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Abstract

FDR are estimated after the recalibration.

Background: False discovery rate (FDR) control is commonly accepted as the most appropriate error control in
multiple hypothesis testing problems. The accuracy of FDR estimation depends on the accuracy of the estimation
of p-values from each test and validity of the underlying assumptions of the distribution. However, in many
practical testing problems such as in genomics, the p-values could be under-estimated or over-estimated for many
known or unknown reasons. Consequently, FDR estimation would then be influenced and lose its veracity.

Results: We propose a new extrapolative method called Constrained Regression Recalibration (ConReg-R) to
recalibrate the empirical p-values by modeling their distribution to improve the FDR estimates. Our ConReg-R
method is based on the observation that accurately estimated p-values from true null hypotheses follow uniform
distribution and the observed distribution of p-values is indeed a mixture of distributions of p-values from true null
hypotheses and true alternative hypotheses. Hence, ConReg-R recalibrates the observed p-values so that they
exhibit the properties of an ideal empirical p-value distribution. The proportion of true null hypotheses (m1p) and

Conclusions: ConReg-R provides an efficient way to improve the FDR estimates. It only requires the p-values from
the tests and avoids permutation of the original test data. We demonstrate that the proposed method significantly
improves FDR estimation on several gene expression datasets obtained from microarray and RNA-seq experiments.
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Background

In high-throughput biological data analysis, multiple
hypothesis testing is employed to address certain biolo-
gical problems. Appropriate tests are chosen for the
data, and the p-values are then computed under some
distributional assumptions. Due to the large number of
tests performed, error rate controls (which focus on the
occurrence of false positives) are commonly used to
measure the statistical significance. False discovery rate
(FDR) control is accepted as the most appropriate error
control. Other useful error rate controls include condi-
tional FDR (cFDR) [1], positive FDR (pFDR) [2] and
local FDR (IFDR) [3] which have similar interpretations
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as that of FDR. However, appropriate FDR estimation
depends on the precise p-values from each test and the
validity of the underlying assumptions of the
distribution.

The p-values from multiple hypothesis testing, for n
hypotheses, can be described by a mixture model g(p)
(1) with two components: one component gy(p) origi-
nates from true null hypotheses and follows uniform
distribution U(0, 1) [4], and the other component g;(p)
results from true alternative hypotheses and follows a
distribution confined to the p-values close to 0 [5]. The
mixing parameter, 7y, is the proportion of true null
hypotheses in the data. More precisely,

8(p) = mogo(p) + (1 — 70)81(p) (1)
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where go(p) = 1 denotes the probability density func-
tion of a uniform distribution over (0, 1) and g;(p) ~ 0
for p close to 1. Therefore, g(p) will be close to a con-
stant (i.e. 1my) for p close to 1.

FDR in multiple hypothesis testing for a given p-value
threshold « is estimated as

Toon

FDR, = .
{#p < a}

7Ty can be estimated from this mixture model in equa-
tion (1) as [2]

_ >
[(1 = B)n]

where B is typically chosen to be 0.25, 0.5 or 0.75.
These estimates are reasonable under the uniform distri-
bution assumption of a component in this mixture
model [6].

However, in many applied testing problems, the p-
values could be under-estimated or over-estimated for
many known or unknown reasons. The violation of p-
value distribution assumptions may lead to inaccurate
FDR estimation. There are many factors influencing
FDR estimation in the analysis of high-throughput bio-
logical data such as microarray and sequencing studies.
Dependence among the test statistics is one of the
major factors [7,8]. Usually in microarray data, there are
many groups of genes having similar expression patterns
and the test statistics (for example, t-statistic) are not
independent within one group. The global effects in the
array may also influence the dependence in the data.
For example, batch and cluster effects [9,10] always
occur in the experiments and sometimes they may be
the major cause of incorrectly estimated FDR.

Further, due to the “large p, small n“ problem [11] for
the gene expression data, some parameters such as
mean and variance for each gene cannot be well esti-
mated, or the test assumptions are not satisfied or the
distribution of the statistic under null hypotheses may
not be accurate. Therefore, many applied testing meth-
ods modified the standard testing methods (for example,
modifying t-statistic to moderated t-statistic [12]) to
increase their usability. As the modified test statistics
only approximately follow some known distribution, the
approximate p-value estimation may influence the FDR
estimation. Resampling strategies may better estimate
the underlying distributions of the test statistics. How-
ever, due to small sample size and data correlation, the
limited number of permutations and resampling bias
[13] also influence the FDR estimation.

