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New symmetry of intended curved reaches

Elizabeth B Torres

Abstract

Background: Movement regularities are inherently present in automated goal-directed motions of the primate's arm
system. They can provide important signatures of intentional behaviours driven by sensory-motor strategies, but it
remains unknown if during motor learning new regularities can be uncovered despite high variability in the temporal
dynamics of the hand motions.

Methods: We investigated the conservation and violation of new movement regularity obtained from the hand
motions traced by two untrained monkeys as they learned to reach outwardly towards spatial targets while avoiding
obstacles in the dark. The regularity pertains to the transformation from postural to hand paths that aim at visual goals.

Results: In length-minimizing curves the area enclosed between the Euclidean straight line and the curve up to its
point of maximum curvature is 1/2 of the total area. Similar trend is found if one examines the perimeter. This new
movement regularity remained robust to striking changes in arm dynamics that gave rise to changes in the speed of
the reach, to changes in the hand path curvature, and to changes in the arm's postural paths. The area and perimeter
ratios characterizing the regularity co-varied across repeats of randomly presented targets whenever the
transformation from posture to hand paths was compliant with the intended goals. To interpret this conservation and
the cases in which the regularity was violated and recovered, we provide a geometric model that characterizes arm-to-
hand and hand-to-arm motion paths as length minimizing curves (geodesics) in a non-Euclidean space. Whenever the
transformation from one space to the other is distance-metric preserving (isometric) the two symmetric ratios co-vary.
Otherwise, the symmetric ratios and their co-variation are violated. As predicted by the model we found empirical
evidence for the violation of this movement regularity whenever the intended goals mismatched the actions. This was
manifested in unintended curved "after-effect” trajectories executed in the absence of obstacles. In this case, the
system was "perturbed" away from the symmetry but after several repeats it recovered its default state.

Conclusions: We propose this movement regularity as a sensory-motor transformation invariant of intentional acts.

Background

The primate arm-hand system has many more degrees of
freedom (d.o.f) than the three-dimensional physical
space in which the system operates. Such excess lends
primates great flexibility to interact with the external
environment and gives rise to highly versatile behaviours.
Any goal-oriented task can be performed in a variety of
ways. Even under highly constrained laboratory condi-
tions several repeats of the same motion can be highly
variable after the motion has been fully automated. To the
naked eye every repeat may seem similar to the previous
trial but when examined at a millisecond time-scale reso-
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lution, different patterns of variability can be revealed. In
spite of the many possible ways that exist to perform vol-
untary reaches, and of the variability of movement
parameters manifested in any family of reaching actions,
research in the field of motor control has unveiled a num-
ber of regular movement patterns that suggest conserva-
tion of some underlying quantities possibly driven by
sensory-motor integration strategies to achieve some
higher-level goal.

Examples abound in motions that are performed under
temporal constraints aiming for a particular maximum
speed or particular movement duration. Among them the
first to be noted was the speed-accuracy trade off known

as Fitts' law, discovered by Paul Fitts in 1954 [1]. The law
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predicts that the time required to rapidly move to a target

region depends on the distance D to the target and the
width W of the target region, T =a+blog, ( 1+ %) .

This law has been reproduced in a variety of situations
and more recently extended to the human-computer

interaction domain as the Accot-Zhai steering law [2].

Other known regularity of human movements is the
symmetric ("bell-shaped") nature of the speed profiles of
point-to-point straight motions noted earlier [3] and
modelled in two dimensions according to various propo-
sitions of what the brain may be optimizing when plan-
ning accurate reaches [4-6]. These have included
quantities driven by kinematics, quantities driven by
force-related parameters as well as by motor noise.

Invariably these studies however have treated the
movement time as a free variable and pre-set the duration
of the reach a priori. This has also been the case in animal
movement research, which has reproduced the speed
profile regularity [7,8] in highly over-trained subjects that
in some cases have been trained to attain a particular
peak velocity within a given time window. This treatment
of the motor control problem has left unexplored the
question of whether movement regularities could also
emerge when the temporal dynamics of intended actions
are highly variable. For example we have recently found
that during motor learning curved hand trajectories did
not conserve the smooth symmetric profiles characteris-
tic of automated straight reaches [9], yet other more sub-
tle patterns may still be conserved under such conditions.

