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Oscillatory dynamics in a model of vascular
tumour growth - implications for chemotherapy
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Abstract

Background: Investigations of solid tumours suggest that vessel occlusion may occur when increased pressure
from the tumour mass is exerted on the vessel walls. Since immature vessels are frequently found in tumours and
may be particularly sensitive, such occlusion may impair tumour blood flow and have a negative impact on
therapeutic outcome. In order to study the effects that occlusion may have on tumour growth patterns and
therapeutic response, in this paper we develop and investigate a continuum model of vascular tumour growth.

Results: By analysing a spatially uniform submodel, we identify regions of parameter space in which the
combination of tumour cell proliferation and vessel occlusion give rise to sustained temporal oscillations in the
tumour cell population and in the vessel density. Alternatively, if the vessels are assumed to be less prone to
collapse, stable steady state solutions are observed. When spatial effects are considered, the pattern of tumour
invasion depends on the dynamics of the spatially uniform submodel. If the submodel predicts a stable steady
state, then steady travelling waves are observed in the full model, and the system evolves to the same stable
steady state behind the invading front. When the submodel yields oscillatory behaviour, the full model produces
periodic travelling waves. The stability of the waves (which can be predicted by approximating the system as one
of l-ω type) dictates whether the waves develop into regular or irregular spatio-temporal oscillations. Simulations
of chemotherapy reveal that treatment outcome depends crucially on the underlying tumour growth dynamics. In
particular, if the dynamics are oscillatory, then therapeutic efficacy is difficult to assess since the fluctuations in the
size of the tumour cell population are enhanced, compared to untreated controls.

Conclusions: We have developed a mathematical model of vascular tumour growth formulated as a system of
partial differential equations (PDEs). Employing a combination of numerical and analytical techniques, we
demonstrate how the spatio-temporal dynamics of the untreated tumour may influence its response to
chemotherapy.

Reviewers: This manuscript was reviewed by Professor Zvia Agur and Professor Marek Kimmel.

Background
Experimental observations suggest that blood vessels in
solid tumours may be affected by the mechanical stress
exerted on them by tumour cells. Immature vessels lack-
ing pericytes are especially likely to be structurally
unstable [1]. As a tumour grows, the burden from
tumour cells may cause the diameters of immature ves-
sels in the tumour’s interior to decrease [1,2]. Indeed,
completely collapsed, or occluded, vessels - those with a
closed lumen - are found more frequently at higher
tumour cell densities [1,2]. On the other hand, if

tumour cells are killed with cytotoxic therapy, the pres-
sure on the vessels reduces, and vessel recovery may
occur: the diameter of the vessels increases and the
number of occluded vessels decreases [1,2].
The model we develop in this paper is of reaction-dif-

fusion type and describes a vascularised tumour growing
in a one-dimensional spatial domain. We use the model
to investigate how tumour cells and blood vessels may
interact and influence the overall tumour growth
dynamics. We assume that the tumour relies on oxygen
delivered via the vasculature for sustained growth. The
vascular density increases due to tumour angiogenesis,
while it decreases due to vessel destabilisation and
occlusion at a rate which is an increasing function of
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the ratio of tumour cell density to vessel surface area
(reflecting the experimental observations mentioned
above). Previously, other authors have used mathemati-
cal models to study vessel occlusion in tumours. As in
our model, in the multiphase model developed by Bre-
ward et al. [3] angiogenesis and vessel occlusion act as
opposing forces that regulate vessel growth, with vessel
occlusion being switched on smoothly when the pres-
sure exerted on the vessels by the cells exceeds a critical
value. Although their model couples vessel and tumour
cell dynamics, no oscillatory behaviour was reported -
only stable growth dynamics were observed [3]. An
alternative approach to modelling vessel occlusion was
proposed by Araujo and McElwain, who developed a
continuum-mechanical model in which vascular collapse
is linked to the evolution of residual stress within the
growing tumour [4]. In this model interactions between
the tumour and (the implicit) vasculature (which is
represented by a prescribed nutrient distribution) may
generate oscillations in the tumour radius, albeit of very
small amplitude [4].
Analysis of the model we derive in this paper reveals

that the interplay between a tumour and its blood ves-
sels may lead to strongly oscillatory dynamics. In parti-
cular, oscillations in the model variables arise if the
vessels are structurally unstable, and thus are prone to
occlusion (as opposed to stiffer and less compliant ves-
sels which yield stable steady state solutions). The oscil-
lations in our model are sustained by repeated cycles of
tumour expansion and vessel occlusion, followed by epi-
sodes of tumour cell death and vessel recovery. As the
tumour cells spread and colonise the spatial domain,
regular or irregular spatio-temporal oscillations develop.
These complex spatio-temporal dynamics may contri-
bute to the reported spatio-temporal heterogeneity that
characterises many vascularised solid tumours. Pre-
viously, oscillatory dynamics have been reported, for
example by Arakelyan et al., who developed a spatially-
averaged ordinary differential equation (ODE) model of
tumour growth [5]. Validation of the model was
obtained from MRI data describing the growth of
implanted human ovarian carcinoma [6]. Furthermore,
spatio-temporal irregularities have been observed in
models which describe various aspects of the immune
response to tumours [7-9].
Although our model does not explicitly account for

blood flow, the highly irregular oscillations in vascular
density and oxygen levels that the model generates are
consistent with oxygen concentrations in tumours
whose blood flow is chaotic. Chaotic blood flow is
believed to be one of the main barriers to drug delivery
[10], and the decreased vascular surface area and
impaired blood flow of occluded vessels may also be
detrimental to delivery [2,11]. So as to gain insight into

therapeutic implications, we investigate the impact of
chemotherapy on the tumour. We focus on the cyto-
toxic drug doxorubicin, a widely used anti-cancer agent
which may be used in free form or encapsulated in lipo-
somes [12,13]. Several models of doxorubicin adminis-
tration have been developed [12,14,15]. For example, in
[12] a compartmental model is used to compare the effi-
cacy of free doxorubicin delivery versus liposome-bound
delivery. The model in [12] distinguishes between vascu-
lar (plasma), extracellular and intracellular doxorubicin
concentrations, accounting for the fact that the drug
must enter the cells to be effective. A similar approach
is used in [14] where cell kill depends on the amount of
doxorubicin trapped within the cells. However, neither
model accounts for both tumour cell proliferation and
vascular remodelling, thus neglecting any effects that
interactions between these phenomena are likely to
induce.
On the contrary, our investigation concentrates on

applying chemotherapy in different tumour growth sce-
narios, and shows how the intrinsic system dynamics
(oscillatory or non-oscillatory, corresponding to compli-
ant or non-compliant vessels, respectively) may alter
treatment outcome. Specifically the ways in which the
system recovers from therapy are found to vary mark-
edly. This is consistent with simulations in [15] where
the dynamics of tumour growth were modelled using a
multiscale hybrid cellular automaton, and where the sys-
tem’s therapeutic response was influenced by the vessels’
maturation status.
We organise this paper as follows. In Methods we

develop our model of vascular tumour growth. In
Results we show how, in a spatially homogeneous ver-
sion of our model (in which spatial effects are neglected
and fast kinetics are assumed for oxygen), the tumour
cell population and the vessel density evolve to a stable
co-existence equilibrium, or, if the steady state is
unstable, undergo oscillations (the latter occurring when
the maximum rate of vessel occlusion exceeds a critical
value). Then, by reintroducing spatial effects, we investi-
gate the way in which a small population of tumour
cells seeded at one end of the domain invades the tissue.
In agreement with analysis of other reaction-diffusion
systems, we find that the form of the solutions behind
the invading tumour cell front depends on the stability
of the spatially homogeneous co-existence steady state
behind the front [16]. Specifically, when the co-existence
steady state is stable, the system evolves to this stable
equilibrium in the wake of the invading front. In con-
trast, in the case of an unstable co-existence steady
state, the system is subject to either regular or irregular
oscillations. We are able to predict the type of oscilla-
tions that will arise for particular model parameters by
analysing a system of l-ω type that approximates the
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dynamics close to the unstable steady state; this
approach has previously been applied by Sherratt [17].
We then investigate the effect of chemotherapy. We
conclude with a discussion of our results, and sugges-
tions for future research.

