and other phenotypes. This need is related to future im-
provements in standardized diagnosis and prognosis
regimes which will incorporate genomic cancer informa-
tion as a matter of course, augmenting current cancer
classification protocols.

In connection with this, many researchers have sug-
gested a more effective and robust means of marker iden-
tification which combines gene expression measurements
over functional or otherwise naturally defined sets of
genes. For example, Chuang et al. [5] used average diffe-
rential expressions in protein-protein interaction subnet-
works as markers for distinguishing metastatic from non-
metastatic breast cancer using the Wang et al [3] and
van de Vijver et al. [6] data sets. The stability (overlap) be-
tween the two independent datasets of their selected cri-
tical genes is 12.7%, whereas it is 7% for critical individual
gene markers. This overlap was calculated between 906
and 618 critical genes obtained from the Wang and van
de Vijver data sets, respectively [5]. However, protein-
protein networks do not yield canonical coherent gene
subsets as pathways do, and such critical gene sets change
with individual experiments. In this regard, pathways,
being the most documented of protein interactions, yield
stable sets of functional relationships related with mo-
lecular biological activities such as metabolic, signaling,
protein interaction and gene regulation processes [7]. Ne-
vertheless, pathway-based aggregation of gene information
is one among a number of ways of incorporating gene-gene
relationships in augmenting predictive performance, and
protein-protein interaction-based as well as coexpression-
based aggregations have been shown in various contexts to
improve performance of classification methods [5].

What distinguishes this work from the above is our
goal to obtain collections of biomarkers which are not
only discriminative between phenotypes, but are also ca-
nonical, in that they come from standardized gene sets
in the form of pathways and other functional sets. This
in turn fits into a view toward clinical applications in
which comprehensible and reproducible biomarkers can
be extracted and used for phenotype prediction, using
existing standardized gene set enrichment algorithms.

With the recent availability of large quantities of
pathway information such as KEGG (Ogata et al., 1999),
GeneGo (http://www.genego.com) and BioCarta (http://
www.biocarta.com [8]), pathway-based analysis has been
used [9-11] to perform classification of expression pro-
files and also applied to discriminate different classes of
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disease. Class distinction based on differences in path-
way activity can be more stable than distinction based
on genes alone. For instance, 16 pathways overlapped bet-
ween the 48 significant pathways obtained from the study
of Dressman et al. [2] and the 17 pathways from Crijns
et al. [1], using the methodology in Crijns et al. for signifi-
cant pathway identification. Thus, pathway markers (and
perhaps other gene set markers) are more reproducible
than individual genes selected from expression profiles. A
growing body of research has focused on pathway-based
classification, and has often presented comparable or bet-
ter performance of classification than gene-based classi-
fiers [9-11]. For example, Guo et al. [9] proposed the use
of mean or median gene expression values in gene onto-
logy (GO) modules [12] to infer module activity. Recently,
Su et al. [11] proposed a classification method based on
probabilistic inference of pathway activity.

Other pathway-level analyses which have led to classi-
fication methods for cancer phenotypes include the work
of Lee et al. [10], who identified core genes in pathways as
differentiators of disease phenotypes. Vaske et al. [13] in-
ferred pathway-level perturbations in cancer tissue based
on omics-level analyses of individual genes using a factor
graph model, yielding inferences regarding survival out-
comes. Breslin et al. [14] used pathway signatures based
on activations of their downstream genes to classify can-
cer samples. Svensson et al. [15] used pathway signatures
to differentiate radiation toxicity responses in irradiated
tissues involved in the treatment of prostate cancer.

The above uses of pathway-level inference to classify
phenotypes provide evidence of the usefulness of better
and more stable (reproducible) biomarkers related to
gene expression measurements. In this paper we focus
on measuring the stability of pathway-based biomarkers
and evaluating protocols for using standardized (as well
as some new) gene set enrichment algorithms to directly
and automatically infer pathway activation levels as stable
features able to discriminate cancer phenotypes. This can
provide methods for supplementing or replacing gene-
level activation features with additional features which
form new biomarkers based directly on pathway-level
activations.

Our use of the term pathway activation (or activity)
markers parallels usage in other references [10,14] and
denotes transcriptional activity of genes in these path-
ways which act coherently within them. In particular this
term is not used in the biological sense that the pathway
has been activated into producing downstream products,
which generally may be the case in one of its differenti-
ating (e.g. case vs. control) states.

The result of precisely quantifying such pathway-level
activity can be new standardized sets of biomarkers
(‘pathway-based expression arrays’) which we will show to
be consistently more reproducible across different data
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sets. We study the stability properties of these biomarkers,
in addition to their discriminatory abilities among pheno-
types. A desired application of these results involves even-
tual clinical uses which will be capable of using off the
shelf enrichment algorithms for genes (e.g. GSEA, [16]) to
automatically infer phenotype differences based on path-
way (and other gene set) -level feature vectors.

The examples in this paper use RNA expression arrays
from microarrays. However, current new methods of ob-
taining mRNA expression levels from RNA-Seq abundan-
ces (using methods such as Cufflinks [17] and NEUMA
[18]) can also produce gene-level (mMRNA) expression ar-
rays which can be analyzed in the same way using the
pathway-aggregated methods (e.g. GSEA and related algo-
rithms) discussed in this paper. In addition, with newer
RNA-Seq data, other groups of biologically related RNA
transcripts may also be candidates for aggregation of indi-
vidual RNA abundance levels in the same way as is done
here for mRNA levels of pathway genes.

In this paper we obtain stable mRNA expression-based
markers at two levels, the pathway level and the gene
level. Given a stable pathway P involved in a given can-
cer phenotype, we can also identify stable gene sets
based on P, by identifying the most discriminative genes
in P, again using a standard enrichment algorithm such
as GSEA. (In the latter case the discriminative genes can
be identified by finding the leading edge genes in P).

We remark that the use of multi-level hierarchical fea-
ture aggregates, with individual genes at the first level
and initial gene aggregates (pathways) at the next level,
is an instance of a machine learning approach which
organizes individual features into a hierarchical feature
structure. The application of an SVM classifier to fea-
tures derived from such a structure (as is done here) is
known as a hierarchical SVM. A general hierarchical fea-
ture structure organizes individual features x; in a fea-
ture vector x = (xy,. . ., x,,) into a tree hierarchy. In such a
hierarchy the first level (e.g., gene-level) features form
the leaves of the tree, with aggregate features forming
the second level, and higher order aggregates recursively
forming the upper structure of the tree. A more general
example of such a structure (than the present pathway-
based hierarchy) involves, for a given gene set, a tree
structure based on a gene ontology (GO) [12] tree, which
will be studied in future work.

We remark in addition that since our primary purpose
here is to develop protocols involving canonical biomar-
kers (markers obtained using standard methodologies
such as GSEA that are also stable across datasets and
platforms) for identifying cancer phenotypes, the strate-
gy of using pathway-level aggregate features would re-
quire focusing on biomarkers within a given pathway B,
even if there are better markers outside of this or per-
haps any other pathway. A benefit of this is indeed that
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such additional associated genes in P would in fact be
'false negatives,' since they are ostensibly weak classifiers
which nevertheless cooperate with genes in a pathway P
that has had its role in the phenotype established.

Gene set enrichment analysis (GSEA) proposed by
Subramanian et al. [16] and extended by Hung et al. [19]
to include network topology is a useful tool for pathway-
based class distinction. Briefly, GSEA determines whether
genes from a particular pathway or some other predefined
gene set are significantly overrepresented in the set of
genes that are most differentially expressed. Since the dif-
ferentially expressed genes are rank ordered, the proced-
ure also returns so-called leading edge genes for which
enrichment has its maximum value. The leading edge
genes of a given pathway are those genes which as a group
maximally differentiate the gene expression signatures (in
the pathway) of the two classes being studied [16].

The approach in this paper is to use prior classes of
gene groups (e.g., KEGG pathways, functional gene sets
from the Molecular Signatures Databases; MSigDB [16])
to identify group-based biomarkers which can reliably
and reproducibly classify medical and biological samples.
We will show this using classifications based on the 200
curated KEGG pathways and 522 functional gene sets
from MSigDB [16] collected from eight data sets and
experimental literature, and compare these with classi-
fications based on direct gene expression profiles. This
methodology can provide (pathway-based) biomarkers
with significantly increased stability for differentiating
cancer as well as other phenotypes, as is shown here for
ovarian and breast cancer (see results and discussion). In
addition to the primary aim of greatly increased marker
stability, the predictive accuracy using these biomarkers
shows overall improvement (again for survival and me-
tastasis prediction).

The pathway-based biomarkers related to ovarian can-
cer survival time as well as to breast cancer metastasis
yield important stable pathways in both types of datasets
(see below), most of which have had independently
demonstrated involvement in cancer. In addition, we
identify stable pathways between studies on breast can-
cer on the one hand and ovarian cancer on the other
(the cytokine-cytokine receptor interaction, type 1 dia-
betes mellitus, and hedgehog signaling pathways), all
three of which have been demonstrated in a number of
independent studies to have significant involvement in
cancer (see Results/Discussion). For the diabetes mellitus
pathway in particular, the cancer-related immune system
arm (involving the HLA family of genes) is the only por-
tion capable of differentiating survival time in ovarian
cancer or in determining metastasis in breast cancer.