To address the above problems, we propose a novel
extrapolative recalibration procedure called Con-
strained Regression Recalibration (ConReg-R) which

0
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models the empirical distribution of p-values in multi-
ple hypothesis testing and recalibrates the imprecise p-
value calculation to better approximated p-values to
improve the FDR estimation. Our approach focuses on
p-values as the p-values from true null hypotheses are
expected to follow the uniform distribution and the
interference from the distribution of p-values from
alternative hypotheses is expected to be minimal
towards p = 1. In contrast, the estimation of the empiri-
cal null distributions of test statistics may not be accu-
rate as their parametric form may not be known
beforehand and their accuracy may depend on the data
and the resampling strategy used. ConReg-R first maps
the observed p-values to predefined uniformly distribu-
ted p-values preserving their rank order and estimates
the recalibration mapping function by performing
constrained polynomial regression to the k highest
p-values. The constrained polynomial regression is
implemented by quadratic programming solvers.
Finally, the p-values will be recalibrated using the nor-
malized recalibration function. FDR is estimated using
the recalibrated p-values and the 775 can be determined
during ConReg-R procedure. We demonstrate that our
ConReg-R procedure can significantly improve the esti-
mation of FDR on simulated data, and also the environ-
mental stress response time course microarray datasets
in yeast and a human RNA-seq dataset.

Methods

Under the null hypotheses, the p-values are uniformly
distributed. Hence, ConReg-R first generates the uni-
formly distributed p-values within [0, 1] range.

Uniformly distributed p-value generation
Let p; denotes the p-value of the i"test (i = 1, ..., n),
without loss of generality, we assume p; = ps > ... > p,.
If we choose a suitable k <u such that the i null
hypothesis H(()i)(i < k) is most likely true, then py, ..., px
correspond to the order statistics of k independent
uniformly distributed random variables provided p,’s
i(i = 1, ..., k) are correctly estimated.

Let p; denote the ideal p-values under Hg)(i < k) and

suppose p), is known. pi(i < k) can be defined as

i—1 o
pi:l—k_l(l—pk),1=1,...,k. 2)
Therefore, pi(i < k) are uniformly distributed over
(P 1)
Then
. k
o ®3)

T (1 —py)
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Using (3), (2) becomes

, i—-1 &k

11— . i=1,...,k 4
pi _— nr?ol k (4)

Since k is usually large, k/(k - 1) is almost 1, therefore
piin (4) can be approximated as

piEl—  i=1,...,k (5)

We can estimate the recalibration function f{-), to be
described below, between {p;}?zl and {pi}f=1 and apply it
to all input p-values to output the recalibrated p-values,
peli=1,...,n)ie.

Pl = f(p)i=1,...,n 6)

By Stone-Weierstrass theorem [14], polynomial
functions can well approximate any continuous function
in the interval [0,1]. Therefore we use polynomial regres-
sion to estimate the recalibration function f{-) satisfying
appropriate boundary and monotone constraints.

Constrained Regression Recalibration (ConReg-R)
Let y; = p; and x; = p;(i = 1 ... k), and the recalibration
polynomial function f{:) is defined as follows,

yi=fx) =Y Bl + & )

j=0

The constraints f(0) = 0, f (1) = 1 and f (x) >0 should
be imposed to ensure the orders of the p-values remain
the same after the transformation. Furthermore, the
constraint for either f” (x) >0 or f” (x) <0 indicates the
function fshould also be a monotonic convex or mono-
tonic concave function to deal with the situations with
under-estimated or over-estimated p-values separately
and helps in good extrapolation. The constraints f (0) =
0 and f (1) = 1 can be easily met by scaling and shifting
the regression function. Therefore, the regression func-
tion only depends on the other two constraints which
can be combined into one constraint during the regres-
sion procedure.

Quadratic programming (QP) [15] is employed to
estimate the regression function as follows: Let y =

(yl’ ) yk)Tr ﬁ = (ﬁO! ) ﬁt)T and

1Txpx2 - x)
X =

1o xf -
Equation (7) can be rewritten more succinctly as

y=f(X)=XB+e (8)
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and the constrains for the first and second order
derivatives of f (X) will be AB > b where b = (0, ..., 07f
is a 2/ x 1 vector and

01 2a tat™!
D : : P
A= 01 2aq --- Ctal o
- (=1)t(t — 1)a3

00(—1)2--

00 (—i)cz (—l)ct(t.— 1)a;?

is a 2/ x (t + 1) matrix, where ay, ..., a; are [ randomly
generated numbers following (0, 1) to guarantee

this constraint is valid in (0, 1), and ¢ is chosen to be
0 (or 1) if f is desired to be convex (or concave
respectively).

The least squares procedure for (8) will minimize

lly — XBl13 = (y — XB)" (y — XB)
=@y - B X")(y-XB) =y'y—y'Xg— g'X"y + p'X"XB (9)
= BTXTXB — 2y"XB +¥'y.

Minimizing (9) under AB = b is equivalent to mini-

mizing
Wp) = )BT Qp +a'p (10)

under AB > b, where Q = X* X and q = -X" y.
Therefore, the constrained polynomial regression pro-
blem can be reformulated as a quadratic programming
problem.