Methods
The model we develop describes the growth of a solid
tumour embedded in a vascularised tissue in a one-
dimensional spatial domain of length L; this can be
thought of as a two-dimensional domain which is spa-
tially averaged in one direction. The spatial variable is
denoted by x, so that 0 ≤ x ≤ L. We assume that the tis-
sue composition can be described by the following
dependent variables: the density of tumour cells, p(x, t);
the vascular density, v(x, t); and the concentration of
oxygen, s(x, t). The units of p are taken to be cells per
unit volume. Following [18] the vascular density is mea-
sured in units of vascular surface area per unit volume.
Furthermore, following [19], we measure the oxygen
concentration in units of volume of oxygen per unit
volume. To model chemotherapy we introduce the vari-
ables cb(t) and c(x, t) which denote the concentration of
drug in the bloodstream and in the tumour tissue,
respectively. The units of these concentrations are taken
to be mass per unit volume. While cb(t) is prescribed
and depends on the delivery mechanism being used
(single bolus or multiple boluses), the evolution of the
other model variables u (u = c, p, v, s) is determined by
applying the principle of mass balance which gives that
each u satisfies a partial differential equation (PDE) of
the following form (see e.g. [20]):

∂
∂

= − ∂
∂

+u
t

Ju
x

fu , (1)

where Ju denotes the flux and fu represents the net
sources and sinks of species u. In what follows we adapt
equation (1) for our dependent variables.

Tumour cells, p(x, t)
For tumour cells, the function fp incorporates cell division
and cell death. Oxygen is assumed to be the single rate-
limiting nutrient that regulates the rate of tumour cell pro-
liferation. Since we expect that the rate at which the
tumour population increases by cell division is a saturating
function of oxygen [21], we assume that the proliferation
rate is of Michaelis-Menten type (see e.g. [20]), given by





sp
s s+

,

where b is the maximum proliferation rate per unit of
cell density and sb is the level of oxygen at which the
proliferation rate is half-maximal. We assume that cell

death occurs naturally due to apoptosis at rate dpp,
where dp is a positive constant. To account for tumour
cell death induced by the cytotoxic drug, we assume
that the drug kills proliferating cells in a concentration-
dependent manner [22] and that the maximum rate of
cell kill is equal to the rate of proliferation (a similar
assumption for the action of a cytotoxic drug was used
in [23]). We note that c = 0 implies that the rate of cell
proliferation is unaffected (i.e. all cells are proliferating
and there is no drug-induced cell kill), c = Kc implies
zero net contribution from proliferation (i.e. prolifera-
tion has ceased in half the cell population, which instead
dies), and c ® ∞ implies no contribution from prolifera-
tion (i.e proliferation has ceased in all cells, which
instead die). The precise mechanism by which doxorubi-
cin is anti-proliferative is not known, but it is in part
due to intercalation into DNA [22].
Regarding tumour cell movement, we allow for ran-

dom motion of the cells and so specify J Dp p
p
x= − ∂

∂
,

where Dp is the random motility co-efficient which is
assumed to be constant.
Taking these factors into account, we deduce that the

density of tumour cells, p(x, t), evolves according to the
following PDE:

∂
∂

= ∂

∂
+

+
−

+
⎛

⎝
⎜

⎞

⎠
⎟

p
t

D
p
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c
Kc cp

2

2
1 2

diffusion prolifera
 




ttion and drug-induced cell kill

apoptosis  
d Pp ,

(2)

where Kc is a positive constant denoting the concen-
tration at which the cell kill is half-maximal and Dp, b,
sb and dp are positive constants.

Tumour vasculature, v(x, t)
While not explicitly introducing VEGF or any other angio-
genic factor into our model, we assume that the tumour
stimulates angiogenesis in such a way that the vasculature
undergoes logistic growth characterised by a constant rate
of proliferation, h0, and a carrying capacity, V0. We note
here that a more realistic model of tumour-induced angio-
genesis could include VEGF (e.g. VEGF could be secreted
by the tumour cells, especially when the level of oxygen is
low). The level of angiogenesis could then be linked expli-
citly to the concentration of VEGF, for example by allow-
ing h0 to be an increasing, saturating function of VEGF.
However, since our goal is to gain insight into the
dynamics that arise from tumour cell proliferation and
vessel occlusion, we refrain from adding this extra com-
plexity and assume that h0 is constant (equivalent to
VEGF being maintained at a constant level).
Following [1], where occluded vessels were typically

surrounded by more tumour cells than open vessels,
we assume that the tumour vessels may become
occluded if the pressure exerted on them by the
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tumour cells becomes too large. In particular, we take
the rate of occlusion to be a saturating function of
Michaelis-Menten type of p/v, the ratio of tumour
cells per vessel surface area so that the rate of vessel
occlusion is given by





pv
K v p+

,

where the constant Kδ denotes the value of p/v at
which the rate of occlusion attains its half-maximal
value, δ/2.
To account for movement of the endothelial cells

(ECs) that constitute the vessels we include random
motion, assuming that this occurs with a constant diffu-
sivity co-efficient, Dv. Since VEGF is not explicitly
included in the model we neglect EC movement due to
chemotaxis.
Assembling the above terms gives the following PDE

for the density of tumour vasculature, v(x, t):

∂
∂

= ∂

∂
−

+
+v

t
D

v

x

pv
K v p

vv

2

2 0

random motion occlusion
   




 (( ),1

0
− v
V

logistic growth of vasculature
  

(3)

where Dv, δ, Kδ, h0 and V0 are positive constants.

Oxygen level, s(x, t)
We assume that the concentration of oxygen, s(x, t),
increases due to delivery from the vasculature. Transca-
pillary exchange of molecules from the blood occurs
mainly by diffusion and convection [24]. For simplicity
we suppose that diffusive effects dominate and that the
diffusive flux across the vessel wall is proportional to
the vascular surface area and to the difference between
the concentrations of the substance in the plasma and
in the interstitium [24]. Thus we model the delivery of
oxygen from the blood as hs(sb - s)v, where hs is the vas-
cular permeability constant [24], sb is the (assumed con-
stant) concentration of oxygen in the blood, s is the
concentration of oxygen in the tissue and v is the vascu-
lar surface area per unit tissue volume as explained
above. We note that as the oxygen flows through the
tissue the level of oxygen in the blood, sb, decreases
along each vessel due to the diffusive flux into the tis-
sue. However, since we do not account for vessel mor-
phology we make the simplifying assumption that sb is a
constant.
After transcapillary transfer, the transport of oxygen

within the interstitium occurs by diffusion and convec-
tion [24]. Neglecting the convective part for simplicity,
we assume that the transport of oxygen within the tissue
is via diffusion only so that J Ds s

s
x= − ∂

∂ .

We assume that oxygen is consumed by tumour cells,
at rate spps, and by other cellular species (e.g. fibro-
blasts and macrophages) resident in the tissue, at rate
dss. An alternative form for tumour oxygen consump-
tion could be obtained by assuming that the consump-
tion rate is of Michaelis-Menten type. By assuming that
ds > 0 we ensure that, in the absence of tumour cells,
the level of oxygen evolves to a finite, tissue-specific
equilibrium value. The particular value of the parameter
ds, and the associated equilibrium oxygen value, will be
tissue-specific and could vary as the tumour and the
surrounding stroma evolve.
When the above factors are combined, the PDE

describing the tissue oxygen concentration, s(x, t), is
given by:

∂
∂

= ∂

∂
+ −s

t
D

s

x
h s s vs s b

2

2

diffusion
delivery from blood 
 ( ) 

− − p sps d s

consumption by tumour cells consumption by o

,
tther cells



(4)

where Ds, hs, sb, sp and ds are positive constants.