Ovarian cancer is the fifth leading cause of death from
gynecological malignancy in the United States and Western
Europe [20]. The major histological subtypes are classified
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as mucinous, serous, endometrioid, and clear cell. Among
these, serous carcinoma is the most common ovarian can-
cer subtype [21]. Carcinoma of the ovary is subclassified
into 4 tumor stages defined by how that disease has spread
(metastasized) from the original site to other parts of the
body. The guidelines defining stages are provided from the
International Federation of Gynecology and Obstetrics
(FIGO). In particular, in stage IV, cancer has spread beyond
the abdomen into tissues in the liver and other organs
(NCIL FIGO). Some 75% of all patients with ovarian cancer
are commonly diagnosed with stage III/IV disease, for
which the 5-year survival rate is only 5% - 30%, with
21 months being the average survival time [1]. Conse-
quently, a convenient diagnostic for early stage disease
[1,2] that could be routinely applied has the potential to
prolong survival by enabling early intervention. Similarly,
the identification of biomarkers that would distinguish
short from long term survivors who are on the same the-
rapeutic regimen can help guide therapy.

Similarly, breast cancer has a large impact on health,
being the primary cancer which strikes women over-
whelmingly, and the second leading cause of cancer death
in women. There is high variability in the outcomes and
responses to therapies among patients in the same stage
of this disease [22,23]. Though hormonal and chemo-
therapies can significantly reduce the chances of metas-
tases in this disease [24], predictions of such outcomes
based on genomic information have not been implemen-
ted in a standardizable way.

Identification of biomarkers differentiating stages or ex-
pected survival terms in ovarian cancer, as well as meta-
stasis in breast cancer, can help guide treatment. In this
paper, we suggest our standardized pathway-based ap-
proach to biomarker analysis for discriminating cancer
subtypes as a research tool with strong potential for cli-
nical applications. The methodologies in this paper are
validated in the identification of specific stable pathway
markers (see below) which differentiate cancer phenotypes
and validate previous studies identifying the same path-
ways and their component genes as significantly linked to
cancer.

Methods

Materials

We used gene expression profiles from The Cancer Genome
Atlas (TCGA,; available at http://cancergenome.nih.gov/) for
classification of ovarian phenotypes based on ovarian cancer
tissues. The first ovarian cancer data set was genera-
ted by the Broad Institute (BI) using an HT_HG_U133A
platform, with 287 cancer samples with expression mea-
surements of 12,042 genes. The second dataset was
obtained from the University of North Carolina (UNC)
using a different Agilent G4502A_07 platform, and dif-
ferent samples compiled from the same 287 subjects but
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separate tissue samples, with measurements of 17,814 ge-
nes. The TCGA secured clinical information provides
disease stage, initial diagnosis date and survival time
of individual patients. We extracted gene expression
profiles of 10 early stage (stage I and II) patients, and
49 late stage (IV) patients in both the BI and UNC
datasets. In order to separate the samples into classes
based on survival time from initial diagnosis, we sepa-
rated the subjects into two groups consisting of those
with survival times of less than 1 year with 22 sam-
ples (short survival) and greater than 5 years with 22
samples (long survival) from the total 287 samples.
We used the gene expression data without initial gene
filtering and compared the two data sets, with regard
to the utility of pathway-based biomarkers in classifi-
cation of the two classes. Further, we performed a si-
milar analysis of classification of early stage vs. stage
IV of ovarian cancer.

For biomarker discrimination tasks using a support
vector machine (SVM) classifier, we used the Spider ma-
chine learning package, version 1.71 [25]. For all SVM
tasks we used the Spider quadratic optimizer, with C
parameter set to infinity. This choice of C is appropriate
to high dimensional situations in which the degrees of
freedom (i.e. number of genes) exceed the data size.

In addition, in order to validate the stability of the
pathway biomarkers in comparison with single gene bio-
markers, we also analyzed gene expression profiles from
breast cancer metastasis data of Wang et al. [3] and van
de Vijver et al. [6], with 286 and 295 breast cancer sub-
jects respectively. For the Wang expression data sets, we
converted an original 22,284 probe ID’s to 13,058 gene
symbols using the Ailun package [26] and split the data
set into two groups: one included 93 samples of can-
cers which metastasized within 5 years and the second
included 183 samples of cancers which were not obser-
ved to metastasize within that time period. We used
a total of 276 samples out of 286, since we eliminated
10 censored (incomplete data) patients (Wang et al., [3]).
In the van de Vijver data sets, we analyzed the gene
expression data from 295 breast cancer subjects, in-
cluding 79 who were diagnosed as metastatic within
5 years, and 216 non-metastatic samples. This data
set covered 12,183 genes. For the pathway-based ana-
lysis, we analyzed gene groupings based on the 200
standard KEGG pathways (www.genome.jp/kegg/), and
the 522 curated functional pathways from MSigDB
[16]. In addition, we manually curated five ovarian cancer-
related gene sets derived from five separate research
studies (unrelated to the present studies); we denote
these as the clear cell gene set [27], favorable prognosis
gene set [1], platinum response gene set [2], ovarian
cancer module 1 [28], and clear cell poor prognosis gene
set [29].
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Methods

In order to perform some of the discriminations between
cancer categories discussed in this paper, we utilized a
methodological approach involving what are denoted here
as hierarchical feature vectors in machine learning. These
were used as input for our SVM classification algorithms.
The use of such structured feature vectors in machine
learning mirrors a categorization approach which is help-
ful in all learning processes, in which higher order
(derived) features (concepts) are used along with elemen-
tary ones for sample classification. In general a hierarc-
hical feature space vector method assigns to the features
used in a classification task a hierarchical structure, in
which basic features form the leaves of a tree, and higher
order (derived) features form the internal nodes. In this
case the raw features (leaves) are the gene expression fea-
tures x; , while the derived features (which here are the
only additional features used) are aggregate pathway fea-
tures derived here. Though in this paper we consider only
a two-level hierarchy, we anticipate that a more compre-
hensive use of levels may generally be useful. In particular,
pathway categories may also be useful in this type of ana-
lysis for further stabilization and improvement of cancer
classifications.

We examined this application of the hierarchical SVM,
which creates higher-level biomarkers (generally more
stable across different experiments) and improves classi-
fication by agglomerating gene information into pathway
features. This resulted in an algorithm for discriminating
sets of canonical pathway markers which were stable
in distinguishing both early stage from late stage can-
cer, and short term survival from long term survival
These markers involve pathway activation measures ob-
tained from the Gene Set Enrichment Algorithm (GSEA,
Subramanian et al, [16]) and an SVM-based pathway se-
lection method (SPF, see method 3. below), both of which
are determined by pathways containing genes which are
the most up- and down-regulated between the classes to
be separated.

We introduce one approach for developing leading edge
gene features determined by GSEA, and an additional two
approaches for developing pathway features using GSEA
and SVM (algorithm is available in Additional file 1: Table
S1). A schematic diagram of the methods is presented in
Figure 1.

1. GLEG: using GSEA leading edge genes as features
For any experiment involving differential gene
expression data, pre-identified gene sets such as the
KEGG pathways which are enriched in the most
differentially expressed genes are scored and ranked
using the GSEA algorithm (Subramanian et al., [16]).
The ranking is done by obtaining GSEA p-values for
enrichment of a given pathway P. We denote the
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Figure 1 Schematic diagram of the methods. Black arrows
represent the workflow of the GPF method, which used pathway
features generated by combinations of GSEA leading edge genes
and SVM gene weights. Red arrows represent the GLEG method,
which directly classified using leading edge genes obtained from
GSEA. Black dashed arrows represent workflow shared between GPF
and GLEG. The SPF method used the same workflow as the GPF
method with the replacement of pathway selections using GSEA by
pathway selections using SVM. The train SVM step uses separate
training features for the GPF and the GLEG workflows.

highest-ranking / pathways based on p-value as

{p1,- - -, p} (the latter notation is unrelated to the
numerical p values used here), these being the most
differentially expressed pathways between the two
classes. For simplicity, with all data sets, we chose
the 20 most up- and 20 most down-regulated
(enriched) pathways, whose union formed a set of 40
classifying pathways, representing approximately 20%
of all pathways used. Each enriched pathway contains
a set of leading edge genes {g1,. . ., g}, which form the
most discriminatory genes in the pathway, as returned
by the GSEA algorithm. GSEA determines leading
edge genes by scoring a maximum running sum along
the ranked list of differentially expressed genes.

The GLEG (GSEA-based Leading Edge Gene feature)
method collects the leading edge genes in the above
top GSEA 40 pathways, and uses them directly as
features in an SVM to discriminate between the two
classes of interest. The enriched pathways and their
leading edge genes were learned as a reduced feature
set using the training data sets, and on this feature
set an SVM was trained and then tested on the test
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set. The number 40 (out of 200 total pathways) was
chosen so that a nontrivial overlap between two
groups of 40 pathways from two experiments could
provide statistically reliable results. See the Results
section for more information on the algorithm.