Two further modifications

We use QuadProg package in R to solve the quadratic
programming problem [16]. Due to floating point errors
[17], Q = XT X tends to be positive semidefinite instead
of being positive definite. To get around this, we add a
sufficiently small positive value (A = 10'°) to the
diagonal of Q to guarantee

Q' = Q + Al is positive definite and Q’ replaces Q in
(10).

Furthermore, the polynomial function may not accu-
rately fit the data due to the limitation of the polynomial
maximal power (usually set the maximal power ¢ = 10).
We can add the fraction of the power (i.e. a non-integer
power) to increase the accuracy of the fit. For example,

mt :
let f(x;) = Z]’—o ,Bjxi»/m + &j, where m = 1, 2 or more.
Computational procedure

For any given k, after applying ConReg-R, the estimation
of 7y and its variation (error) are given by

. . i
#o(k) = median <{n(1 _ e }f_1> (11)
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and

i
20(t) = MAD N
Citg (k) <{ n(1 — ptl) }11)

where MAD denotes the median absolute deviation.
The final regression function and optimal k(ky.s;) are
determined by examining 77o(k) and €#(k) over k. Figure
1 illustrates how to choose k. from the function 7o (k).
Ideally, 7o(k) is not expected to change over a range of
k (as shown by the blue dashed line in Figure 1) such
that py, ..., pr are most likely to be from null hypotheses.
If k is too large, p;, ..., px may contain too many
p-values from alternate hypotheses and 7p(k) may be
wrongly estimated to be close to 1, in an extreme case if
k is chosen to be n then 7p(k) = 1. However, the extra-
polation in recalibration procedure may be unreliable if
only a small number of p-values (i.e. small k) are used
for the regression and 7p(k) may fluctuate near the real
7y (the red curve in Figure 1). Therefore, we aim to
choose optimal k(k,.s;) as a trade-off to include just
enough p-values from null hypotheses for the regression
to achieve good extrapolation. The k that gives stable
estimate (ez,(r) < 8) and the last minimum of 7o (k) is
chosen to be the k.. The regression function, extrapo-
lation and 77o(k) corresponding to k = k. are chosen
for recalibrating p-values and re-estimating FDR.

The following is the computational procedure for a
given {p;}; in descending order:

(12)

n
1. For each k=v,2v,---, [v v (v is the interval over

k and default setting is v = [1/100]), let 77y = 1.
2. Use equation (5) to compute {p/}* .

1.0

0.8

0.6

0.2

kbest

0.0

1 k 7

Figure 1 lllustration of choosing kpes; using k vs. 77o(k) plot.
The blue dashed line indicates the ideal 71y estimated for different
choice of k. The red curve indicates the actual 77g (k).
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3. Use quadratic programming to obtain regression
function 4y, where ¢ can be predefined or estimated
by checking whether more than half of points for
(pi, ;) are above the diagonal (line from origin to
(1, 1)) (¢ = 1) or below the diagonal (¢ = 0).

hi(-) — h(0)
hi(1) — 1 (0)
constraints f;(0) = 0, and f;(1) = 1.

5. Repeat steps 2-4 for all k, and compute the 7y(k)
and €#,(k) for each k. Let k.s; be the maximal of k
which locally minimizes 77y under the constraint of
small €z, where the cutoff of €z, and local minimiza-
tion criteria should be predefined.

6. Choose the final regression function f (.) under
kpess and output recalibrated p-values.

7. Re-estimate the FDR using recalibrated p-values
and ﬁ'o = ﬁo (kbest)'

4. Transform hy to fi() = to satisfy

R-code for ConReg-R is attached as Additional file 1.

Results

Dependence simulation

Data dependence is one of the major causes for over- or
under-estimated p-values. We simulated an expression
data, with dependence, Z = (z; )(i = 1, .., n,j = 1, ..., 1)
with # (n = 10000) genes and r(r = 10) replicates using
the formula as follows,

Zi]' = bi + di]' + E-,‘ij

where b; denotes the biological effect, d;; denotes the
dependence effect. Set b; = 1, if i < n(1 - ) and b; = 0
ifi >n(1-m). d.=(1,1,1,0,0,0,0, -1, -1, -1) if

n
i< [2] and d;. = (-1, -1, -1, 0, 0, 0, 0, 1, 1, 1) if

i> [Z]) &5 ~ N(0, 1) is the background noise.

To compare the result, we also simulated a data set
with no dependence using the same procedure but with
the dependence effect d;; = 0. One sample t-test was
performed to generate p-values. Figure 2 shows the
p-value density histograms for 7y = 0.7 and 75 = 0.9. As
can be seen in the plots B and D in Figure 2, the
p-value histograms from independent data have constant
frequency for p > 0.5 and the density near 1 indicates
the 7. However, the p-value histograms from depen-
dent data (the plots A and C in Figure 2) do not have
such constant frequency and p-value density increases
as p-value increases in the neighborhood of 1. The
density near 1 exceeds the respective 7.