Plasma level of drug, cb(t)
We assume that chemotherapy is administered into the
bloodstream either as a single bolus or as repeated
doses. We assume that only free doxorubicin is being
administered and that its concentration in the plasma
decays exponentially, so-called one-compartment model-
ling [15]. We denote by cb(t) the prescribed concentra-
tion of drug in the bloodstream and write

c t c eb init
kt( ) = − (5)

in the case of a single bolus and

c t c eb init
k t Tper( ) ( mod )= − (6)

in the case of multiple injections of period Tper. In (5)
and (6), cinit is the initial value of the blood drug con-
centration after a single bolus. Furthermore, the con-
stant k is related to the drug’s half-life in blood, T1/2, via

k
T

= ln

/

2

1 2

so that the drug decays exponentially after being
injected. In the case of multiple injections we assume
that the doses are such that the plasma concentration
regains its initial value at each injection (achieved math-
ematically in (6) by making the time variable modulo
Tper). More precisely, we assume T1/2 ≪ Tper, as is the
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case for doxorubicin administration, where the half-life
is roughly one day and the period is on the order of
weeks [15].

Concentration of drug in tumour tissue, c(x, t)
Guided by equation (4), we assume that c(x, t), the con-
centration of drug in the tumour, evolves according to
the following equation:

∂
∂

= ∂

∂
+ −c

t
D

c

x
h c c vc c b

2

2

diffusion
delivery from blood 
 ( )  − d cc ,

natural decay
(7)

where Dc, hc and dc are positive constants. In equation
(7) the vascular delivery term is similar to that intro-
duced for oxygen in (4), while the decay term represents
drug uptake by both tumour cells and other cells pre-
sent in the extracellular matrix.

Boundary and initial conditions
To summarise, our model comprises four coupled PDEs
defined by equations (2)-(4) and (7) and prescribed
plasma drug concentrations given by either equation (5)
or (6). For simplicity, and in order to understand the
dynamics, we consider a closed or isolated tissue in
which all behaviour arises due to the interaction terms.
Thus we impose no-flux boundary conditions of the
form:

0 0 0 0 0

0

= ∂
∂

= ∂
∂

= ∂
∂

= ∂
∂

= ∂
∂

= ∂
∂

c
x

t
p
x

t
v
x

t
s
x

t

c
x

L t
p
x

( , ) ( , ) ( , ) ( , )

( , ) (LL t
v
x

L t
s
x

L t

t Tfin

, ) ( , ) ( , )

[ , ],

= ∂
∂

= ∂
∂

∀ ∈ 0

(8)

where Tfin > 0 is an arbitrary time. These boundary
conditions imply that no cells, vasculature, oxygen or
drug leave the system through the tissue boundaries.
Unless stated otherwise, we use the following initial con-
ditions:

( ( , ), ( , ), ( , ), ( , ))
( , , , ) ,

( , , , )
p x v x s x c x

V s x

p V s x
i

i i
0 0 0 0

0 0 0

0
0

0
=

≠
==

⎧
⎨
⎩ 0,

(9)

where pi is an arbitrary constant and si = hssbv/(hsv +
spp + ds). This implies that the tumour cells are intro-
duced at the left-hand boundary of a tissue in which the
vasculature is at its carrying capacity, V0, and the oxy-
gen level is at quasi-steady state. In addition there is no
drug in the tissue initially. Before analysing the model it
is convenient to nondimensionalise it as explained in
the next section.

Nondimensionalisation
To nondimensionalise equations (2)-(6) and (7) we
introduce the following dimensionless variables:

c
cb
cinit

c
c

cinit
p

p
K V

s
s
sb

t
t

v
v
V

x

b
∗ = = = =

= = =

, * , * , * ,

*
/

, * *





0

1 0
and

xx
Dp /

.


(10)

Using the above rescalings the model equations
become:

∂
∂

= ∂

∂
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x
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∂
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+
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t
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where

d
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d
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D
Dc
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D
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D
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0
and

are dimensionless parameters. A discussion of the
parameter values that we use is contained in section A
of the Appendix (additional file 1).

Results
We first investigate the behaviour of a spatially homo-
geneous submodel. We then reintroduce tumour cell
and EC movement and use l - ω analysis to obtain
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insight into the spatio-temporal dynamics. We finish by
considering the response of the full system to
chemotherapy.

Spatially homogeneous submodel - no therapy
We obtain our spatially homogeneous submodel by
assuming that no chemotherapy is applied and by
neglecting spatial effects, i.e. assuming that c = cb = 0
and that the variables in (12)-(14) are functions only of
time. We also assume that the timescales inherent in
the oxygen equation are short in comparison to the
timescale for tumour growth (as for instance assumed in
[15]), i.e.

   ( ) ( ) ( ) ( ).1  h ds p s
∗ ∗ ∗= = (16)

Under this assumption (14) is in a quasi-steady state
so

s
v

v pp ds
*

*

* *
,=

+ +  (17)

where

 d
ds
hs

p

hs
s p= ∗ = ∗

*
,

*



(18)

are dimensionless parameter groupings. In what fol-
lows we omit the asterisks and tildes in (12)-(14) and
(17) for notational convenience. After substituting (17)
into (12), our model reduces to the following pair of
ODEs for p and v:

dp
dt

vp
s v pp ds v

d p P p vp=
+ + +

− ≡
 ( )

( , ), (19)

dv
dt

pv
v p

v v V p v= −
+

+ − ≡ 0 1( ) ( , ), (20)

which can be analysed using phase plane techniques.
By setting the derivative in (19) equal to zero we deduce
that the p-nullclines are:

p = 0 (21)

and

p
dps dp
dps p

v
ds
p

f v=
− −⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟ − ≡

1 

 
( ). (22)

We note that f (v) is a straight line. From (19) it fol-
lows that ∀p > 0, dp

dt
< 0 if p >f (v) and dp

dt
> 0 if p <f

(v). Therefore, if 1 - dpsb - dp ≤ 0, then ∀v > 0, f (v) < 0,

and no physically realistic co-existence steady state
exists. Instead the tumour decreases in size ∀v > 0
(since dp

dt
< 0), and the system evolves to the linearly

stable tumour-free steady-state solution, (p, v) = (0, 1).
So that a physically realistic co-existence steady state
may exist, we require dp < 1/(1 + sb), meaning that the
apoptotic rate of the tumour cells is less than the maxi-
mum rate of proliferation.
Similarly, setting (20) equal to zero we deduce that the

nontrivial v-nullcline is:

p
v v

v
g v= −

− −
≡( )

/
( ).