2. GPF: using GSEA-enriched pathways as features
In the GPF (GSEA Pathway Feature) approach, our
discrimination features corresponded to the 40
pathways mentioned above (for each data set) which
had the most differential expression in the training
data. In training and testing, we computed each
pathway feature (denoted P; for pathway ;) using a
linear combination of the expression levels g;; of the
leading edge genes in pathway j, weighted by their
SVM global weights w;, inherited from weights in
training data differentiating the two classes without
any gene feature selection.

Specifically, the pathway features are

b= Z Wiiij
ij

where P; is the pathway activation level, g;; is the

gene expression level, and wj; is the inherited SVM

weight with indices of the i/ gene in the j* pathway.
The Results section describes the implementation of
this algorithm in more detail.

3. SPF: using pathway features determined by SVM
Here we introduced an alternative method
(SPF — the SVM-based Pathway Feature method) for
discriminating enriched pathways by using SVM
directly instead of GSEA to determine pathways
which best discriminate the two classes of interest.
Specifically, we built pathway features P; using the
training data in the same way as in section (2) above,
with the exception that each aggregate feature P; was
constructed only from the top 20 genes (designated
as core genes) in the corresponding pathway as
selected using the Fisher method with separation
criterion (i, — up)*/(0%4 + 05), representing the
mean expression difference of a gene between the
two classes, divided by the sum of the variances. We
then used an SVM with features P; in discriminating
the classes in the training set, and obtained SVM
weights W; for each of these pathway features
(obtained from combined data across the training
samples k). Pathway rankings were now determined
by the absolute scores |Wj| in the training set. The
top 20 pathways were selected (from the training set)
for training and testing. In this case, we identified 20
core genes for each pathway with more than 20
genes; otherwise, we used all genes in the pathway.
We chose 20 SVM feature selected genes per
pathway since this number of selected genes
approximately matched with the average number of
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GSEA- selected leading edge genes in the GLEG
method (see above).

Results and discussion

We analyzed and developed prognostic/diagnostic signa-
tures for three different class distinctions: short term/
long term survival and high stage/low stage for ovarian
cancer, and metastatic/non metastatic tumor progression
in breast cancer. We extracted gene expression profiles
from The Cancer Genome Atlas (TCGA) for ovarian
cancer phenotypes. These included 44 samples from 22
short term survivors and 22 long term survivors (SUR),
and 59 TCGA samples differing in stage, with 10 early
stage and 49 late stage samples. The ovarian survival
and stage study subjects each individually yielded two
separate sets of cancer tissue samples, whose biomarkers
were extracted independently by groups at the Broad
Institute (BI) and at the University of North Carolina
(UNC). In addition, we separately analyzed an additional
data set of gene expression biomarkers from 119 sam-
ples taken in a Duke University study [2] of advanced
ovarian cancers. The phenotypes of the latter dataset
were separated based on differential resistance to pla-
tinum therapy, with the data set separated into 34 in-
complete response and 85 complete response samples.
Finally, in order to test for biomarker stability across dif-
ferent types of data sets, we identified biomarkers that
distinguished metastatic potential in breast cancer data
from Wang et al. [3] and van de Vijver et al. [6] (details
in the material and methods section).

We note that the UNC and BI ovarian cancer data sets
in TCGA are based on tissue samples from the same sub-
jects, analyzed by different laboratories, while the Wang
and van de Vijver breast cancer data sets are analyzed by
different laboratories and came from different patients.

Evaluation of biomarker sets based on KEGG and MSigDB
pathways

We first tested biomarkers based on the 200 KEGG [30]
human pathways obtained from MSigDB version 2.5
[16] and compared them to an alternative set of aggre-
gate biomarkers consisting of 522 functional gene sets
(selected on the basis of pathway membership and other
biological criteria) from MSigDB version 2.5 (data set C2
[16]). We remark that both the KEGG pathways and C2
functional gene sets in fact represented very limited total
numbers of unique genes. Specifically, only 4128 and
5602 genes are covered by KEGG pathways and the C2
functional gene sets respectively. To accommodate the
loss of gene information compared to the traditional
method of starting with expression data for 12042 (BI)
and 17814 (UNC) genes, we added 5 manually curated
gene sets extracted from the literature, all associated
with ovarian cancer [1,2,27-29], to the relevant KEGG
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pathway set (the expanded set is called KEGG_ovary)
and to the C2 functional gene set (C2_ovary). Figure 2
gives an assessment of relative accuracies of classification
using different functional gene sets using a support vector
machine (SVM).

We remark that these accuracies are based on balanced
data sets and pathway biomarkers which are created from
leading edge genes from the most discriminative path-
ways. It is difficult from the data in Figure 2 to determine
that one of the above four groups of functional gene sets
is better than the others at discriminating classes.

Evaluation of pathway-based classification methods
based on ovarian cancer phenotypes
To evaluate pathway-based classification methods, we tes-
ted predictive performances for the different methods using
pathway-based markers, as described in the Methods sec-
tion. (a) The first is the GSEA-based Leading Edge Gene
feature method (denoted here as GLEG). (b) The second
is denoted as the GSEA Pathway Feature (GPF) Method. (c)
The third is the SVM-based pathway feature (SPF) method.
In addition, in order to form a baseline measure, we
created random gene sets as surrogate pathways by kee-
ping KEGG pathway designations but doing a full permu-
tation all genes (i.e. replacing each gene in a pathway by a
randomly selected gene). We then performed the GPF
pathway-based algorithm based on this randomly per-
muted gene set. The classifier based on this procedure was
designated as the random pathway feature (RPF) method.
We also calculated an additional baseline by selecting iden-
tical numbers of genes as the GLEG method from (i) the

set of all KEGG genes, designated as the SKG (single KEGG
gene) method and (ii) all genes (designated as SG).

All methods were implemented using standard SVM
leave one out cross-validation in balanced data sets.
Thus in the case of ovarian cancer stage classification,
we randomly undersampled by choosing 10 samples out
of 49 stage IV samples to balance 10 early stage samples,
and repeated this procedure 10 times.

To compare with the baseline random pathway ag-
gregation method, the accuracy of distinction between
early stage and stage IV ovarian cancer using the
UNC data set was 78% and 71%, respectively, using
the GLEG and GPF methods. In comparison, it was
60% using the same number of randomly selected path-
way features (RPF) as the number of pathway features
in GPF. For the parallel BI stage data, the correspon-
ding figures are 74% (GLEG), 81% (GPF) and 56.67% (RPF)
respectively.

It can be seen from the results for the (random) RPF
method (accuracies at 60% or less, uniformly lower than
the GPF method), that the prior biological information
from the pathways was a significant component of the
method. In general, we have seen in other contexts that
random clustering of features (which is the effect of this
method of aggregating gene features into random path-
ways) can sometimes (surprisingly) improve perform-
ance over unclustered individual (single gene) features.
In this case the random clusters (random pathways) did
not outperform the individual features (genes), though
even these RPF-based randomly clustered data conveyed
some information.
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Figure 3 shows the remaining performances of the three
pathway-based classification methods and the gene-based
classification method for stage and survival in two differ-
ent Bl and UNC (TCGA) data sets.

Comparative discriminatory accuracy of core gene and
pathway markers within breast cancer data sets

To further assess the discriminatory accuracy of pathway
biomarkers, we analyzed two large metastasis breast can-
cer data sets [3,6], both obtained from primary breast
cancer, but from non-overlapping populations. Specific-
ally, 93 patients in the Wang data set and 79 patients
in the van de Vijver set were diagnosed with metastases
within 5 years of initial diagnosis (metastasis group).
The remaining groups of 183 and 216 patients, respec-
tively, were designated as non-metastatic by the authors.
For the Wang data set, we implemented 10 randomly
selected subsampled data sets balanced (at n=79 each)
between metastatic and non-metastatic samples. These
random sub-samplings of the Wang data set were per-
formed in order to balance it between metastatic and
non-metastatic cases. For each run on the balanced sets,
leave-one-out cross-validation was performed. To com-
pare discriminatory accuracy of pathway biomarkers
against individual gene biomarkers, for each training
data set (i.e., a new training set with each sample that
was left out) we selected the top 20 upregulated and top
20 downregulated pathways separating the metastatic
and non-metastatic groups, using GSEA. We then used
the union of the leading edge genes from these 40

pathways as individual features. The classifier built on a
training set was then used on the left-out test sample.
The results are summarized in Figure 4. The best per-
forming method was the SKG method, which uses the
same number of individual gene features (selected only
from KEGG) as the number of leading edge genes in the
GLEG method. The obtained accuracies using this
method are 66.94% (Wang) and 65.74% (van de Vijver).
In contrast, using same numbers of genes not restricted
to KEGG genes (SQ) gives separate accuracies of 64.41%
(Wang) and 65.44% (van de Vijver). The GLEG method
gives values of 62.17% (Wang) and 63.34% (van de Vijver).
The accuracies of the GSEA pathway feature method
(GPF) for the van de Vijver and Wang data set are 61.26%,
and 64.71% respectively.