ConReg-R used the above p-values as input and
output the recalibrated p-values. The results are sum-
marized in Figure 3. For the independent data sets, the
algorithm chose k = 0.71x for 7y = 0.7 and k = 0.64n
for my = 0.9 since it locally minimized 7, under
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Figure 2 The density histograms of dependent datasets and
independent datasets at m, = 0.7 and m, = 0.9, and the gray
horizontal line indicates the m, for each dataset.

7o(k). The p-values do not significantly change after
regression. As such, the regression curves almost overlap
with the diagonals, and the input p-value histogram and
the output p-value histogram are very similar to each
other. The FDR estimation errors (the absolute differ-
ence between FDR estimated by p-values and real FDR)
also do not significantly change after applying ConReg-R
and the estimation of FDR is very close to the real FDR.
However, for the dependent data sets, the algorithm
chose k = 0.62n for m, = 0.7 and k = 0.88#n for my = 0.9.
The regression curves are all below the diagonals and
the output p-value histograms after applying ConReg-R
appears more like the ones obtained for the independent
data. The accuracy of estimated FDR after applying
ConReg-R is substantially improved.

To study more complicated dependency situations, we
generated dependent datasets with random dependence
effect [8] as follows,

zij = p(bi +dj) + (1 = p)e;

where p is the correlation constant (here we set p =
0.5) which determines the correlation coefficient
between genes. Here b; denotes the biological effect, and
d; denotes the random dependence effect. Set b; = 1, if i
< n(l - m) and b; = 0 if i > n(1 - mp), and d; ~ N(O, 1).
Let &; N(0, 1) be the background noise. The result for
719 = 0.7 and g = 0.9 are shown in Additional File 2,
Figure S1. Similar to the simulations of fixed depen-
dence effect, the estimated FDR after applying ConReg-
R is closer to real FDR. The results of our procedure for
100 repeated simulations are summarized in the box-
and-whisker plots in Figure 4. As shown in this figure,
for the independent data sets, the FDR estimation errors
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(the mean absolute difference between real FDR and the
FDR estimated by p-values using Benjamini-Hochberg
method) after applying ConReg-R is slightly higher.
However, it is still acceptable since most simulation
resulted in errors below 0.05. For the dependent data
sets with fixed and random dependence effects, the FDR
estimation errors after applying ConReg-R are signifi-
cantly less than those without applying ConReg-R. The
FDR estimation for 7y = 0.9 is even closer to real FDR
after applying ConReg-R compared with the result for
7y = 0.7 because of more p-values used for regression
and less number of p-values for extrapolating in datasets
of 1y = 0.9.

Combined p-values simulation

In many analyses, more than one dataset are involved
and a meta-analysis by combining p-values from differ-
ent studies or datasets is needed to estimate the overall
significance for each gene. For example, (i) to find genes
which are significant in at least one experiment, minimal
p-values will be of interest; (ii) to identify genes which
are significant across all the experiments, the maximal
p-values will be of interest; and (iii) in order to detect
genes which are significant on average, the product of
p-values will be appropriate. The distribution of com-
bined p-values will not be uniform even under true null
hypotheses [18]. For currently used meta-analysis meth-
ods, such as “minimal”, “maximal” or “product”, we can
obtain the transformation functions to recalibrate the
combined p-values to satisfy the condition of p-values
are uniform distributed under true null hypotheses.
However, for other more complicated meta-analysis
methods, the transformation function cannot be deter-
mined accurately leading to under- or over-estimation
of significance, and ConReg-R can provide the polyno-
mial function approximation for the unknown
transformation.

Suppose for gene i, the p-values p;; (j = 1, 2, ..., L) follow
the uniform distribution over (0, 1), then 1 - (1 - pyin)* ~
U0, 1) and pfmx ~ U(0, 1), where pin = min(p;1, pis ...
pir) and prax = max(p;y, pia, - Pir)- For the p-values from

“« ” L 2 .
product” method, —2 E ] 1log(p,'j) ~ x;1. according to
=

Fisher’s method [19].