1
1 0 

(23)

It is straightforward to show that g(v) is positive only
if 0 ≤ v ≤ 1 (see Figure 1 where the v-nullclines are indi-
cated by solid red lines). Therefore, for the p- and v-
nullclines to intersect and a co-existence steady state to
exist, the zero of f (v), fzero, must fulfill

f
dps ds
dps dp

zero ≡
− −

<

1
1, (24)

as follows from (22) (if fzero ≥ 1, the system evolves to
the linearly stable tumour-free steady state (p, v) = (0,
1)). For smaller values of fzero (0 <fzero < 1), the stability
of the co-existence steady state depends on the ratio δ/
h0 in (23).
Case (a): δ/h0 ≤ 1
If δ/h0 = 1, then g(v) is a straight line, g(v) = 1 - v. As

shown in Figure 1 (panel A) if δ/h0 < 1, then g(v) is a
monotonically decreasing function for v > 1 - δ/h0,
reaching zero at v = 1 (with g(v) < 0 for v < 1 - δ/h0).
Since dv

dt > 0 for p <g(v) and dv
dt < 0 for p <g(v) (as fol-

lows from (20)), we have that at the steady state Vp < 0
and Vv < 0, the subscripts denoting partial derivatives
and the function V given by (20). Because at the steady
state the p-nullcline is such that Pp < 0 <Pv, it follows
that tr(A) = Pp + Vv < 0 and det(A) = PpVv - PvVp > 0,
where A = (aij) is the Jacobian matrix, implying that the
co-existence steady state is always linearly stable. In Fig-
ure 1 (panel A) for a case where the steady state is a
stable spiral, we show the phase plane, the nullclines
and a trajectory with initial conditions corresponding to
the introduction of a small number of tumour cells
into a tissue with vasculature at carrying capacity ((p(0),
v(0)) = (0.01, 1)). The phase planes were calculated
numerically using MATLAB, and equations (19)-(20)
were integrated using a Runge-Kutta method.
Case (b): δ/h0 > 1
The function g(v) is concave for v ≥ 0 with g(0) = 0

and g(1) = 0 (see Figure 1, panel B). In this case oscilla-
tory solutions are possible. In Figure 1 we present a
typical phase plane for a case where the steady state is
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an unstable spiral and a stable limit cycle exists. The
mechanism responsible for the oscillations is vessel
occlusion by the tumour cells. As the tumour cells pro-
liferate and increase in number, more vessels become
occluded. Occlusion reduces the level of oxygen and
hence the rate of tumour cell proliferation which results
in fewer tumour cells. The reduction in tumour burden
allows the vessels to recover. Vessel recovery leads to
increased oxygenation and, therefore, an increase in the
rate of tumour cell proliferation and the size of the
tumour cell population. With the expanding tumour
mass, occlusion once again becomes important, causing
the cycle to repeat (see Figure 2 for a schematic expla-
nation). In fact, the oscillations in this submodel are
similar to those observed in “predator-prey” systems
(see e.g. [20]); here the tumour cells act as “predators”
by occluding vessels, “the prey”.
We remark that it is the particular functional form of

dv
dt

≡ V, which appears in (20), that gives rise to oscilla-

tory solutions; other choices of dv
dt ≡ V may not admit

oscillations. In particular, we require Vv > 0 so that an

unstable steady state with a limit cycle may exist.
According to the Hopf bifurcation theorem, an unstable
steady state with a stable limit cycle, and thus oscilla-
tions, may appear as the bifurcation parameter is varied
so that the real part of a pair of complex conjugate
eigenvalues of the Jacobian matrix changes sign [20].
This corresponds to a co-existence steady state changing
from a stable spiral to an unstable spiral (or vice versa).
Since trA = Pp + Vv > 0 is a necessary condition for an
unstable spiral and Pp < 0, we need Vv > 0 for the exis-
tence of an unstable spiral, implying that it can only
exist where g(v) has positive slope (for the problem at

hand, where the slope of g(v) is positive, dv
dt < 0 to the

left of the nullcline and dv
dt > 0 to the right; thus Vv >

0). In Figure 1, if the p-nullcline is moved to the right,
causing the zero of f (v), fzero, to increase, the co-exis-
tence steady state changes stability, and the stable limit
cycle disappears via a Hopf bifurcation. It is also possi-
ble to obtain a Hopf bifurcation by increasing the rate
of oxygen consumption by tumour cells, sp, thus
decreasing the slope of the p-nullcline. We remark that
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Figure 1 Typical phase planes. (A) Typical phase plane with (non-zero) nullclines for case (a), here for δ/h0 < 1, showing a steady state which
is a stable spiral. (B) Typical phase plane with (non-zero) nullclines for case (b), δ/h0 > 1. The steady state is unstable and the shown trajectory
evolves into a stable limit cycle. We remark that compared to (A) we have varied δ, ds and sp (ds and sp were chosen so that the co-existence
steady state would be unstable). Key: green dashed-dotted lines: non-zero p-nullclines; solid red lines: non-zero v-nullclines; open circle: linearly
unstable steady state; closed circle: linearly stable steady state; blue bold lines with solid arrow: trajectories for the initial conditions (p(0), v(0)) =
(0.01, 1) (A) and (p(0), v(0)) = (0.5, 0.6) (B). Parameter values: h0 = 0.02, dp = 0.8, ds = 0.9, δ = 0.01, sb = 0.1 and sp = 0.08 (A) and h0 = 0.02,
dp = 0.8, ds = 0.4, δ = 0.03, sb = 0.1 and sp = 0.01 (B).
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the oscillatory dynamics close to the Hopf bifurcation
can be approximated by the corresponding normal form
of l-ω type (see below, and section B in the Appendix
(additional file 1)).
To summarise, in this section we have shown how the

existence and stability of the co-existence steady state
depend on the model parameters. In particular, oscilla-
tory solutions may occur when δ, the maximum rate of
occlusion, is sufficiently high; if δ exceeds the maximum
rate of endothelial cell proliferation, h0, then the co-
existence steady state may be unstable and periodic
oscillations are possible. We remark that a high value of
δ corresponds to immature vessels that are more prone
to collapse.

Spatial model with random motion of tumour cells and
endothelial cells - no therapy
In this section we re-introduce spatial effects (deferring
the inclusion of oxygen diffusion until we investigate
chemotherapy). We continue to assume that oxygen is
at quasi-steady state and does not diffuse, so that s is
defined in terms of v and p by (17) and equations (12)-
(13) become:

∂
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= ∂

∂
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+ + +
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In what follows we suppose that a small mass of
tumour cells is introduced at one side (x = 0) of a
homogeneous vascularised tissue which is otherwise
devoid of tumour cells ((p(x, 0), v(x, 0)) = (0, 1) ∀x ≠
0). This situation could describe (i) tumour cells
implanted in an experiment, (ii) metastatic cells that
have entered the tissue from the supporting vascula-
ture, or (iii) cells in an avascular tumour that arose

spontaneously within a tissue. Due to random move-
ment, the tumour cells may spread to and colonise
parts of the tissue that were initially unaffected. We
analyse cases for which the co-existence steady state
must be linearly stable (case (a) above, corresponding
to δ/h0 ≤ 1), before studying cases for which it may be
unstable (case (b) above, corresponding to δ/h0 > 1).
In the case of an unstable steady state we note that
when the random motion of endothelial cells is equal
to that of tumour cells (Dv = 1), the system lends itself
to l-ω analysis. For mathematical tractability, we carry
out the l-ω approximation for the simplified case in
which the rate at which the tumour cells consume
oxygen is negligible (sp = 0 in (25)). Numerical simula-
tions with Dv ≠ 1 and sp ≠ 0 reveal qualitatively simi-
lar dynamics.
To obtain numerical solutions to the system (25)-(26)

we use the NAG routine D03PCF in Fortran [25]. This
routine utilises finite differences for the spatial discreti-
sation. Specifically, the method of lines is used to reduce
the governing PDEs to a system of ODEs, which is then
solved using a backward differentiation method. In each
figure legend we state the mesh size Δx.
Stable co-existence steady state
When the co-existence steady state is stable, diffusion
driven instabilities (DDI) may occur for certain para-
meter values provided that the diffusion co-efficients
differ (Dv ≠ 1) [26]. Analysis of our system shows that
DDI can only occur if Dv < 1 and we have used para-
meter values such that the system is driven unstable.
However, for brevity, we do not present those simula-
tions or analyse this case further.
We have carried out simulations of equations (25)-(26)

for several cases in which the underlying co-existence
steady state is linearly stable and the random motility
co-efficients for tumour and endothelial cells are equal
(Dv = 1 and DDI is not possible). In general these simu-
lations show that when a population of tumour cells is
introduced at the left-hand boundary, it invades the