To understand these results better, we will also briefly
mention a two-fold cross validation we performed using
the same methods on these two data sets. In this test we
additionally performed a pathway-level feature aggrega-
tion using an averaging of pathway-level features, as op-
posed to the GPF method of combining gene features in
pathways using their SVM weights. More specifically, we
note that the pathway features obtained using the GPF
method involve not only the leading edge gene expres-
sions for a given pathway p, but that these expressions
are weighted by the gene weights w,; of these leading
edge genes, inherited from the same training set when
trained on the set of all genes. Depending on the noisi-
ness of the data set, these weights may be unreliable in-
dividually. In particular, we noted that the weights in the
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van de Vijver data set were more unreliable than those
in the Wang set. In fact, in this two-fold cross-validation
test, accuracy in the van de Vijver data set was increased
to 61.52% when we used mean pathway features genera-
ted without weights (still using leading edge genes only).

Briefly, we describe here an analysis of how such noise
might have affected these additional two-fold results;
however further research needs to be done on this topic.
Assume that we separate gene expression levels into sig-
nal and noise components, i.e.,

Xij = x5 + zij,

where x; is the gene expression of gene i in sample j
(signal), and z; is the corresponding noise.

When we average gene expressions £; over a coherent
subset of genes (e.g. when all genes are in the same
pathway) the averaged noise z; is quenched, which can
help reduce the signal to noise ratio. In the case where
we use weights to obtain such pathway features, e.g., as
in the weighted sum 3, (jcading edge genes) Wiii » the
weights will have additional error attached to them if
they are obtained in a noisy training set. In this case the
effect of replacing the above pathway feature with the aver-
aged pathway feature ), {leading edge genes) Xii (with appropri-
ate final normalization) allows avoidance of the noise
inherent in overly noisy weights w;, as well as denoising by
equal averaging of the test data noise terms z;. However, if
the noise in the weights w; is qualitatively small enough,
the performance of the weighted feature method can then
improve on that of the above mean feature method. This

phenomenon was observed when the same pair of
methods (weighted and unweighted pathway averaging)
was used on the Wang data set, and the weighted method
performed better in this case than the unweighted one.
This observation correlated with the fact that the weights
in the van de Vijver data set had a significantly larger
standard deviation than those in the Wang data set when
different sub-samplings of the data were taken, leading to
the conclusion that the van de Vijver data set was noisier.
In this regard, combining these two methods (weighted
and unweighted gene combinations) could be the most ef-
fective way to get better performance in this type of ma-
chine learning.

In the full leave one out experiment above, we also
observed that all-gene features restricted to be obtained
from genes in KEGG pathways (4128 of them) were
more informative than features drawn from the full set
of genes (over 12,000 in both data sets) available in the
expression profiles.

Accuracy of pathway biomarkers across data sets:
Metastasis and ovarian survival data sets
To validate the stability of pathway-based biomarkers as
well as their classification accuracy, we studied the expres-
sion profiles of the two cohorts of breast cancer patients
[3,6]. In this study we used pathway features selected in one
data set to predict metastasis in the other, thus effectively
using one set as a training set and the other as a test set.

To determine pathway-based biomarkers, we determi-
ned in one data set the distinguishing KEGG pathways
between the two phenotypes (metastatic and non-metastatic)



Kim et al. Biology Direct 2012, 7:21
http://www.biology-direct.com/content/7/1/21

using GSEA, and used these as biomarkers for classification
of the other - we will call this reciprocal classification.

We tested each of the above pathway-based classifica-
tion methods in this procedure, including the leading
edge gene (GLEG) method and the pathway based bio-
marker (GPF) method. We compared these to standard
(Fisher selection) SVM methods using matched numbers
of genes as used in the GLEG method (SG method, see
above). Out of 810 leading edge genes determined from
the Wang data set, 636 of these were available in the van
de Vijver data set. Correspondingly, there were 375 out
of 391 unique genes chosen from the van de Vijver data
set for reciprocal inclusion in the Wang data. The rea-
son for the large difference in sizes is that numbers of
leading edge genes were significantly different between
the two sets. Thus the respective numbers of features
using the GLEG method in the two data sets were 636
and 375.

Since both data sets are strongly unbalanced between
two (metastatic and non-metastatic) phenotypes, we ba-
lanced the two classes for classification purposes
(in training and test sets) by bootstrapping from the larger
collection of non-metastatic samples using 5-fold under-
sampling, with each sample matched in size to that of the
metastatic group. The performance figures (see Figure 5)
form an average of 5 individual performances for each
method on each data set. Figure 5 compares these recipro-
cal feature selection accuracies for pathway-based markers
versus single gene markers.
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For the reciprocal test, the leading edge gene (GLEG)
method trained on the Wang data set achieved 68.97%
accuracy in classifying metastasis in van de Vijver et al.
[6], while the reciprocal accuracy (training using van de
Vijver and testing on Wang data) yielded 65.83% accu-
racy (as before these accuracies are reported on data sets
balanced between the two phenotypes). However, in this
reciprocal testing the GPF method (using pathway fea-
tures) performed better than the single gene (SG) method
in testing on the van de Vijver data set and worse than the
SG method on the Wang data set (Figure 5).

In the case of the ovarian survival time data, since the
BI and UNC samples were obtained from the same pa-
tients, we divided each of these data sets into two groups
(BI_groupl, BI_group2, UNC_groupl and UNC_group2).
The group 1 patients in the BI and UNC datasets were the
same, and similarly for the group 2 patients. To maintain
full independence (in both subjects and assay facilities) of
training and test sets, we performed gene feature selection
using BI_groupl to test UNC_group 2, and vice-versa.

Figure 6 shows the average performance of each me-
thod. Overall, the best-performing method was the GLEG
method, using leading edge genes based on GSEA path-
way selection. The GLEG and GPF methods achieved
average accuracies of 63.24% and 61.83%, respectively,
among the four above-mentioned test data sets. Mean-
while, using single gene classifiers achieved average
57.26% accuracy. This is evidence that pathway-based bio-
markers are more reliable for classifying cancer subtypes
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than single gene markers, in addition to their being more
stable.

Reproducibility of pathway-based biomarkers and single-
gene markers between data sets

In order to test the robustness (i.e., stability across data
sets) of the pathway-based biomarkers, we consider the
ovarian cancer survival and stage data sets, and the me-
tastatic breast cancer data sets mentioned earlier. We re-
call that the full UNC and BI data sets (used for the
stage and survival analysis) are based on different ova-
rian cancer tissue samples from the same subjects (ana-
lyzed by different laboratories) and that the Wang and
van de Vijver metastatic breast cancer data sets involved
independent sets of patients and were analyzed by differ-
ent laboratories. The primary purpose of our analysis
here is to compare the stability of pathway/gene biomar-
kers between the following approaches: (1) use of Fisher-
selected individual gene biomarkers as basic features
(SG classifier); (2) use of pathway-selected leading edge
gene markers (GLEG classifier); (3) use of enriched path-
way biomarkers as obtained from GSEA (GPF classifier).
Reproducibility was computed by dividing numbers of sig-
nificant biomarkers (a) intersecting between two different
experiments and (b) appearing in the union of those in
the same experiments.

Specifically, if B; and B, represent the respective sets
of significant biomarkers in the two experiments, the
computed ratio is = |B1NBy|/|B1UB,| , where |A| denotes
the size of a set A.

In order to provide a valid comparison of the methods,
we note that a comparison between an intersection and
a union of two sets By and B, as a measure of their ge-
neric mutual enrichment depends on the background
(with total cardinality |B|) and the proportion of the
background included in each of the sets, i.e.,|B;|/|B| and
|B,|/|B|. In order to keep the above proportions of the
background constant, we maintained all of them at 40/
200, i.e., .2, which was the proportion of KEGG path-
ways we selected for the GPF method. Thus in compa-
ring the stability of the GPF method with that of the SG
(all single gene) and SKG (single KEGG gene) methods,
we also selected from the above classes of genes the top
20% of all genes based on Fisher score, and formed a
ratio parallel to the above ratio S for these single gene
methods.

The reproducibilities S of pathway markers (based on
the GPF method, i.e., proportions of top pathways in
common among different data sets) are 0.40, 0.33, and
0.18 in the stage, survival, and metastasis data sets, res-
pectively. The comparable figures for leading edge gene
(GLEG) markers are 0.27, 0.25, and 0.15 (see discussion
below). In contrast, the reproducibility of all single gene
(SG) markers using Fisher selection are 0.22 in stage,
0.21 in survival and 0.07 in metastasis.