For each meta-analysis method, we simulated two data
sets Z° = (05 ) Z=(z5 )i=1 .,mj=1 .,r) with
n(n = 10000) genes and r(r = 10) repeats based on the
formula as follows,

Zjj = bi + &jj

where b; (b; = 1, if i < n(1 - my) and b; = 0 if i > n(1 -
o)) denotes the biological effect, both d;; . N(0, 1)
and ¢; N(0, 1) are the background noise. The individual
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Figure 3 The procedural steps for the independent and dependent datasets at m, = 0.7 and 7, = 0.9. The plots in first row show the 77
and €z, at different k/n. The blue curve indicates 7t and the black curve indicates €z, the red horizontal line indicates the cutoff of €z, (here
we used 0.05), the red vertical line indicates the choice of k/n at which locally minimized ﬁo under €z, < 0.05 is obtained. The plots in second
row show the regression procedure. The black thick curve indicates the (Pi/ p:) i=1, ., kand the blue curve is the regression line hy(), and the
red curve is the regression line f () after transformation. The plots in third and fourth row show the p-value histograms before and after
applying ConReg-R and the gray horizontal line indicates the 71o. The plots in last row show the FDR estimation errors between real FDR and the
FDR estimated by p-values before (black) and after applying ConReg-R (red).

p-values are computed from two-sample t-test and the
combined p-values are calculated by L(L = 3)
simulations.

To compare the results, we also included two other
transformation methods, “square” and “square root”. All
methods are listed in Table 1.

The two p-value histograms for each 7y = 0.7 and 7,
= 0.9, and for each of five different methods are plotted
in Figure 5. It can be seen from Figure 5 that the
p-value histograms after theoretical transformation have
constant frequency after 0.5 and the p-value density
near 1 indicates the 5. However, the p-value histograms
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Figure 4 Boxplots of FDR estimation errors (the mean difference between real FDR and the FDR estimated by p-values) for 100
simulations of independent and dependent datasets at m, = 0.7 and m, = 0.9 before (input) and after applying ConReg-R (calibrated).

from “Min”, “Square”, “Prod” shifted towards 0 and the
p-value histograms from “Max”, “Sqroot” shifted towards 1.

ConReg-R used the above combined p-values as input
and the results are shown in Additional File 2, Figure S2
(mo = 0.7) and Additional File 1, Figure S3 (7o = 0.9).
From Figure S2 and Figure S3, the regression curves are
monotonic concave functions for “Min”, “Square”,
“Prod” and monotonic convex functions for “Max”,
“Sqroot”. The histograms after applying ConReg-R are
also very similar to the theoretical transformed p-value
histograms. The FDR estimation improved significantly
after applying ConReg-R. It shows that the estimated
EDR after applying ConReg-R is more likely to be the
real FDR. The results of using our procedure for 100
repeated simulations are summarized in Figure 6. The

Table 1 Combined p-values methods [18].

Method  Formula Transformation
Min Pmin = mm(ﬂm Pi2i P/L) 1'(]"pm/n)L
Max Proan = Max(Ppr, Pios i Pit) pfnax
2
Square Psq = P \/2qu
Sgroot Psare = \/Piy Piqr L ,
Pod  Ppproa = [ ] Py -2 Zj:l log(pij) ~ x5t

FDR estimation errors after applying ConReg-R are sig-
nificantly less than those obtained without applying
ConReg-R.

Yeast Environmental Response Data

Yeast environmental stress response data generated by
[20,21] for nearly 6000 genes of yeast (S. cerevisiae) was
aimed at understanding how yeast adopts or reacts to
various stresses present in its environment. We selected
10 datasets: (1) Heat shock from 25°C to 37°C response;
(2) Hydrogen peroxide treatment; (3) Menadione
exposure; (4) DTT exposure response; (5) Diamide
treatment response; (6) Hyper-osmotic shock response;
(7) Nitrogen source depletion; (8) Diauxic shift study;
and, (9-10) two nearly identical experiments on station-
ary phase. We used Limma (Linear Models for Microar-
ray Data) [12] package in R to compute p-values for
responsiveness of genes for each dataset.

The p-value distribution for each dataset is shown
in Additional File 2, Figure S4. As can be seen in
Figure S4, the majority of the p-value histograms do not
have similar frequency after p = 0.5, and the density
near p = 1 is less than my = 0.5. This implies that the
p-values were under-estimated and the number of sig-
nificantly responsive genes under these environmental
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and mm, = 0.9 before (input) and after applying ConReg-R (calibrated).

stresses should be less than observed. We applied Con-
Reg-R on the p-values of each dataset. Our result shows
that the histograms of recalibrated p-values obtained by
applying ConReg-R are better than without recalibra-
tion, and 7, estimations are all above 0.5 (Figure S4).

We use a true positive set of 270 genes from [22] to
compute true FDR (FDR"). This is the intersection of
core environmental stress response genes obtained by
co-regulation study in [21] and the yeast orthologs of S.
pombe stress response genes. These 270 genes have
been used as the true positive sets in other studies
[23,24]. The true FDR is calculated based on this 270
gene list and we calculated the improvement of FDR
estimation (FDR;,,) for each dataset after applying
ConReg-R. The FDR,,, is defined as followed:

i, |[FDR? — FDR!| — 3", |[FDR} — FDR|

FDR;,y, =
" S |[FDR? — FDR]|

where FDRil (respectively, FDR?) is the estimated FDR
by recalibration (respectively, input) p-values for gene
i(i = 1 .. n); and FDR! is the true FDR for gene i.