Figure 2 Illustration of the mechanims causing oscillatory solutions. Diagram explaining how tumour cell proliferation and vessel occlusion
sustain the limit cycle oscillations in system (19)-(20). The expanding tumour cell population occludes vessels, leading to reduced oxygen levels
and reduced tumour cell division. The shrinking tumour cell population allows vessel recovery and the cycle repeats.
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domain and the system evolves to its stable steady state
behind the invading front. At large times the domain
becomes spatially-uniform and the system reaches a
stable steady state.
Unstable co-existence steady state
We now consider the case for which the spatially-uni-
form (no diffusion) model possesses an unstable co-exis-
tence steady state, with predator-prey-like oscillatory
solutions (and with the tumour cells acting as “preda-
tors”). In [17] Sherratt studied a predator-prey reaction-
diffusion model which, like ours, admits an unstable
co-existence steady state, with a stable limit cycle. His
analysis focussed on what happens when a small num-
ber of predators is introduced into a spatially-homoge-
neous population of prey. Behind the invading front,
which connects the stable predator-free equilibrium
ahead of the wave with the unstable co-existence equili-
brium, two types of oscillatory wakes were seen: regular
spatio-temporal waves and highly irregular oscillations
[17]. In general, the invading front decays exponentially,
with respect to the spatial variable, to the co-existence

equilibrium and, if the system is close to the Hopf bifur-
cation, it stays there for a significant time (even though
the equilibrium is unstable) before developing into a
periodic wave train [27]. The stability of the resulting
wave train determines whether the oscillations remain
periodic (in the case of a stable wave train) or become
irregular (in the case of an unstable wave train) [17,27].
Following [17,27] (see also [28]) we analyse equations

(25)-(26) (here with sp = 0 and Dv = 1) by using normal
form analysis to approximate it by one of l-ω type near
the Hopf bifurcation. The result of our analysis (for
details of the analysis see section B in the Appendix
(additional file 1)) is a prediction about the stability of
the periodic waves behind the invading front. By keep-
ing all other parameters fixed, and also ensuring that
the system is close to Hopf bifurcation, it is possible to
show that the stability of a wave train depends solely on
the maximum rate of vessel occlusion, δ, and the
tumour apoptosis rate, dp. In Figure 3, we have parti-
tioned (δ, dp)-space into different regions according to
whether the wave behind the invading front is stable (in
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Figure 3 Partition of (δ, dp)-space based on stability of wave trains. Figure showing where in (δ, dp)-space (as determined by (A-7) in the
Appendix (additional file 1)) the wake behind the invading wave of tumour cells is stable (shaded region) and where it is unstable (white
region). The stability analysis requires ds ≈ ds

crit , where ds
crit denotes the value of ds at which the Hopf bifurcation occurs; thus in our (δ, dp)-

space we mark by solid lines contours where ds
crit (as calculated from (A-11) in the Appendix (additional file 1)) is constant (corresponding

values are labelled on the contours). For a case of stability ((δ, dp) = (0.65, 0.6) and ds ≈ 0.2) tumour cell invasion into the spatially homogeneous
vessel-only steady state results in regular spatio-temporal oscillations (see Figure 4), while in the case of instability ((δ, dp) = (1.0, 0.6) and ds ≈
0.2), irregular spatio-temporal oscillations develop (see Figure 5). Key: shaded region: wave stability; white region: wave instability; solid lines:
lines where ds

crit is constant. Parameter values: h0 = 0.5, sb = 0.4 and sp = 0.
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the shaded region) or unstable (in the white region). We
remark that once the other parameters have been fixed,
the value of ds, the oxygen consumption rate of other
cellular components, determines whether the system is
near Hopf bifurcation, and thus whether the stability
prediction is reliable.
In Figure 4, we present a simulation for which the l-

ω analysis, as presented in Figure 3, predicts stable per-
iodic travelling waves behind the invading front. We
note that damped oscillations connect the tumour-free
steady state ahead of the invading front with the co-
existence steady state, a solution which is qualitatively
similar to those presented in [17]. Since the co-exis-
tence steady state is unstable, oscillations develop; in
this case these are regular spatio-temporal waves
because the periodic wave is stable. By comparing
panels A and B in Figure 4, we see that the portion of
the spatial domain in which the system is at the co-
existence steady state increases over time; thus the spa-
tial domain appears to become transiently spatially uni-
form. As established for a predator-prey system in [29],

this occurs because the speed of the interface between
the “plateau” (where the system is at steady state) and
the region of regular oscillations is less than the speed
of the invading front. We remark that for large times,
after the invading front has reached the right-hand
boundary, regular temporal oscillations persist at fixed
spatial positions. After the invading front has reached
the right-hand boundary it is reflected (due to the no-
flux boundary conditions), and regular waves, travelling
in the opposite direction to that of the original front,
develop. The no-flux conditions imply that the bound-
aries are impermeable to the tumour cells, an assump-
tion whose validity depends on the tissue of interest.
For example, while cancer cells may be able to colonise
a softer tissue, a more rigid material, such as bone,
may halt cancer invasion.
In Figure 5 the waves that develop in the wake of the

invading front are unstable, and irregular dynamics are
observed. Since the system is close to the Hopf bifurca-
tion, i.e. it is weakly unstable, the oscillations that
develop behind the invading front are initially regular
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Figure 4 Solution profiles in the case of stable wave trains. Series of profiles (solutions of equations (25)-(26)) showing how the tumour cell
density evolves when regular waves develop behind the invading tumour front (similar profiles of the vessel density not presented). Panel A (B)
depicts the behaviour at t = 2000 (t = 4000). Behind the invading front, which travels with constant shape and connects the tumour-free steady
state with the unstable co-existence steady state, regular spatio-temporal oscillations develop. Since the invading front moves faster than the
evolving regular wave train, a large portion of the domain is at the unstable steady state ((p, v) = (0.35, 0.3)). Parameter values: h0 = 0.5, dp =
0.6, ds = 0.2, ds

crit = 0.2163 (using (A-11) in the Appendix (additional file 1)), δ = 0.65, Dv = 1, sb = 0.4 and sp = 0. For these parameter values
the waves are stable (see Figure 3). For the numerical simulations we fix Δx = 1/3 and L = 3000 with (p(0, 0), v(0, 0)) = (0.01, 1) and (p(x, 0),
v(x, 0)) = (0, 1) for x: 0 <x ≤ 1.
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and only become irregular at later times (similar beha-
viour was observed in [17]). Once the cancer cells have
colonised the entire tissue, irregular spatio-temporal
oscillations persist.
In the above simulations oxygen diffusion was

neglected and oxygen was assumed to be at quasi-steady
state. The simulations were repeated for the full system,
as defined by equations (12)-(14), with c = 0 in (12) and
the following choice of parameter values: Dv = 1,
d d hs s s=  and  p p sh=  , wherein ds and  p corre-
spond to the values of ds and sp used in (25), as follows
from (18). Guided by the discussion in section A of the
Appendix (additional file 1), in our simulations of the
full system we fixed Ds = 2 × 105 and hs = 1.6 × 106.
The solutions of the full system for both stable and
unstable co-existence steady states were qualitatively
similar to those obtained for the simpler system (25)-
(26) (and are not presented). We therefore conclude
that the quasi-steady state assumption for oxygen is a
good approximation, provided that the values of Ds and
hs are as derived in section A of the Appendix (addi-
tional file 1). Nevertheless, for completeness in the
simulations of chemotherapy that follow we simulate
the response of the full system (11)-(15).