These data are graphed in Figure 7. As shown there,
the pathway/gene markers corresponding to a pathway-
based analysis are more consistent than individual Fisher-
selected gene markers selected directly from expression
profiles.
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GSEA. 'SG classifier and ‘SKG classifier’ denote the genes determined by Fisher selection from full gene expression profiles and restricted to the
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breast cancer data sets (based on the Wang and van de Vijver data sets). For each pair of datasets, overlapping biomarkers were all extracted
from matching based on the top 40 pathways in each. Vertical axis represents biomarker consistency as the quotient formed by the size of the
intersection of the two biomarker sets, divided by the size of their union.

Metastasis

We mention here that the above stability figures for
the GLEG method (.27, .25, and .15) are generally under-
estimates of performance, since the numbers of leading
edge genes which were generated by the top 20/20 (up-
and down-regulated) pathways in fact amounted to be
on the average 17% of all KEGG genes, yielding a smal-
ler percentage than 20% of the background for the two
sets B; and B, mentioned above. Therefore, as discussed
above, since a larger percentage of the background can
only improve the consistency ratio S defined above, this
is in fact a slight underestimate of the performance of
the GLEG method.

The above results indicate the overlap based on top
pathway markers consisting of 20 up-regulated and 20
down-regulated pathways in each data set. Since we con-
sidered the BI/UNC pathway overlap to be less noisy, we
also attempted a more parsimonious test of overlap bet-
ween the two datasets using only 10/10 (upregulated/
downregulated) pathways in each dataset. A significant
pathway overlap signal was obtained also in this case. The
result for different pathway numbers among these data
sets is given in Figure 8. In particular, the highest signal S
in pathway markers is .38 at a level of 10/10 (up and
down-regulated) for survival data.

The proportion of common pathways between the
UNC and BI data sets increased from counts with 20/20
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0.3
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Figure 8 Consistency of different classes of biomarkers with
respect to numbers of candidate pathways. The consistency
(overlap level) of different types of top gene/pathway markers based
on varying numbers of selected candidate pathways (40, 30, or 20)
between UNC and Bl ovarian survival data sets. For example, the 30
pathway_sur column heights represent overlap percentages of
biomarkers in the survival data sets from Bl and UNC (using
pathway, leading edge gene, and single gene biomarkers,
respectively, all extracted from matching based on the top 30
pathways in the Bl and UNC datasets). Vertical axis is defined as in
Figure 7.




Kim et al. Biology Direct 2012, 7:21
http://www.biology-direct.com/content/7/1/21

pathway selections to 10/10 selections, and the same holds
for the selected leading edge gene ratios. In contrast, the
ratio for Fisher-selected genes decreased at the same time.
This implies that top pathways and pathway-based genes
(leading edge genes) contained more core gene sets/path-
ways as stable biomarkers. The identical pattern of overlap
for pathway markers, leading edge gene markers, and
Fisher selected markers was observed for stage data.

Lower pathway overlap numbers for the 10/10 case in
the Wang/van de Vijver data sets gave a clearly less signifi-
cant signal (an overlap of only 3 pathways), presumably
because of the higher variability involving both subjects
and measurement protocols.

We remark that the performances indicated in Figure 8
may have the following interpretation. The decline in
performance of the SKG (single KEGG gene) method as
the number of pathways decreases from 40 to 20 may
result from the following fact. First, for relatively small
sample sizes (there were 22 short and 22 long survival
cases), the Fisher method of differential expression mea-
surement is not robust, so that as the number of poten-
tially matching genes in the two sets decreases, the SKG
curve of Figure 8 indicates a corresponding decrease in
overlap of these genes.

We note that the overlap in enriched pathways vs. over-
lap in individual genes between the UNC and BI tissue
samples is a measure of stability against variance in diffe-
rent measurements from the same individuals, as opposed
to bias introduced by comparison of samples from com-
pletely different individuals. In contrast, the pathway sta-
bility vs. gene stability studied in the analysis of breast
cancer metastasis (among the Wang and van de Vijver
data sets) is a measure of stability against both the bias
of an entirely different population as well as the variance
of different sets of measurements.

Informative genes based on leading edge and Fisher-
selection markers

In determining biologically significant biomarkers for
differentiating two phenotypes (e.g. metastatic vs. non-
metastatic cancer), it is generally more powerful to find
significant biomarkers overlapping in biomarker selections
from several different methods. Here we have selected sig-
nificant markers based on the pathway method (based on
leading edge genes, Table 1), discussed above, in addition
to then refining these by also using the standard Fisher
single gene selection method (Tables 2 and 3 below).

We first present the 10 most significant common lea-
ding edge genes from the two metastasis data sets, and
then those from the two ovarian survival data sets, in
Table 1. These genes were obtained by intersecting the
leading edge genes in the top 20/20 pathways (20 upre-
gulated and 20 downregulated) between the Wang and
van de Vijver data sets. This resulted in 161 genes in
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Table 1 Invariant genes (between datasets) among
common leading edge ranked by average p-value

Breast Average Ovarian Average
gene sets p-val *1.0e-04 gene sets p-val
CCNE2 0029 D4 0011
MAD2L1 0910 DPYSL3 0049
SQLE 1071 FBXL7 0132
CCNB2 1103 POLR1D 0134
PSMA7 1140 EDAR 0138
HLA-DRA 2229 ANXA4 0185
CCNA2 2591 CXCL9 0198
E2F1 3749 BMPR2 0204
BUB1B 4985 MYLK 0216
TSTA3 5691 ALDH5A1 0241

common. The 10 genes with the highest averaged p-values
(between the two datasets) were then selected (Table 1).

In addition to this method for identifying stable dis-
criminative genes, we combined the pathway-based mar-
ker selection method with the standard Fisher p-value
method (Tables 2 and 3) as follows. Among the Wang
and van de Vijver metastasis data, we first identified a
total of 118 genes and 70 genes, respectively, represent-
ing the intersection of the leading edge genes and a
matched number of top Fisher selected genes, obtained
separately in the two studies. These genes represented
significantly up- or down-regulated genes between meta-
static and non-metastatic patients. Between these two sets
(118 genes from the Wang and 70 from the van de Vijver
data), a total of 13 genes overlapped (see Additional file 1:
Table S1). This is significant in that the original overlap
between the two sets of top genes differentiating metasta-
sis (also using the Wang and van de Vijver data sets),
numbering 76 and 70, respectively, consisted of only three
genes [5]. We note that 9 out of 10 genes in Table 1 are
also found among the 13 genes in Additional file 1: Table
SL.

The above 13 genes from the metastasis data were
CCNB2, PSMA7, CCNE2, PTTG1, TPI1, RRM2, MAD2L1,
BUB1B, SQLE, E2F1, NP, PSMB5, and TSTA3. Among
these genes, 8 (consisting of PSMA7, TPI1, SQLE, E2F1,
PTTGI, TSTA3, BUB1B, MAD2L1) have been confirmed
in the literature [31,33-36,42] to be involved with several
different cancers. Additional file 1: Table S1 presents the
full name, designation and annotation of each gene. In
addition, among the above 8 genes, SQLE, E2F1, PTTG],
TSTA3, BUBIB and MAD2L1, have been related with
breast cancer [31,33-36]. In particular, SQLE has been
confirmed to be a predictor in early stage breast cancer of
freedom from distant metastasis. Recently the pituitary
tumor transforming gene PTTGI1 was reported as an
oncogene associated with breast cancer [33] as well as
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Table 2 Invariant genes (between datasets) among common leading edge and Fisher-selected genes: Wang and van de
Vijver data sets - see Informative Genes section for summary citations below

Gene symbol Full name Summary

MAD2L1 Mitotic arrest-deficient2, S. Cerevisiae, homolog-like 1 Overexpressed in breast and ovarian cancers [31,32]

PTTGI1 Pituitary tumor-transforming gene 1 Oncogene related with breast cancer [33]

BUB1B Budding uninhibited by benzimidazoles1, S. Cerevisiae Overexpressed in breast cancer [31]

homolog of beta

SQLE Squalene epoxidase Overexpressed in breast cancer and significantly inversely
related to distant metastasis-free survival in early stage
breast cancer [34]

E2F1 E2F transcription factor 1 Related with breast cancer outcome [35]

TSTA3 Tissue specific transplantation antigen P358 Conserved in several breast cancer subtypes [36]

For each dataset common Fisher and leading edge genes were selected, and then intersected between the two datasets. Genes previously connected to cancer
(with summaries) are listed here, and remaining genes are included in (Additional file 1: Table S1).

regulation of the immune system [43]. Vuaroqueaux et al.
[35] reported E2F1, a well-known key transcription factor
in proliferation and apoptosis, as a surrogate marker of
breast cancer outcome. TSTA3 has been found to be one
of the conserved genes for several breast cancer subtypes
such as luminal, ERBB2+, and basal [36]. Yuan et al. [31]
showed that MAD2L1 and BUBIB, known as spindle da-
mage checkpoint genes, were overexpressed in breast can-
cer tissues.