The improvements in FDR estimation for all 10 data-
sets are shown in Figure 7. After applying ConReg-R,
FDR estimation improved by 15% to 25% which means
that the FDR estimation will be closer to the real FDR.

We performed the meta-analysis for 10 datasets to
detect the core environmental stress response genes
using “maximal” method. The combined p-values are
computed by the maximal p-values across 10 datasets,
and then transferred to meta analysis p-values by trans-
formation function in Table 1. The p-value density

histograms for meta-analysis before and after applying
ConReg-R are shown in Figure 8. The meta-analysis
p-values show better distribution after first applying
ConReg-R to each dataset and then perform the meta
analysis. And FDR estimation improved by 38.5% after
applying ConReg-R.

Significance Analysis of Differential Expression

from RNA-seq Data

The next-generation sequencing technologies have been
used for gene expression measurement. In [25], the
authors compared RNA-seq and Affymetrix microarray
experiments and claimed that the sequencing data iden-
tified many more differentially expressed genes between
human kidney and liver tissue samples than microarray
data using the same FDR cutoff. In total, 11,493 signifi-
cant genes were identified by RNA-seq (3380 more
genes than Affymetrix), only 6534 (56.9%) genes were
also identified by Affymetrix experiments. By checking
the p-value histograms for RNA-seq dataset, we found
that majority of p-values are very significant and its fre-
quencies are very non-uniform for p >0.5. However, the
p-value histogram for Affymetrix datasets is close to
uniform for p >0.5 (Additional File 2, Figure S5).

We applied ConReg-R to recalibrate the p-values
obtained from RNA-seq datasets and re-estimated the
FDR. We found 9481 significantly differentially
expressed genes (only 1368 more genes than affymetrix)
at FDR < 0.1%. Among them, 6266 genes (66.1%) were
also identified by Affymetrix experiments. There is an
increase of 9.2% overlap after application of ConReg-R
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Figure 7 Improvements in FDR estimation for yeast environmental response datasets.

(Figure 9). The FDR estimation is improved by 20% after
applying ConReg-R if we used significant genes identi-
fied by affymetrix experiments as the true positive set.

Discussion

ConReg-R focuses on the uniformity of p-values under
null hypotheses and uses constrained polynomial regres-
sion to recalibrate the empirical p-value distribution to
more well-defined p-value distribution. Therefore, the
FDR estimation can be improved after the recalibration
since the assumption of FDR estimation is that the
input p-values should follow such an ideal empirical
p-value distribution under null hypothesis. If the input
p-values follow the properties of ideal empirical p-values

distribution, the regression function tends to be diagonal
line (i.e., ¥ = x) and the p-values do not change consid-
erably after recalibration.

Though our method is discussed in the context of
global FDR control, it is equally applicable to the other
FDR like controls such as local FDR. Our method does
not provide any new FDR control, but inputs better

Sequencing Both technologies | array
4.959 6.534 1,579
3.215 6,266 1,847
(19.24%)

Figure 9 A Venn diagram summarizing the overlap between
significantly differentially expressed genes identified by
sequencing (left circle) and microarray (right circle)
technologies. The numbers in black are the numbers reported in
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Figure 8 The p-value density histograms for meta-analysis
("Max") before and after applying ConReg-R using yeast
environmental response datasets. The gray horizontal line
indicates 1, = 0.5 for each plot.

[25]. The numbers in red are the numbers after applying ConReg-R.
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calibrated p-values to the existing FDR estimators to
improve their efficacy.

In ConReg-R, the cutoff of €z, and local minimization
criteria can be changed for choosing the suitable k after
checking the plots of 7, and €. From the combined
p-values simulation, the regression function may not fit
the data well for the “Square” case. The fractional
power, such as 1/2, can be added in the polynomial
function to improve the fit.

The assumption that the regression function is convex
or concave can be useful to deal with the imprecise
p-values whose distribution is biased towards 1 or 0
respectively. These are the most common cases of the
p-values being under-estimated or over-estimated. How-
ever, in some cases, the p-values can be under-estimated
in one range of p-values and over-estimated in the
remaining range of p-values. These p-value distributions
may have peak or valley in the middle of the p-value
range or even have multiple peaks. The regression func-
tion will then no longer be convex nor concave. Regres-
sion function to handle this situation is currently under
study. Our ConReg-R can be generalized to an iterative
weighted least squares method (e.g. decreasing weights
from 1 to n). The weight program in the current version
of the ConReg-R is assigning a weight of 1 for all
p-values from 1 to k and a weight of 0 for the rest.
Furthermore, different optimization schemes also need
to be experimented. These will be explored in our future
work. The distribution of p-values from multiple testing
can be modeled by the mixture of uniform distribution
and some other well-defined distribution such as Beta
distribution [5]. The parametric recalibration method is
under development. The discrete p-values from some
nonparametric tests cannot be modeled by mixture
model and new procedure should be explored to resolve
this kind of problem.