Full model - the effect of chemotherapy
Given that the maximum rate of occlusion, δ, deter-
mines the intrinsic dynamics of our system (once the
other parameters have been fixed), below we investigate
how vessel status (δ low or high) influences therapeutic
response. We simulate the response of different tumours
to chemotherapy, comparing cases for which the system
dynamics behind the invading front prior to treatment
result in (i) a stable equilibrium, (ii) regular waves, and
(iii) irregular waves. The only parameter change that is
varied between these three cases is δ.
In Figure 6 we present typical snapshots showing how

the tumour cell density varies across the spatial domain
when chemotherapy is first applied (at t = 200, in dimen-
sionless units, in all three cases). From panel A we esti-
mate the speed of tumour invasion to be 0.002 cm/day;
this value is of the same order of magnitude as the speed
of 0.009 cm/day that has been observed in gliomas [30].
We note that the spatial extents, and thus the speeds, are
similar in all three cases. Linearising ahead of the wave,
the p-equation decouples and a travelling wave analysis
indicates that there is a minimum wave speed which is
independent of δ. Calculated speeds are in close agree-
ment with the predicted minimum speeds.
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Figure 5 Solution profiles in the case of unstable wave trains. Series of profiles (solutions of equations (25)-(26)) showing how the tumour
cell density evolves when irregular waves develop behind the invading tumour front (similar profiles of the vessel density not presented). Panel
A (B) depicts the behaviour at t = 2000 (t = 4000). Behind the invading front, which travels with constant shape and connects the tumour-free
steady state with the unstable co-existence steady state ((p, v) = (0.16, 0.3)), irregular spatio-temporal oscillations develop. Parameter values:
h0 = 0.5, dp = 0.6, ds = 0.2, ds

crit = 0.2761 (using (A-11) in the Appendix (additional file 1)), δ = 1.0, Dv = 1, sb = 0.4 and sp = 0. For these
parameter values the waves are unstable (see Figure 3). For the numerical simulations we fix Δx = 1/3 and L = 3500, with (p(0, 0), v(0, 0)) = (0.01,
1) and (p(x, 0), v(x, 0)) = (0, 1) for x: 0 <x ≤ 1.
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A way of measuring the therapy’s effect on tumour
size is to monitor the tumour’s spatial extent. Here we
investigate how far the invading wave front has spread
by determining the length of the interval in which the
tumour cell density exceeds a threshold value, pcrit, i.e.
determining xmax so that ∀x Î [xmax, 1]: p(x, t) <pcrit.
Various imaging modalities, e.g. CT and MRI, function
in this way; the tumour can only be detected wherever
its density is above the “threshold of detection” (thus
the real spatial extent of the tumour is in fact larger
than that revealed by the medical image) [30]. In all
simulations of chemotherapy we observed that therapy
induces a similar response, with an initial decrease in
xmax, meaning that the therapy causes the invading wave
front to recede.
In our simulations we observed that the therapy had a

more pronounced effect on tumour burden than on the
tumour’s spatial extent. Therefore in what follows we
only monitor the tumour burden, ptot, where ptot is
defined by the Trapezoid rule
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where pi = p(xi, t), xi = iΔx for i = 0, ..., n and Δx = L/n.
In Figure 7 we show how the response to both a single

bolus of chemotherapy and multiple boluses depends on
the underlying system dynamics. We note that the initial
tumour burden, ptot, is highest in the case of stable
tumour dynamics (Figure 7, panel A) and lowest in the
case of irregular oscillations (Figure 7, panel C), whereas
the initial spatial extents are similar in all three cases (see
Figure 6). Since occlusion is more pronounced (δ being
high) when the dynamics are oscillatory, the varying
initial values of ptot reveal that stable/strong vessels pro-
mote tumour growth more effectively than unstable/
weak ones. Experimental observations of ovarian carci-
noma spheroids have yielded similar trends: fast-growing
tumours, that increased exponentially in volume, exhib-
ited only small variations in the density of their vascula-
ture, which mainly consisted of mature vessels [6].
Slow-growing tumours, on the other hand, had a larger
proportion of immature vessels, and exhibited larger fluc-
tuations in both their growth rate and their vessel density
[6]. In Figure 7 we observe that in all cases initially ther-
apy decreases the tumour burden. By comparing the
tumour regrowth that occurs as the drug degrades, strik-
ing differences between the different cases are revealed.
When the underlying dynamics of the control are such
that the system evolves to a stable equilibrium (Figure 7,
panel A), the cell population increases monotonically
after a single bolus of chemotherapy. In this case the
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Figure 6 Solution profiles prior to therapy. Three snapshots of the spatial domain showing how the tumour cell density varies in space at
the point in time (t = 200 in dimensionless units) at which chemotherapy is applied; the results of chemotherapy in these cases are presented
in Figure 7. (A) Solid line depicts the cell density at the point in time at which chemotherapy is applied (t = 200 in dimensionless units), while
the dotted line shows it at approximately 145 days before start of therapy (t = 100 in dimensionless units). From the spatial spread that occurs
between these time points (82.15 dimensionless spatial units, corresponding to 0.29 cm in dimensional terms) we calculate the wave speed to
approximately 0.002 cm/day. Parameter values: h0 = 10.0, dp = 0.5, ds = 4.8 × 105, Ds = 2.0 × 105, Dv = 1, hs = 1.6 × 106, sb = 0.4, sp = 3.7 ×
104 with δ = 9 (case A), δ = 11 (case B) and δ = 11.6 (case C). Numerical solution obtained with Δx = 25/900 for the domain size L = 250 with
initial conditions (p(0, 0), v(0, 0), s(0, 0), c(0, 0)) = (0.01, 1, 10/12, 0) and (p(x, 0), v(x, 0), s(x, 0), c(x, 0)) = (0, 1, 10/12, 0) for x: 0 <x ≤ 250.
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effect of therapy is unambiguous: the treated tumour is
always smaller than the untreated one. Furthermore,
multiple injections (corresponding to one bolus every 14
days in dimensional parameters and four times as much
drug being administered compared to a single dosage)
are clearly more effective at controlling tumour regrowth.
When the untreated tumour undergoes regular or irregu-
lar oscillations (Figure 7, panels B and C, respectively),
the oscillations during the regrowth phase are of larger
amplitude than for the drug-free controls, making the
effect of therapy harder to evaluate and less predictable.
For example, in the case of irregular oscillations multiple
injections do not provide an obvious improvement com-
pared to only one round of therapy. The increase in the
amplitudes of the oscillations that the therapy induces
stems from the inherent oscillatory dynamics. Specifi-
cally, the initial decrease in the tumour cell density allows
the vessels to recover from occlusion throughout the spa-
tial domain. As the therapy wanes any tumour cells that
remain have an abundant supply of oxygen. Therefore,
the recovering tumour cell population attains higher total
cell numbers than it does when no therapy is applied.

The large cell population induces more extensive vessel
occlusion, causing the tumour cell population to decline
again to low cell numbers. In this way the large ampli-
tude oscillations are sustained. We remark that in panel
B, where the oscillations are regular, the period of the
oscillations corresponds to roughly 17 days in dimen-
sional terms. Slower/faster oscillations can be achieved
by increasing/decreasing the maximum rate of vessel pro-
liferation, h0, and the maximum rate of vessel occlusion,
δ (ensuring δ/h0 > 1). Simulations with slower/faster
oscillations (and others with Dv ≠ 1) yielded similar
results as those presented above.