In reach to grasp motions that required the bending
and twisting of the hand along the motion paths to match
some location and orientation in space, the arm system
defaulted to the co-articulation of 4 rotational joints
roughly projecting to three physical dimensions for trans-
port of the hand and 1 for rotations of the hand. The sub-
jects performing such motions invariably conserved the
relationship between the transport and the rotational
errors [10]. This conservation was manifested for differ-
ent dynamics manipulations, including systematic varia-
tions in speed and initial arm posture to induce different
muscle patterns and produce different forces. The curves
describing such motions have been well characterized as
the length minimizing curves (the geodesics) along two
related Riemannian manifolds used to align propriocep-
tive (internally sensed postures) and visual (externally
sensed goals) spaces of disparate dimensions and differ-
ent sensory-processing temporal lags [11].

As one assesses more natural behaviours, movement
regularities unveiled in one context do not necessarily
transfer to another context. Another known example has
been the somewhat controversial human movement pat-
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tern known as the 2/3 Power Law. This movement regu-
larity reveals a non-linear relationship between the
tangential hand speed and the curvature of its trajectory
during curved motions [12-14]. Such relations though
appear to be violated in rhythmic three-dimensional arm
movements [15], raising the possibility of two separate
systems for the control of fast automatic and slow
motions. This idea has been supported by clinical
research [16,17] and suggested also in the context of
motor learning/adaptation studies [18] of planar motions.
Studies involving motor learning may provide a more
natural scenario to test the movement regularities
described thus far in fully automated reaches, or in
motions with specific spatio-temporal requirements. In
most experiments describing such phenomena, the arm
has been constrained to move on a plane and/or to move
under a pre-defined temporal structure that a priori sets
bounds on the total duration of the motion and/or on the
motion's maximum speed. It is unknown whether the
untrained system, moving naturally at its own pace while
learning new dynamics would also manifest movement
regularities. In natural settings unconstrained motions of
the arm would recruit many of the rotational d.o.f. in the
proprioceptive space of sensed postural configurations
and the motions would generally be more variable. Would
other subtle invariants emerge under such conditions?
More importantly, are there motion invariants that
remain conserved across different families of reaching
actions? Under what conditions such invariants would be
violated and repaired? We address these questions here in
two untrained monkeys as they learned to avoid obstacles
when their hands aimed at visual targets in the dark.

Materials and methods

Experimental methods

Two rhesus macaque monkeys were first trained to per-
form memory-guided straight reaches directed to visual
targets in the dark. Targets were located on a vertically-
oriented board (figure 1B). A block-design paradigm was
used to interleave such automated three-dimensional
reaches with reaches for which the animals had not been
trained. These consisted of reaches to the same targets on
the board but performed to avoid physical obstacles (OB)
in various configurations. The OB(s) were placed on the
board blocking the straight path to some of the targets
and evoking variable degrees of hand path curvature. The
monkeys performed the task with their right hand.

The structure of the paradigm was A-B-A, where A
represented the automated straight reaching block, B was
the block of curved reaches around obstacles and A' was
the last block of straight reaches after exposure to many
highly fast and curved OB-avoidance-motion repeats.
The experimental paradigm and other aspects of the
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Figure 1 Experimental paradigm designed to naturally evoke the
learning of obstacle-avoidance. (A) Temporal epochs and visual
stimuli in each single trial of the experiment. The monkeys were nei-
ther conditioned to end the reach at a particular time nor to reach a
particular velocity peak. They moved at their own natural pace. (B)
Block-design experiment to naturally evoke learning consisted of
straight reaches, followed by new reaches around physical obstacles
for which the monkeys had not been trained, and then straight reach-
es again. Red circle marks the site of maximal memory response in the
visual field from a posterior parietal neuron used to guide the initial
placement of the obstacle. The second placement was on the oppo-
site side of the board.

learning process have been described elsewhere [9]. Here
we focus on geometric measures of the hand trajectories.

Since these experiments monitored the two animals
over several months until their new reaches turned auto-
mated, here we focus on the time period when the ani-
mals were still learning. The criteria for learning vs.
automatic came from (1) the jerkiness vs. smoothness of
the new speed profiles along the curved hand paths, and
(2) the ease with which the animals switched from one
experimental block to the next. The presence of jerky
hand speed profiles when switching from A to B, or from
B to A’ indicated that the OB-avoidance motor program
was still fragile, i.e. undergoing learning [9].

Since our main interest rests on the effects that the high
variability inherent in the learning process may have on
movement regularities, we will focus on the behavioural
data from the earlier days of training. The data was gath-
ered from experimental sessions where the transition
from A to B, or from B to A’ was not direct. In those days
it took many trials to transition from straight paths with
smooth speed profiles to curved paths which would also
develop smooth speed profiles (going from A to B); or it
would take many trials to transition from curved paths
with smooth speed profiles to straight paths with smooth
speed profiles (going from B to A'). In particular, in the
transition from B to A' unintended curved hand trajecto-
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ries in the absence of OB were coined "after-effect" trajec-
tories from OB-avoidance and we studied the evolution
of those trajectories in depth here.