Among the UNC and BI survival data, 11 genes, con-
sisting of POLR1D, ID4, EDAR, BMPR2, HLA-DOA,
DPYSL3, ANXA4, CXCL9, MYLK (MLCK), FBXL7 and
TBL1X, overlapped among both the leading edge and
Fisher genes in both datasets (forming four collections
of genes among them). Among these 9 of the genes, con-
sisting of POLR1D, ID4, HLA-DOA, DPYSL3, ANXA4
CXCL9, MYCK (MLCK), FBXL7, TBL1X are directly or
indirectly related with cancers such as breast, endometrial,
brain, colon, ovarian, and B-cell cancers [37,39,40,44-48].
Additional file: 1 Table S1 shows the full name of each
gene and the related cancer. In particular ID4 was con-
firmed an inhibitor of BRCA1 in ovarian and breast cancer
by Welcsh and King [37]. ANXA4 has been proposed to
be related to chemotherapy-resistant clear cell ovarian
tumors by Kim et al. [38], and also found in clear cells of
ovarian and endometrial cancer by Zorn et al. [44]. Table 2
shows the information on top genes which are strongly

related with breast cancer and Table 3 shows the same for
ovarian cancer.

In addition, 6 genes consisting of CCNB2, CCNE2,
PTTG1, MAD2L1 BUBI1B, E2F1, are all found in the cell
cycle pathway, which was found to be enriched in meta-
static tissues (see next section). In the case of ovarian
cancer, EDAR and CXCL9 are found in the cytokine-
cytokine receptor interaction pathway, while ID4 and
BMPR2 are found in the TGF signaling pathway, and
TBL1X is found in the Wnt signaling pathway. In ad-
dition, four of the ovarian genes (DPYSL3, ANXA4,
MYLK, and FBXL7) were in ovarian cancer module [28],
one of our 5 curated sets of ovarian cancer-related genes.
All pathway information for each gene is provided in
Additional file 1: Table S1.

Enriched pathways in ovarian survival and breast cancer
metastasis data

We began with the top 20 discovered common ovarian
cancer pathways between the BI and UNC data sets,
forming the intersection of the top 40 in each (originally
selected as half up-regulated and half down-regulated).
These pathways were selected from the collection of all
KEGG pathways, together with the above-mentioned 5
ovarian-related gene sets which we had curated inde-
pendently of these data (see Methods). We also obtained
the 12 common pathways (again out of 40 each) from the

Table 3 Invariant genes (between datasets) among common leading edge and Fisher-selected genes: UNC and BI data
sets - see Informative Genes section for summary citations below

Gene symbol Full name Summary

D4 Inhibitor of DNA binding 4 Inhibitor of BRCAT in breast and ovarian cancer [37]

ANXA4 Annexin A4 Identified as related with chemotherapy-resistant
clear cell ovarian tumors [38]

CXCL9 Chemoline (C-X-C motif) ligand 9 Breast cancer-related gene [39]

MYLK Myosin light chain kinase Related with breast cancer [40]

FBXL7 F-box and leucine-rich repeat protein 7 Breast cancer [41]

See above caption (Table 2); remaining genes are included in (Additional file 1: Table S1).
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two breast cancer metastasis cohorts, this time selected
strictly from KEGG pathways. A number of these com-
mon pathways (both from the ovarian and breast can-
cer datasets) have had independent verification as being
cancer-related (Additional file 2: Table S2), primarily in
the context of differentiating cancer and normal tissue.
Based on their validation, the significance in our differen-
tiating cancer phenotypes (survival and metastasis) is also
of interest.

We now mention some previously studied cancer-
related common enriched pathways, whose functions are
described in Tables 4, 5 and 6. Three pathways, consisting
of type 1 diabetes mellitus, cytokine-cytokine receptor
interaction and hedgehog signaling, are in common
between the ovarian long survival and breast cancer non-
metastasis groups. In particular, 8 out of 9 common lea-
ding edge genes common to both the ovarian and breast
cancer data sets in the type 1 diabetes pathway are in the
HLA family of immune system activators.

The set of common (breast and ovarian) leading edge
genes in the cytokine- cytokine receptor interaction path-
way (upregulated in survival/non-metastasis) consists of
four genes, BMPR2, KIT, TNFRST11B, and IL1B, the last
three of which are known immune system-related genes.
The leading edge genes in this pathway differentiating
only the ovarian survival datasets include five members of
the chemokine ligand (CXCL) family, including one che-
mokine receptor, as well as four interleukin (IL) members
coding proteins embedded in the cell membrane of im-
mune system cells, including T and natural killer (NK)
cells. In the breast cancer metastasis data, the cyto-
kine pathway leading edge genes included eight IL mem-
bers and 5 tumor necrosis factor receptor superfamily
(TNFRS) members which activate immune system cells.
The hedgehog signaling pathway is associated with ova-
rian cancer in that its deregulation is frequently observed
in epithelial ovarian tumors [50,58], though this upregula-
tion is not observed in all cases [59]. It has also been
observed to be upregulated in breast cancer [60]. Never-
theless, this pathway’s upregulation in both the breast
metastasis/ovarian survival data strongly indicates that
the proper normal functioning of the pathway as a growth
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and development regulator may also be important in
prevention of metastasis and growth and thus in patient
survival.

The cell adhesion molecules, Wnt signaling, antigen
processing and presentation, and TGF beta signaling path-
ways were enriched pathways in long survival for ovarian
cancer. These pathways are consistent with interpretations
as tumor suppressor and immune system pathways (see
Tables 4 and 5). The Wnt signaling pathway has arms
which both promote cell proliferation and apoptosis, and
correspondingly is associated with both tumor promotion
and tumor suppression [58,61,62], though in ovarian can-
cer its enrichment in long survival time indicates the latter
role. In particular its upregulation in ovarian survival indi-
cates a role which in its correlation with higher survival
time contrasts with its upregulation in tumors vs. normal
tissue. Its key role in ovarian cancer (and in the present
cohort as an apparent growth regulator when it is func-
tional) adds to known information on its noted dysregula-
tion in a number of ovarian cancers [58,61,63]. Though
the latter information is based primarily on comparisons
of activations of Wnt in cancer vs. normal tissue, the ana-
lysis here differentiates cancer tissues from each other
with regard to metastasis.

Among pathways enriched in the metastatic breast
cancers, the cell cycle, and biosynthesis of steroids path-
ways have been observed as overexpressed in tumorige-
nesis in prior research (see Tables 4 and 6). In contrast,
the complement and coagulation cascades, enriched in
non-metastatic cancers, is known to protect against tu-
mors by activating the immune system [55].

Additional file 2: Table S2 shows the common enriched
KEGG/ovarian pathways for ovarian survival (between
BI and UNC) and those for breast cancer metastasis
(between Wang and van de Vijver). In the case of ovarian
cancer, 7 out of the 20 pathways have been found sig-
nificant in a previous study (Dressman et al, note * in
Additional file 2: Table S2).

We note that women who carry certain high levels of
risk factors for breast cancer (e.g. family history) are at
least 15 times more likely to develop ovarian cancer than
non-carriers [64]. Thus, the three common enriched

Table 4 Selected common enriched pathways: breast cancer and ovarian cancer (all enriched in long survival/non-
metastasis) Enriched pathways in both ovarian and breast cancers

Function of pathway

HSA04940_TYPE_1_DIABETES_MELLITUS

HSA04060_CYTOKINE_CYTOKINE_RECEPTOR_INTERACTION

HSA04340_HEDGEHOG_SIGNALING_PATHWAY

Includes human leukocyte antigen (HLA) gene family, related with
immune system function for protection against cancer and mediation
of autoimmune disease.

Cytokines can control invasion and metastasis, and also function to
inhibit tumor progression [49]

Crucial role in tumorigenesis and cancer growth and spread [50]

This table contains pathways (with known relations to cancer) common to enrichment for ovarian survival and breast cancer non-metastasis. Tables 5 and 6 list

cancer-related pathways enriched individually for these two phenotypes.
Enriched pathways in both ovarian and breast cancers.
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Table 5 Selected common enriched pathways: Bl and UNC ovarian data (all enriched in long ovarian cancer survival)

Common long survival pathways between Bl and UNC

Function of pathway

HSA04514_CELL_ADHESION_MOLECULES

HSA04310_WNT_SIGNALING_PATHWAY
HSA04612_ANTIGEN_PROCESSING_AND_PRESENTATION

HSA04350_TGF_BETA_SIGNALING_PATHWAY

Known to interfere with cellular detachment and cancer metastasis, related
with cancer invasion and metastasis [51]

Includes oncogene and tumor suppressor genes [52]

Biological process for preparing antigens for presentation to special cells of
the immune system.

Effecting on tumorigenesis either negatively or positively [53]

pathways between ovarian cancer survival and breast
cancer non-metastasis present themselves as prospective
candidates for further investigation on the relationship
between the two diseases.

Conclusions

Recently, human pathway information databases have
been growing dramatically, enabling further opportun-
ities for understanding molecular mechanisms of cancer
and its subtypes, connectivity of diseases, mechanisms of
drug action, etc. In addition, improving coverage of
human pathway information has enabled more precise
diagnosis of disease states, and consequently better su-
pervision of patient treatments, including drug therapies.
Currently, the integration of pathway information and
gene expression profiles is becoming a useful tool for
clinical practice. In this context, we are proposing a me-
thod for using pathway-based biomarkers to discrimi-
nate disease states for use in clinical prediction and
treatment. The emphasis in this paper is stability of such
biomarkers across data sets as a means to standardize
analysis of biomarkers and consequently to help in po-
tential clinical applications.