Discussion
In this paper we have developed a PDE model which
describes tumour growth within a vascularised tissue
where the tumour cells rely on the vasculature for their
supply of oxygen. Analysis of a spatially homogeneous
submodel, for which the oxygen profile is assumed to be
quasi-steady, showed that the tumour cell and vessel
densities either evolve to a stable equilibrium or
undergo oscillations. We found that the latter is more
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Figure 7 System responses to therapy. Three trios of curves (calculated from solutions of (11)-(15), using (27)) showing how the tumour
burden, ptot, varies after a single bolus of chemotherapy (black dashed lines) and 4 boluses of chemotherapy (red dotted lines). Here time, t,
represents time since therapy was initialised. (A) In this case, before therapy is applied, the dynamics behind the invading front evolve to a
stable equilibrium. Both a single bolus and multiple boluses decrease tumour burden relative to untreated control (solid line). This persists even
during the recovery phase, when the effects of the therapy wane and the tumour starts to regrow. Multiple boluses are clearly more effective
than a single bolus. (B) When in the absence of therapy tumour invasion results in the development of regular oscillations (solid line), the
therapies induce oscillations of larger amplitude during the regrowth phase. Multiple boluses are slightly more effective than a single bolus. (C)
When irregular oscillations occur in the absence of therapy (solid line), chemotherapies lead to an increase in the amplitude of these oscillations
during the recovery phase. Multiple boluses do not improve the therapeutic response. Key: solid lines: no therapy; black dashed lines: single
bolus; red dotted lines: 4 boluses (each separated by ten time units). Parameter values: as in Figure 6 with dc = 2.0 × 104, Dc = 1.6 × 104,
hc = 1.3 × 103, k = 0.9 and Kc = 0.05.
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likely to occur if the vessels are prone to occlusion (δ
being large, corresponding to immature vessels) and
that the oscillations arise from interactions between the
tumour cells and the compliant blood vessels.
Oscillations in mathematical models of tumour growth

have been described by others [5,31]. However, different
mechanisms are responsible for those oscillatory
dynamics. In [5] the oscillations are due to time-delays
in an ODE-system, while in [31] the underlying cause is
vascular adaptation induced by VEGF secretion by
quiescent tumour cells. To our knowledge, this is the
first model of vascularised tumour growth in which the
direct interactions between the tumour cells and the
vasculature lead to sustained oscillations of significant
amplitude (very small oscillations were observed in the
model developed by Araujo and McElwain [4]). Experi-
mental investigations indicate that tumour cells have the
capacity to occlude vessels through the pressure they
exert on the vessel wall [1,2]. Furthermore, the observa-
tion that vessel occlusion is reversible (i.e. if the tumour
burden is relieved by killing off tumour cells cytotoxi-
cally, then the vessel diameter increases [1,2]) leads us
to believe that oscillations of the kind we report here
are physically realistic and may thus contribute to spa-
tio-temporal heterogeneities in solid tumours. At pre-
sent we lack clinical data to determine whether such
oscillations are clinically observable. However, our simu-
lations (see Figure 7) suggest that oscillations could
indeed be detected from spatially-averaged clinical data,
provided that the data is adequately resolved in time.
Our analysis of tumour invasion due to random cell

movement revealed varying spatio-temporal patterns
depending on the stability of the spatially homogeneous
co-existence steady state behind the invading front. Fol-
lowing invasion in the case of a stable equilibrium, the
system settled to this steady state. In the case of an
unstable equilibrium and oscillatory solutions in the
spatially homogenous system, spatial effects induced
either regular or irregular spatio-temporal oscillations.
By approximating our system by one of l-ω form near
the Hopf bifurcation, we were able to predict the type of
oscillation that will occur. This technique has been
applied previously to predator-prey models where simi-
lar spatio-temporal oscillations are observed [17].
When investigating tumour response to chemotherapy

we focussed on the different growth scenarios that can
arise as a result of tumour invasion. We simulated che-
motherapy in the form of either a single bolus or multi-
ple, consecutive boluses; other possible modes of
delivery include continuous infusion, investigated e.g. in
[12]. Our numerical simulations reveal that following
administration of a single bolus of doxorubicin to a
tumour which, in the absence of therapy, is growing
toward a steady state behind the invading front, a

reduction in tumour burden is achieved. During the
regrowth period that occurs while the drug is degrading,
the tumour increases monotonically in size, but the size
of the tumour cell population is smaller than that of the
untreated control. If the tumour undergoes regular or
irregular oscillations behind the invading front, the
initial response is also a decrease in the tumour burden.
However, during the regrowth phase, the size of the
tumour cell population fluctuates strongly, more so than
without therapy, and the tumour cell population attains
both higher and lower values than for the drug-free
cases. The therapy reinforces the underlying cause of
the oscillatory dynamics (the relief of occlusion due to
pressure from the expanding tumour), leading to an
increase in the amplitude of the oscillations. Not only
would such irregular spatio-temporal dynamics make
the therapeutic effect harder to evaluate (since the tim-
ing of measurements would be crucial), but they may
also explain why chemotherapy sometimes fails. In parti-
cular, our model suggests that clinical data showing
short-time regression and longer-time relapse may be
the result of tumours whose dynamics are oscillatory.
However, in order to generate quantitative predictions,
comprehensive and systematic experiments in which all
model parameters can be estimated from the same cell
line are urgently needed. In the absence of such data, a
detailed sensitivity analysis (where system parameters
are varied within physiological ranges) could provide
additional information about the relative importance of
individual parameters on the system dynamics.
It is interesting to compare our simulations of a single

bolus of doxorubicin to the simulations presented in
[15], wherein a modified version of the multiscale model
developed in [31] was studied. The modifications in [15]
relate specifically to the effect that tumour cells have on
the pre-existing vasculature. Vessel remodelling is incor-
porated at each time step so that vessels surrounded by
tumour cells are considered immature/destabilised,
whereas those without tumour cells are considered
mature. The inclusion of vessel destabilisation/matura-
tion has pronounced effects on the therapeutic response
of the system in [15]: after a single bolus, in the case
where the vessels undergo destabilisation/maturation,
pronounced oscillations in the tumour cell population
occur as the tumour cells recover from the therapy;
when destabilisation/maturation is neglected, the
tumour cell recovery is more regular and the tumour
cell population increases steadily. These dynamic
responses are similar to the results we obtain when the
tumour is exposed to a single bolus (Figure 7): during
the regrowth phase, the tumour undergoes oscillations
(when the underlying equilibrium is unstable) or con-
tinuously increases (when the underlying equilibrium is
stable). We remark here that in our model the change
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from monotonically increasing tumour recovery to oscil-
latory tumour recovery occurs as the maximum strength
of vessel occlusion is increased. Therefore, our oscilla-
tory vessels may be regarded as more unstable than
those present in tumours that recover without oscilla-
tions, a phenomenon that would be consistent with the
ideas presented in [15] that vessel destabilisation intro-
duces an irregular tumour growth pattern due to blood
flow heterogeneities.
As with any mathematical description of a biological

system, modifications could be made to increase the rea-
lism of our model. For example, we could investigate the
effects that the angiopoietins, Ang-1 and Ang-2, have on
the developing vasculature. To do this we would need to
separate the vessels into two subpopulations consisting
of immature vessels (destabilised by Ang-2) and mature
vessels (stabilised by Ang-1). Immature vessels may be
particularly sensitive to occlusion since they typically
lack a pericyte covering [1]. Another obvious extension
involves introducing VEGF explicitly into the model,
allowing the rate of EC proliferation to be a saturating
function of the VEGF concentration. We anticipate that
these model extensions would yield similar qualitative
behaviour, e.g. if the maximum rate of vessel occlusion
(δ) exceeded the rate of EC proliferation (h0) then the
oscillatory solutions would persist. By introducing VEGF
it would also be possible to include chemotaxis with
vessels moving up spatial gradients of VEGF. The inclu-
sion of chemotaxis is likely to affect the spatio-temporal
patterns that emerge as a result of tumour invasion.
Regarding the way in which we have modelled che-

motherapy it is also possible to amend the model to
more accurately describe doxorubicin activity. For exam-
ple, we could investigate the effects of changing the
functional form used to model cell kill in equation (2).
As found in [14], the model predictions may depend on
the numerical value of the threshold at which the rate
of cell kill switches from low to high (in our model, this
value is represented by the parameter Kc). We could
also investigate the tumour’s response to therapy if the
drug targets both tumour cells and proliferative ECs.
Despite the simplicity of the model, the simulations of

doxorubicin administration presented in this paper still
give considerable insight into how the response to che-
motherapy may be strongly influenced by the underlying
system growth dynamics. A possible direction for
further research involves extending our model to distin-
guish between proliferating and quiescent tumour cells
in order to determine how the dynamics are affected by
cell heterogeneity. We could also extend our model to
investigate the impact that vessel normalisation strate-
gies, designed to increase the stability of the immature
tumour vessels, have on systems with irregular spatio-
temporal dynamics. Possible candidates for vascular-

targetting agents include the anti-angiogenic drug
DC101 which transiently increases pericyte recruitment,
hence increasing vessel stability, oxygenation, and drug
delivery [32]. Modelling vascular-targetting treatments
could be achieved by making the occlusion parameter δ
(which appears in equation (3)) a decreasing function of
the vascular-targetting drug concentration. We antici-
pate that this could render the system more stable, pos-
sibly enhancing the therapy’s performance.