The motions of the performing arm were recorded
using electro-magnetic sensors (Polhemus Fastrak 120
Hz resolution). The hand sensor was mounted on a piece
of Plexiglas, affixed to a custom-made glove and placed
on the surface of the moving hand, one cm from the wrist
line. The rest of the sensors were mounted on a piece of
Plexiglas and affixed to a primate jacket at the shoulder,
upperarm and forearm.

The monkeys were seated in a primate chair. Since con-
current neural recordings were being obtained, their head
was not moving and their eyes were fixating straight
ahead. They moved their arm freely in three dimensions
and received a juice reward after each successful trial.
Successful trials had the following structure (depicted in
figure 1A): in complete darkness, after the animal fixated
to a light straight ahead for 300 ms, a target light was
flashed for 300 ms. A memory period variable between
800-1000 ms ensued when the animal had to withhold the
reach and maintain fixation until the GO signal. The GO
signal was the offset of the fixation light. A reach period
followed when the animal had to achieve the memorized
target location in complete darkness. In the OB-avoid-
ance block the same structure was used but the animals
viewed the OB(s) prior to the initiation of the block,
when the lights in the room went off, and they had to
memorize the OB(s)' location and configuration in order
to avoid them.

The data discussed here is from avoiding obstacles that
were cylindrically shaped black blocks protruding 5
inches out of the board and measuring 3 inches in diame-
ter. The locations of the obstacles were primarily on the
right or on the left sides of the central fixation point on
the board. Since the main goal of this study was to inves-
tigate the role of the Parietal Reach Region cells on
changes to postural trajectories from curved motions,
these locations were chosen according to the cell's visual
receptive field (the OB were placed in and out of it). The
present study focuses on locations to the right and to the
left of the fixation point as these evoked the highest
changes in curvature and timing.

The subjects were not penalized if the hand collided
with the OB(s), as we were interested in the evolution of
such trials. However, not enough trials where they hit the
OB(s) could be gathered for analyses as both animals
were naturally very proficient at successfully avoiding the
OB(s) while maintaining eyes fixated in the dark. The
data reported here comes from trials where no collision
with the OB(s) occurred.

All experimental procedures were conducted according
to the "Principles of laboratory animal care" (NIH publi-
cation no. 86-23, revised 1985) and were approved by the
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California Institute of Technology Institutional Animal
Care and Use Committee.

Behavioural and statistical measures

Bending and twisting of the hand paths

We assessed the effects of task condition and target loca-
tion on the curvature of the hand trajectories. To this end
we measured the deviation of the hand trajectory from
the Euclidean straight line and used this as a bending
index (denoted «).

The starting and final location of each hand trajectory
was joined by the corresponding straight line. The hand
trajectories were re-sampled (100 points) to obtain a fine
temporal partition at equally spaced points without dis-
torting the spatial path. This was necessary for numerical
integration to compute the area and the perimeter ratios
explained below and to treat the curve as a geometric
object independent of its temporal profile. The latter is
justified by empirical evidence indicating that during vol-
untary motions, primates conserve the hand paths
regardless of the motion's speed [9,11,19-21]. Points in
the re-sampled hand path were projected onto the
straight line and the normal distance from each point
along the curve to the corresponding point on the Euclid-
ean straight line was measured to determine the point of
maximum normal distance (maximum bending k) in each
path.

We also measured the degree of twisting along the hand
paths. At each point along the trajectory the tangent vec-
tor to the curve (the velocity vector) and the vector per-
pendicular to it (the acceleration vector) span a plane
(known as the osculating plane [22]). This plane changes
as the hand changes position in time. The tilt of the vec-
tor normal to this plane at each position was compared
to that corresponding to the plane from the previous
position in order to measure the twisting of the curve
along the hand motion's trajectory (i.e. given two consec-
utive tangent vectors and corresponding orthogonal
acceleration vectors, we obtained the angle between the
two consecutive vectors normal to the two osculating
planes). To better visualize this relative to an ideal OB-
avoidance modelled geodesic we show in figure 2A, B the
projection of the data trajectory on the geodesic and
mark the normal to the plane spanned by the projection.
As in the bending case, this progression gave the twisting
profile of the motion as a function of time. Then we
obtained the point in time where the torsion of the hand
path was maximal (measured in degrees). (Notice that we
chose not to use the Frenet-Serret formulas to formally
compute curvature and torsion of the curves to avoid
numerical errors in the computation of higher derivatives
from the sampled data).