Reviewers’ comments

Reviewer’s report 1

Prof. Vladimir Kuznetsov, Bioinformatics Institute,
A*STAR, Singapore

Review

Major: Summary. Mathematical part of the manuscript
is major, but it is not convicted. Choosing the model (2)
is not justified. The used model assumes a uniform
distribution of the tail of FDR distribution is not correct
due to experimental data; the most empirical FDR distri-
bution exhibits the non-homogeneous fat tail as it was
showed in Suppl. 1.

Authors’ response: Thanks for your comment. The
p-value distribution under true null hypotheses follows
the uniform distribution if the data satisfy all
the assumptions of the hypothesis testing method [4].
However, the FDR distribution may not have similar
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property. The model (2) is based on the properties of the
p-value distribution, but not on the FDR distribution.
For experimental data, many factors influence those
assumptions and the p-value distribution may not have
uniformly distributed tail which is central to the paper.
We clarified this in paragraphs 2, 3 & 4 in page 2.

The final FDR distribution of combined p-value
function is not be uniform “even under true null
hypotheses”, because it is a mixture distribution of the
samples from different populations. If the samples are
taken from significantly different distributions with dif-
ferent sample size and possible batch effect (not
removed), does not allowed you to combine the datasets.
If the samples are taken from the same distribution, why
should not the p-value distributions be uniform (assum-
ing that they were uniform in the individual datasets
before merging)?

Authors’ response: In combined p-values simulation,
we assume p-values follow the uniform distribution for
each dataset under true null hypotheses. For each gene,
the overall p-value was obtained by combining its
p-values across experiments using different combination
methods which are typical non-parametric meta-analysis
methods. The combined p-value distributions are not
uniform which explains why another distribution is used
to derive the overall p-value [18). We clarified this in
paragraphs 1 and 2 in page 9.

Questionable statements

p-3

“Dependence among the test statistics is one of the
major factors”. It would be nice if you give examples of
the test statistics you are mentioning.

Authors’ response: We added the “t-statistic” as an
example in text (paragraph 1 in page 3). “large p, small
n problem”. Could you describe the meaning this
problem?

Authors’ response: “large p, small n” problem is the
problem that the number of variables (p) is much bigger
than sample size (n) which always occurs in gene
expression studies. We added one reference [11] for this
problem (paragraph 2 in page 3). The n and p used in
this context are different from that used in the discussion
throughout the paper.

“ConReg-R first maps the observed p-values to
uniformly distributed p-values”. From the context of this
paragraph it is unclear where the set of ‘uniformly dis-
tributed p-values’ is obtained from.

Authors’ response: We changed to “predefined
uniformly distributed p-values” (paragraph 3 in page 3).

p.4

“Let pi’ denote the ideal p-values”. How did you
decide that the ideal distribution of the p-values is a
linear function, as defined in eq2 and is data- and
test-independent?
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Authors’ response: piis the “ideal” p-values. By our
definition in equation 2, their distribution is exactly uni-
form distribution. The “ideal” p-values are predefined by
equation 5 and not related to any data or test. We clari-
fied this in paragraph 3 in page 4.

“the recalibration functions f() between p’:(1..k) and p:
(1..k) and apply it to all input p-values (i.e p:(1..n))”.
However, you mentioned before (p.3) that the distribu-
tion of p:(1..n) is a mixture of functions. Hence, how
technically valid is mapping the whole set p:(1..n) with a
function empirically estimated on a limited subset p:(1..
k) ? How do you ensure that the parameters of mapping
function f() estimated on the subset (1..k) are also valid
in the subset (k+1..n) ?

Authors’ respounse: This is the reason that we empha-
sized throughout the manuscript that our procedure is
extrapolative in nature. The constraints and the choice
of k in our procedure help the extrapolation reasonable
as shown in our simulations and real data. This is dis-
cussed in the methods section. However, we cannot guar-
antee that the mapping function is 100% valid for all
the data.

“By Stone-Weirstrass theorem, polynomial functions
can well approximate (a small typo here) any continuous
functions”. Before you defined p:(1..n) as a discrete set.
How do you ensure that the function defined on this set
continuous? Why quadratic programming is chosen for
polynomial approximation, but not linear? Why not
other function, e.g. cubic splines, sum of exponents with
least squares fitting?