We have demonstrated that such pathway-based bio-
markers (pathway features and leading edge gene markers)
are significantly more consistent than single gene markers
among different data sets. Additionally, the pathway-based
markers have improved the classification accuracy of dis-
ease status both when classifiers are trained on different
data sets and within cross-validated single data sets. Using
genes selected by pathway-based programs such as GSEA
has improved classification overall, though such improve-
ment has not been universal. Herein, we need to under-
take the task of exploiting these verifiably more stable

biomarkers to find improved classification methods for
disease status and prognosis.

The increased stability of biomarkers based on pathways
has resulted in isolation of significant ovarian and breast
cancer pathways which have been independently identified
as being cancer-related. The three pathways (type 1 dia-
betes mellitus, cytokine-cytokine receptor interaction, and
hedgehog signaling) which are common between breast
and ovarian cancer have been previously identified as ha-
ving particularly strong connections with cancer.

Reviewers' comments
Reviewer 1: John F. McDonald (nominated by I. King
Jordon)

Reviewer comments:

The authors used a Support Vector Machine (SVM)
algorithm in order to develop three novel methods for
discrimination of gene expression data sets and the iden-
tification cancer biomarkers. The established GSEA soft-
ware application (Gene Set Enrichment Analysis) and
the Fisher’s separation criterion were used in combina-
tion with SVM-weighted parameters. The three novel me-
thods, GLEG (GSEA-Leading-Edge-Genes), GPF (GSEA
enriched-Pathway-Features) and SPF (SVM-Pathway-Fea-
tures) were designed for identification of gene-based and
pathway-based biomarkers using microarray data. The
authors argue that these methods are more accurate and
reproducible across different data sets and different plat-
forms compared to traditional methods.

The authors tested the accuracy and the reproducibi-
lity of the methods across different platforms and across
different data sets. They also compared their three novel
methods with the standard gene-based biomarker methods
(i.e. differentially expressed genes) and pathway-based bio-
marker methods (i.e. enriched pathways of differentially

Table 6 Selected common pathways between van de Vijver and Wang datasets (all enriched for breast cancer non-

metastasis; bold for those enriched for metastasis)

Common pathways for non-metastasis (or metastasis in bold)

Function of pathway

HSA04610_COMPLEMENT_AND_COAGULATION_CASCADES

Coagulation inhibits lung cancer metastasis in animal studies [54] A part

of innate immune system and an effector of antibody-mediated immunity [55]

HSA00100_BIOSYNTHESIS_OF_STEROIDS
HSA04110_CELL_CYCLE

Found in metastatic tissue [56] and related with feminizing syndromes [57]

Related with cell growth and cell death
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expressed genes). For all of their comparison tests they
used two data sets. The first data set consisted of 287
samples from ovarian cancer patients with different sur-
vival times (short survival of less than 1 year vs. long
survival of more than 1 year). The second data set had
286 breast cancer samples from one study and 295 from
another. Both of the breast cancer sets had samples with
different metastatic potential (i.e. samples that showed
metastasis in 5 years after initial diagnosis vs. samples
with no metastasis within the same timeframe). The
ovarian samples were analyzed two times (from different
research groups) using different platforms (Affymetrix
and Agilent). The breast cancer samples were two separ-
ate studies, the first analyzed by Affymetrix U133A and
the second by a platform fabricated by an ink-jet oligo-
nucleotide synthesizer.

The proposed novel methods are straightforward in
design and implementation but they do not outperform
the traditional methods in all comparisons (achieving
accuracy of only ~60%). Regardless, one of the three me-
thods (GLEG) appears to be reproducibly the best across
the various data sets.

The findings reported in this paper are noteworthy
and worthy of publication. Nevertheless, there are issues
with the paper that made it more difficult to read than is
necessary. The following suggestions are offered to the
authors in the spirit of possibly improving the presenta-
tion. I don’t consider these comments mandatory but I
think the authors should consider them as suggested
ways to possibly improve what is basically and sound
and interesting paper.

Abstract

. Background:

“2-level hierarchical feature vectors™ the 2-levels of
the vectors might be briefly explained here.

“The methodology extends. ..from RNA-Seq tools...”:
the application to RNA-Seq is mentioned here but there
is no example demonstrated in the entire study- there-
fore this comment should be omitted.

[Authors’ response]

We thank Prof. McDonald for making these points —
we have expanded explanatory remarks regarding hier-
archical feature vectors in the abstract and Background
and have addressed his comments regarding RNA-Seq.
Regarding the latter, see also the discussion below (Back-
ground section) on this.

Reviewer comments:

Background

The second paragraph mentioning the protein-
protein interactions network example is not totally rele-
vant to the gene expression analysis yet it is described in
length. If it was to serve as an example, the protein-
protein interaction study should not require more than
two sentences for description.
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Also the last sentence of the same paragraph “Protein-
protein interaction-based as well as coexpression-based
aggregations have been shown in various contexts to
improve performance of classification methods” needs
reference.

. The third paragraph could be made part of the sixth
paragraph and both might be more appropriately placed
at the end of the Background/Introduction section.

. The fourth and fifth paragraph could be combined.
The fifth paragraph is unnecessarily detailed and could
be shortened in length or omitted.

. In the sixth paragraph, in the third sentence: “This
can provide...with feature vectors” —“feature vectors”
might be briefly explained.

. The seventh paragraph could be omitted (there are
no further examples on RNA-Seq in the paper so there
is no need to be discussed at that point).

. The tenth paragraph could be omitted or added to
the Discussion section. Some notions like the benefits of
the pathway-based biomarkers or the introduction of the
multi-level aggregation approach might be more appro-
priate for the Discussion.

. The fourteenth and fifteenth paragraphs might be
omitted or re-written. They do not seem to flow cohe-
rently with the rest of the text. The authors might con-
sider placing them towards the beginning of the section.

[Authors’ response]

The reviewer’s comments are reflected in the current
composition of the paragraphs mentioned.

Regarding RNA-Seq, the intent of this discussion is to
indicate that with current changes in gene expression
technology, the methods in this paper apply as well to
gene-level expressions derived from RNA-Seq as to stan-
dard microarrays. Specifically, RNA-Seq data can be con-
verted to more useful gene-level expression data whose
form exactly parallels microarrays, assigning a single ex-
pression level value to each gene. These comments there-
fore point out that the methods of the paper are to this
extent platform-independent. This is reflected in the
current form of the discussion in the paragraph.

Reviewer comments:

Materials

. The second half of the first paragraph “In order
to...ovarian cancer.” and the second paragraph should
be incorporated in the Methods section. The Materials
section should describe (and not explain in detail the
reasons of) the data utilized in the project.

[Authors’ response]

We feel that this description of the sub-selection of
the dataset is so closely tied to the discussion of the
ovarian cancer dataset itself that some meaning would
be lost if this were moved. Therefore we would like to
keep these sentences in their current location as a means
of clarifying the use of the data.
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Reviewer comments:

Methods

. In the first paragraph, the sentence: “In general...
(see diagram).” Is unclear. It is unclear what diagram is
being discussed.

. In the second paragraph, the phrase: “...SVM-based
pathway selection method” needs a reference at the end
(i.e. where the reader should refer to go and read for a
detailed description of the method)

. The following descriptions of 1), 2), and 3) methods
need a general title (e.g. Novel Gene and Pathway based
biomarker identification algorithms).

. 1) The GLEG method:

- In the first sentence the reference at the end is not
numbered.

- The explanation of how the GSEA p-values are cal-
culated may be omitted (the reader may use a reference
of the GSEA to find further details). In the last para-
graph, the “training subset of the data” is not explained.
Also, the “test set” is not explained either.

. 2) The GPF method:

- In last paragraph, the P_j is mentioned as “the path-
way activation”: a pathway is activated if the downstream
genes are expressed at sufficient levels to activate the
downstream processes of the pathway. Since this is not
the case for every enriched pathway of the algorithm,
then better to mention “P_j is the relevant pathway” and
not “P_j is the pathway activation”.

[Authors’ response]

We have integrated the intent of the reviewer’s first
four comments regarding the Methods section of the
paper. Since the three feature selection methods and
their descriptions are integrated into the Methods sec-
tion, we would prefer to maintain their numbered struc-
ture as a part of that section.

Regarding the use of the term pathway activation for
the term P_j, we are reflecting usage which has appeared
in publications prior to ours — we have explained in the
background section our (and other papers’) usage of this
terminology.

Reviewer comments:

Results/Discussion

. Evaluation of biomarker sets based on KEGG and
MSigDB pathways

- The human pathways in KEGG are currently 248.
The authors used 200 but do not justify their selection
of 200 out of the 248.