Two-way ANOVA (target location and experimental
condition as the two factors and « (or T) as the dependent
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variable) was used to assess significance in the differences
across experimental blocks. Within each block we also
performed an ANOVA to ask if the target location had a
systematic and significant effect on the bending (or on
the twisting) parameter.

The relative timing of critical kinematics temporal landmarks
We measured in each trajectory the timing of several
kinematics parameters occurring at different points of
the motion. These critical temporal markers were: the
time length to reach the maximum speed from the start of
the reach (denoted tau); the time length to reach the max-
imum acceleration (denoted o) and the total duration
(denoted ¢). In particular we were interested in the evolu-
tion of the magnitude of the acceleration relative to the
magnitude of the velocity. Where and when along the
curve traced by the hand were these quantities maximal?
Was there any evidence that the system was using a par-
ticular critical temporal point as a reference while timing
the reaches?

We had previously reported that the speed profiles dur-
ing the learning phase of the new OB-avoidance motion
were jerky, with multiple accelerations and decelerations
phases and highly variable in duration ranging from 1,500
ms to 700 ms for the same target [9]. Motivated by the
different force patterns required to complete these
reaches with strikingly different tempo, and by the con-
servation of the postural and of the hand paths, here we
asked if there were fundamental differences between the
temporal acceleration profiles of these two different fami-
lies of reaching trajectories -straight and curved-as the
subjects built a new procedural memory. Notice that we
are using the magnitudes of the velocity and of the accel-
eration (a positive scalar).

To assess the effects of target-dependent curvature/tor-
sion and learning on tau, a and ¢ we used two-way
ANOVA with target location and experimental condition
as the two factors, and the temporal-dynamics parame-
ters as the dependent variable in each case.

Trajectory ratios, symmetry and similarity
We defined two trajectory ratios:

(1) The area ratio was defined as the quotient between
the partial area under the curve in the first portion of the
movement, up to the point of maximum bending k, and
the total area enclosed between the curve and the line.
Figure 2c illustrates the definition.

(2) The perimeter ratio was defined as the quotient
between the partial perimeter -the sum of the path length
and the length of the line connecting the initial hand
position and the target up to the point of maximum
bending- and the total perimeter given by the total sum of
the lengths of the hand path and the initial hand position-
to-target line.

It is important to note that the assessment of these
quantities in the context of motor learning was motivated
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obtained using the length of the curves instead.
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Figure 2 Trajectory geometric measures of interest. (A) Twisting the line is defined by the angle between two consecutive vectors normal to the
plane spanned by projecting the acceleration vector onto an ideal geodesic curve. Blue trajectory is jerky (segmented) from the learning data, black
trajectory is modelled (see Additional file 1). Blue dots mark the critical points (speed maxima) of the segments. (B) Same twisting measure in the

smooth automated case. Red dot is the single velocity peak. Black is the modelled path. (C) Ratios of interest: For each hand trajectory the curve was
re-sampled at equally spaced intervals. The points along the curve were projected on the Euclidean straight line joining the start and target locations.
The point of maximum bending was obtained and the area enclosed between the lined and the curve computed and denoted partial area APartial. To
obtain the area ratio this quantity was divided by the total area enclosed between the curve and the line, denoted ATt The perimeters were similarly
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by a previous finding involving human subjects. In that
study humans performed similar three-dimensional
point-to-point straight reaches under visual memory
guidance in the dark. Both aforementioned ratios were
time-invariant, i.e. remained conserved for multiple
speeds along paths of similar curvature. The conservation
was in that case also independent of the frame of refer-
ence used to cue visual guidance [23]. This was also a the-
oretical result [11] explained through a simple case in the
Appendix and qualitatively congruent with previous data
from various laboratories showing the conservation of
voluntary arm postural and hand paths [9,10,19-21] in
the face of highly variable timing and different loads
applied to the arm.

The novelty of the questions addressed in the present
experiments rests in two facts: (1) the animals were
untrained to perform the task of interest; (2) there were

dramatically different arm force patterns to achieve mul-
tiple families of curved hand trajectories.

Similarity of the area and perimeter ratios

We obtained from each hand trajectory the area and
perimeter ratio and used the Friedman test [24] to assess
their similarity in each experimental condition. We
addressed the effects of hand path curvature and tempo-
ral dynamics on these quantities for all experimental con-
ditions: A (automatic), B (intentional learning of new
speed profiles) and A’ (de-adaptation as the special case
where curved hand trajectories emerged unintentionally
when obstacles were no longer present and the intended
goal was as in A, to move straight to the target).