Conclusions
In this paper we have developed a deterministic model
of vascular tumour growth formulated as a system of
reaction-diffusion equations. Using a combination of
numerical methods and analytical techniques we showed
how the system’s spatio-temporal dynamics (and, in par-
ticular, tumour-invasion patterns) are influenced by the
dynamics of the associated spatially-uniform system.
Depending on the interplay between the proliferating
tumour cells and the collapsible vessels, we observed
patterns of tumour invasion ranging from regular travel-
ling waves to waves with highly irregular spatio-tem-
poral structure. The latter were characterised by highly
responsive, compliant vessels while the former were
characterised by stiffer, less compliant vessels. Simula-
tions of chemotherapy illustrated how treatment out-
come depends on the dynamics of the untreated
tumour. In particular we found that the therapeutic effi-
cacy could be dramatically reduced by the presence of
immature vessels which contribute to the emergence of
oscillatory dynamics.

Reviewers’ comments
Reviewer’s report 1
Prof. Zvia Agur, The Institute for Medical BioMathe-
matics (IMBM), Israel
Reviewer’s comments
This paper focuses on vessel occlusion. Analysis of a
mathematical model for vessel occlusion, in the form of
a system of reaction-diffusion equations, shows that
increased occlusion may give rise to sustained oscilla-
tions in tumor cell density and in vessel density. The
paper suggests that oscillations in tumor size may com-
promise the efficacy of Doxorubicine chemotherapy. I
would like to mention a few points which may be con-
sidered in order to improve the paper.
1. The basic model deliberately simplifies tumor

growth and vascularisation dynamics, and couples these
simple dynamics through vessel occlusion (see, e.g., Fig
2). However, occlusion is not a frequent phenomenon in
tumor angiogenesis, where angiogenesis and tumor
growth are always coupled through various other fac-
tors, nor is it prerequisite for oscillations in tumor and
vascular dynamics (see below).
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2. The paper makes some claims, which require sub-
stantiation, or should be reconciled with literature, or
should be altogether eliminated. In the Discussion sec-
tion (P. 15, Paragraph 3) the authors state: “To our
knowledge, this is the first model of vascularised tumor
growth in which the direct interactions between the
tumor cells and the vasculature lead to sustained oscilla-
tions of significant amplitude”. However, I believe this
statement should be eliminated. Both some of the
papers cited in the present manuscript and others have
already showed the same result. For example, in [33],
we have introduced and analysed several alternative gen-
eral tumor angiogenesis models (with/without vascular
maturation or with/without the effects of growth fac-
tors). Our results show that whenever a time-delay is
introduced into the tumor proliferation or the neo-vas-
cularization process, Hopf points are found, leading to
oscillatory behavior. While it is recognized that time-
delay will often elicit Hopf points, in [33], it was shown
that the latter were to be found in any angiogenesis
model with time-delay. There are other examples of
angiogenesis models showing oscillatory tumor and vas-
culature dynamics as a result of coupling between these
two processes, for example, as a result of certain ratios
between growth factors’ reaction rates. Suggestion: The
authors should crystallize the novelty in their results
and be precise about the conditions for obtaining it. In
this context, I believe they should make a distinction
between occlusion and hypoxia, which may be caused
by many other factors.
3. Another example. On page 3 parag 2 Stamper et al

write: “ Analysis of the model we derive in this paper
reveals that the interplay between tumor and its blood
vessels may lead to strongly oscillating dynamics... if the
vessels are structurally unstable”. Previous models with
no occlusion assumption have shown the same result.
Some of them, but not all, are cited in the present
manuscript (e.g., [34]).
4. One of the main conclusions of the paper is that

("Conclusions”, p. 21, Parag 2): “Simulations of the che-
motherapy illustrated how treatment outcome depends
on the dynamics of the untreated tumor...”. I believe this
is already known to any scientist involved in cancer
research. In any case it has been shown in many papers.
I think this sentence should be suppressed.
5. I suggest that sentences such as (Page 18, parag 2)

“We found that ...oscillations arise from the interactions
between the tumor cells and the compliant blood ves-
sels” would rather be eliminated.
6. I have not found any reference to the pharmakody-

namics of doxorubicine. What is the assumed drug
action mechanism? Why does the model represent dox-
orubicine and no other chemotherapy (half-life)?

Top sum up, I think that the paper will benefit from a
careful editing where the main messages are spelled out
consistently through the Abstract, Results, and Conclu-
sions sections, and where the special assumptions and
simplifications are recognised so that conclusions and
implications are more restricted.
Authors’ response
We agree with Professor Agur that our model is not the
first one of vascular tumour growth to produce oscilla-
tory dynamics - that is why we cite the seminal work of
Agur and coworkers, amongst others. The essential
novelty in our paper arises from the investigation of
how the interplay between the oscillations associated
with the underlying time-dependent model and diffusive
effects can give rise to highly irregular spatio-temporal
dynamics within the tumour mass and their impact on
the tumour’s response to therapy.

Reviewer’s report 2
Prof. Marek Kimmel, Department of Statistics, Rice Uni-
versity, USA
Reviewer’s comments
A comment concerning the catalogue of spatial oscilla-
tory patterns. In the paper [35] by Marciniak-Czochra
and Kimmel, a new model of field carcinogenesis, is
explored inspired by lungcancer precursor lesions,
which includes dynamics of a spatiallydistributed popu-
lation of pre-cancerous cells c(t; x), constantly supplied
by an influx of mutated normal cells. Cell proliferation
is controlled by growth factor molecules bound to cells,
b(t; x). Free growth factor molecules g(t; x) are pro-
duced by precancerous cells and may diffuse before they
become bound to other cells. The model shows an
invading front of oscillatory solutions, which correspond
to formation of multiple spatially isolated lesions of pre-
cancerous cells and which become in the limit stable
spike solutions. This effect is very different from the one
obtained in Stamper et al. (although some analogies
between oxygen and growth factor supply exist), among
other because only one of the three equations features a
diffusion term.
Authors’ response
We thank Professor Kimmel for directing us to this
interesting publication. There are some similarities with
our work, in that we consider diffusion-driven instability
(DDI) as a mechanism for destabilising spatially homo-
geneous solutions. However an important difference
between our work and that of Marciniak-Czochra and
Kimmel is that we also use lambda-omega analysis to
investigate the stability of time-periodic model solutions
to spatial perturbations. In this way we provide a possi-
ble explanation for the highly irregular spatio-temporal
dynamics that characterise many vascularised tumours
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and show that such dynamics may have a deleterious
impact on the tumour’s response to chemotherapy.

Additional file 1: Appendix. In the pdf file Appendix.pdf we discuss our
model parameters and estimate values for some of them. We also give
additional information relating to the l-ω analysis of our model.
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