. Evaluation of pathway-based classification methods
based on ovarian cancer phenotypes

- In the first paragraph it may not be necessary to
explain the methods (a), (b) and (c) (i.e. the GLEG, GPF
and SPF). These were already mentioned in detail in
the Methods section. The last part of this paragraph
“In addition, in order to form a baseline measure...
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(designated as SG)” that describes the randomized
method, could be added in the Methods section.

- In the second paragraph, the authors mention the ac-
curacy of the randomized method, the GLEG, the GPF
and the RPE, but they have not used the SPF method
and they do not rationalize their decision.

. Comparative discriminatory accuracy of core gene
and pathway markers within breast cancer data sets

- The second paragraph describes a two-fold cross
validation- should this also be added to the Methods
section?

. Reproducibility of pathway-based biomarkers and
single-gene markers between data sets

- In the second paragraph the authors do not define
what |B| represents. Even if obvious, every symbol of an
equation needs to be defined.

- In the sixth and seventh paragraph, the selection of
10 up regulated and 10 down regulated pathways instead
of 20 up and 20 down, is a method not described in the
Methods section.

[Authors’ response]

Regarding the version of KEGG used in the paper, we
downloaded pathway information from MSigDB Version
2.5 [16]. This was the most current version when we
began this work, which at that time listed 200 pathways.
As to the description of the performance of the SPF
method in this section, this is summarized in the graph
in Figure 3, along with the performance of the other
methods. Regarding the definition of |B| for a set B, this
definition is already given in the “Reproducibility of
pathway based biomarkers” section. The Results/Discus-
sion section reflects the remaining comments of the
reviewer.

Regarding the choice of number of up and down-
regulated pathways, this was determined by the need for
an overlap size which was in a range where reasonable
comparisons between the different methods could be
made (i.e., out of 40 pathways on each side we would
have a typical overlap of 15 or so). We varied this num-
ber in some cases (in particular in the ovarian datasets)
so that we had a total of 20 pathways (10 up and 10
down) on each side, when sufficient overlap could be
used to compare different methods. We feel that the
need for this variation in pathway numbers was suffi-
ciently described in the results section.

Reviewer 2: Eugene Koonin

Reviewer comments:

This review provided no comments for publication

Reviewer 3: Nathan J. Bowen (nominated by Dr I. King
Jordan)

Reviewer comments:

In this manuscript, the authors introduce methodolo-
gies for integrating both gene level and pathway level
gene expression differences for discriminating between
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cancer subtypes and clinical outcomes. I find the manu-
script to be very well written, experimentally sound and
the conclusions to be accurate.

The authors use hierarchical SVM in order to enable
the use of both genes and pathways in their discrimin-
atory analyses.

The methodologies introduced here take advantage of
the notion that deregulated pathways, which contain
many genes, are likely to emerge as more statistically
significantly discriminators of cancer subtypes than indi-
vidual gene sets by themselves. The incorporation of
pathways into subtype and outcome prediction methods
doesn't rely on the exact same genes being detected by
microarray or RNA-seq - methods that still contain cer-
tain levels of stochasticity - but allows for the identifica-
tion of an overlapping subset of genes from a pathway as
being differentially expressed in order to increase dis-
criminatory accuracy.

In Figure 6 the authors summarize that the discrimin-
atory accuracies of their pathway incorporating methods
(GLEG and GPF) are higher than those for Fisher-
selected individual gene biomarkers (SG). However the
accuracies are improved from 57% for SG to ~62% and
~63% for GPF and GLEG, respectively.

While I feel that the authors’ methods are sound,
reproducible and use rigorous data and mathematical
classification systems (actually far beyond my level of ex-
pertise), I am concerned that the improvement in accur-
acy is so small. This is not a reflection of the quality of
the manuscript, just an observation/opinion of the
results. It is unlikely that this small increase in accuracy
will impact clinical decision making in the short-term
future. However, as data sets grow larger, the incorpor-
ation of GSEA pathway and leading edge genes into clas-
sification schemes will likely increase the effectiveness
and implementation of methods such as those presented
here in clinical decision making.

Currently, the use of terms such as "personalized
medicine” are in vogue when interpreting molecular data
and implementing clinical regimes. And there is data in-
dicating that even tumors of the same organ and subtype
are unique in many ways (e.g., somatic mutations).

It may be that we are reaching the maximum level of
discriminatory power for tumor subtype and clinical out-
come by using molecular features that are in common
among tumors.

Do the authors feel that the accuracies of their meth-
ods will improve with more data?

Or have we reached our limit of classification based
on common genes and pathways?

Other possible typo error-

The Figure 6 legend refers to the previous figure as
Figure 4, I think the authors are referring to Figure 5.

[Authors’ response]
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We thank the reviewer for his comments.

We agree with the reviewer that the accuracy improve-
ments of this method, while positive in almost all cases,
do not form a basis on their own for justification of its
use. The key element of the use of this method is the
principle of integration of biomarkers into coherent ca-
nonical combinations, i.e.,, combinations with a natural
easily replicable form in different medical/biological con-
texts. In particular we feel a main accomplishment of
this paper is a verification that such pathway markers
are reproducible in significantly greater proportions than
individual gene markers. For example, in the case of
breast cancer metastasis prediction, the percentage
overlap in pathway markers between the unrelated
studies of Wang [3] and van de Vijver [6] is signifi-
cantly higher than individual significant gene marker
overlaps. This can be shown not to result from the
smaller number of pathways, but rather because of
the increase in their individual reproducibility. The
discussion in the Reproducibility section of the results in
the Discussion section addresses these questions (see also
Figure 7).

We expect that the use of such canonical markers as
the P_j pathway markers will increase as the desire to
standardize, recognize and understand individual bio-
markers increases. We agree with the reviewer that
standard classification methods which purely rely on a
dataset without any external information have reached
an asymptote in their discriminative ability. However,
the knowledge in the structure of the pathway markers
involves more information than just the dataset — it also
involves domain knowledge in biology which identifies
the gene groups forming pathways which act coherently
enough to improve and standardize classification in the
future.

We thank the reviewer for these and his remaining
observations.

Reviewer 4: Ekaterina Kotelnikova (nominated by
Mikhail Gelfand).

Reviewer comments:

The idea to use a pathway-based approach to bio-
marker discovery seems to be quite promising, since
the intersection between suggested biomarker panels
from different publications is often very poor, suggesting
that standard data mining approaches are not sufficient
in this case.

However, the proposed approaches should be described
and confirmed in more detail, i.e.

1. There are no parameters for the SVM algorithm
presented.

2. There is no particular rationale for the number of
top enriched pathways being used (just general words
about non-trivial intersection without any numbers or
test datasets).
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3. There is no rationale for the number k’s selection
(number of discriminatory genes in the pathway). In
addition to this information, it would be useful to discuss
and substantiate the idea of the same k selection for diffe-
rent pathways. Since pathways are quite different in the
number of their members, the same number k can lead to
overfitting for one pathway, and could be insufficient for
another.

4. For all figures (and corresponding places in the text)
related to the accuracy assessment the confidence inter-
vals should be added. Without these numbers, the supe-
riority of pathway-based approaches could not be claimed.

5. For all figures (and corresponding places in the text)
the comparison with random gene set-based approach
with corresponding confidence intervals should be added
(now this information is missing for several of them).

As soon as these comments will be addressed, I think
that the manuscript can be recommended for publication.

[Authors’ response]

We thank the reviewer for her observations, which we
will address individually.

1. We have incorporated the reviewer’s suggestion on
parameters for the SVM.

2. Regarding the discussion on the numbers of path-
ways chosen, we have also responded to a similar question
from Reviewer 1. We selected the top 20 up-regulated and
20 down-regulated pathways so that we could optimally
tune the sensitivity of the number of common pathways
between two different experiments; this is also detailed in
the paper.

3. Regarding the question on the number of genes
chosen in a pathway, we have clarified this discussion in
the paper. The primary tool involves a feature selection
method which is orthogonal to the classifier itself, and
this is done in the GLEG method. We have added to our
explanation that we wanted to compare this primary
gene-level feature selection method with a baseline SVM
feature selection approach, for which we chose 20 genes
to reflect a figure close to the average number of leading
edge genes chosen.

4, 5. Because of small sample sizes we used leave-one-
out cross-validation in order to obtain the largest trai-
ning sets possible. With this procedure we essentially
had only one data set available, making it impossible
to produce error bars on the diagrams. We agree that
this is a desirable element of such a study, and would
like to pursue this possibility in a future study with larger
data sizes. Randomization of pathway structures was done
using the RPF method, and showed the significant role
that pathway structures play in predictability of the cancer
outcomes in ovarian and breast cancer. We appreciate
the reviewer’s suggestion regarding further randomization,
which would be a useful baseline comparison in later
work.
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Additional files

Additional file 1: Table S1. Invariant leading edge gene/Fisher selected
genes between data sets.

Additional file 2: Table S2. Enriched pathways discussed in literature
references.
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feature method; GPF: GSEA-based pathway feature method; SPF: SVM-based
pathway feature method; RPF: Randomly selected pathway feature method;
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