Authors’ response: Since p-values are continuous, the
mapping function from p-values to p-values should be
continuous function. The discrete set p(1..n) is only a
sample set from p-values. We used quadratic program-
ming because the constraints are needed in approxi-
mation. We clarified it on last three paragraphs in
page 4. We agree that different optimization proce-
dures also can be chosen. But they are subject of our
Sfuture study.

p.5

“where ai,(i = 1,...1) are | randomly generated numbers
following U(0,1)”. Why do they need to be generated
randomly from U(0,1)? Since eq9 and eql0 are solved
for beta under A * beta >= b, the solution beta depends
on the random constrains A. “we add a sufficiently
small positive value (delta(Q) = 10-10) to the diagonal
of Q”. Since Q = XXT, this is equivalent to delta(X) =
sqrt(delta(Q)) = 10™.

Authors’ response: Since the range of x is (x, 1), we
generated a; from U(0,1) to guarantee the constraint A *
beta >= b is valid in (0,1). The points of constraints can
also be chosen uniformly throughout the range [0,1]. As
we chose 10000 points for constraints, the uniform
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selection or random selection may not make significant
difference. We clarified it on paragraph 3 in page 5. The
small positive value 6 = 1077 is not the determinant
value of Q. we changed the notation to A (paragraph 2
in page 6).

p.6

“the polynomial function may not accurately fit the
data due to the limitation of the polynomial maximal
power (usually set the maximal power t = 10)”. How do
you ensure that your approximating polynomial is not
over-parameterized?

Authors’ response: Since we approximate the
polynomial function with monotonic convex/concave con-
straints, the approximation is not over-parameterized. In
Additional File 2, figures S2 and S3, the quadratic and
cubic polynomial functions were well fitted by a polyno-
mial of t = 10.

“estimated piO(k) may oscillate near the real pi0”.
What is the source of the oscillations? Are they
periodic?

Authors’ response: The oscillation is due to the extra-
polation may be unreliable if less number of p-value are
used for regression. It may not be periodic. To better
reflect it, we changed the word to “fluctuate”. We clari-
fied it on paragraph 4 in page 6.

“the k closest to 1 that gives stable estimate”. What is
the definition of stability in this context? What numeri-
cal criterion do you use to detect the stability?

Authors’ response: We used error (7p)to define the
stability of the estimation, smaller error (7p)implies
more stable estimate. In results, we used error (7p)< 0.05
to detect the stability. We clarified it on paragraph 1 in
page 7 and paragraph 2 in page 8.

p-7

“As can be seen in the panels B and D in Figure 2.
On Figure 2 the panels are not named. On Figure 3 all
the axes need to be labeled and legends for the blue and
the red lines should be added. Overall, the description
of the results presented on Figure 3 is not
comprehensible.

Authors’ response: We changed “panels B and D” to
“plots B and D” (paragraph 3 in page 7) and updated in
Figure 2. We added the labels and legends for Figure 3.

p.8

“Combined p-values simulation”. The whole subsec-
tion needs to be described in the “Methods” section,
since it introduces novel numerical techniques. In this
subsection when you state “FDR improved by XX%”, it
could be good to show the particular FDR values before
the improvement and after the improvement as well.
The p-value distributions for the sets of experimental
data would better be shown in the paper, rather than in
supplementary materials.
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Authors’ response: The methods section described the
ConReg-R method and the combined p-value simulation
subsection shows the simulation result by applying
ConReg-R. So we think it is suitable in the result section.
The particular FDR values before and after applying
ConReg-R have large numbers and it is not possible to
summarize by one table. So we used improvement
percentage to show the efficacy of ConReg-R. The
Figure S1 now becomes Figure 5in the paper.

“In many analyses ...the product of p-values will be
appropriate”. Where do these examples come from?
Especially, since pl * p2 <min(pl, p2), it’s not logical
that the p-value of significance across, at least, half of
the experiments is lower than the p-value in all the
experiments.

Authors’ response: The product of p-values is based
on Fisher’s method for combining independent tests of
significance (reference [19]). The combined p-values for
product and minimal method are not comparable before
transformation.

“The distribution of combined p-values will not be
uniform even under true null hypotheses”. If the sam-
ples are taken from significantly different distributions
(i.e the batch effect was not removed), what allowed you
to combine the datasets? If the samples are taken from
the same distribution, why should not the p-value distri-
butions be uniform (assuming that they were uniform in
the individual datasets before merging)?

Authors’ response: Please see our response to the 2nd
comment.

Reviewer’s report 2
Prof. Philippe Broet, JE2492, University Paris-Sud,
France

This reviewer provided no comments for publication.

Reviewer’s report 3
Prof. Hongfang Liu, Department of Biostatistics, Bioin-
formatics, and Biomathematics, Georgetown University
Medical Center, NW, USA

This reviewer provided no comments for publication.

Additional material

Additional file 1: The R functions for ConReg-R. This file contains the
R functions for ConReg-R.

Additional file 2: Supplementary figures. This file contains
supplementary figures: Figure S1 to S5.
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