Results

Bending and twisting of the hand paths

We found significant effects of target location and experi-
mental condition in both animals (alpha 0.01) on the
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bending and twisting of the hand trajectories. In the
straight-reaching block the target location affected both
trajectory parameters significantly. These results
extended from the straight-reaching to the OB-avoidance
block. There was a significant effect of the block-condi-
tion. Figure 3 shows typical ipsi- and contra-lateral trajec-
tories to the performing arm from one of the animals,
along with the bending, twisting and speed profiles for
avoiding 1 or 2 OB(s). We found in both animals that the
curvature and torsion of the hand paths significantly
depended on the target location, on the number of OB(s)
and on the learning stage (block). For less curved motions
twisting was confined to the initiation and ending of the
reach, and the main movement segment remained fairly
planar. However, as the curvature increased, the hand
twisted more along the path (figure 3D, E, F). These inter-
action effects were significant at 0.01-level according to
the 2-way-ANOVA in both animals. Table 1 lists the aver-
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age values for various spatio-temporal parameters from
the two animals and the results of the ANOVA test.

The relative timing of critical kinematics temporal
landmarks

The time to reach the first velocity peak: Each target loca-
tion in space had a characteristic value of tau specific to
that location in each task. This parameter was highly con-
sistent at each location despite the fact that in each exper-
imental block, the repetitions of the reach were made to
randomly presented targets. Figure 4 shows the distribu-
tion of tau across space for the case of two OB(s). We fit-
ted a surface through the mean values of tau and plotted
the two standard deviations from the mean value at each
location where the bending of the hand trajectory was
most significant. Notice for each target location of figure
4 the invariance of tau to the dramatic changes in tempo.
During the learning trials, notice in figure 4 the contrast
between the consistency of tau and the high variability of
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Figure 3 Spatio-temporal parameters in different families of curved motions. (A) Hand trajectories Ipsi- and contra-lateral to the performing arm
from motions avoiding 10B. Yellow denotes the distance travelled up to the first velocity peak (red star), black is the distance travelled up to the point
of maximum bending (grey star) and the green star denotes the point of maximum twisting. Notice that these points of high torsion are detected
rather at the earliest or at the latest in the path during avoidance of 1 OB. (B) Bending and speed profiles as a function of time with arrows marking
when along the hand path the maximum bending, speed and twist are reached. (C) Hand twisting profiles as a function of time. (D-F) Similar plots for
significantly more curved and significantly faster hand trajectories avoiding 2 OB(s). Notice that unlike in the less curved trajectories, some of the points
of maximal torsion are reached midway in the acceleration phase of the path.
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Table 1: Parameters of interest measured in the 2 monkeys
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Targets AVRG 1 2 3 4 5 6
MaxVP(cm/ F=19.2,p<10A-5 116105 84.8+5.2 87179 111£129 854+10.7 83.4+8.2
s)
136 £53.3 130+7.9 1254 +£4.5 141 £18.6 1373+£17.2 1309+6.8
151+19.8 148 £23.3 143.8+34 159 £40.5 150.8+17.8 145.6 £ 27.6
Max K (cm) F=222,p<10A-7 6+1.1 28+1.0 1.2+06 59+1.18 3.05+09 221+0.7
14+£23 6.83+25 29+23 152+3.0 89+22 56+1.8
23+2.1 11.7+£5.13 74+3.1 228+64 199+29 9.7+4.7
Max T (deg) F=221,p<10A-7 52%17.2 478+17.8 43 +£16.2 46.6+12.8 46.4+18.8 46.1 £20.3
116 £ 53.4 119+ 47 105 + 38 118 £325 118 +48.1 1155+ 534
139+ 35.1 133+40 108 + 44. 142 +27.9 128.3 £30.9 140.0 £ 324
AS (ecm) F=92,p<10A-4 4+18 1.8+24 1.03+1.4 1.82+0.6 -0.5+3.1 -23+35
7+£5.18 3.1+£34 20619 11514 -22+1.6 -42+05
12+£23 86+34 487+29 38+03 -9.7+23 -122+2.2
tau (ms) F=172,p<10/A-6 235+418 228 +39.2 216+ 18 251+413 2319+ 241 211.3+39.8
237 +£39.3 237 +37.8 223 +17 292 £37.5 241.4+239 2459+ 349
246 £ 349 243 £29.0 239+3 344 +33.2 3144 +31.1 303.3+275
path length F=7.7p<0.001 2+03 2+0.1 2+0.2 2+03 1.9+0.2 20+04
gmaxVP
2+0.2 2+0.2 2+0.2 1.9+0.2 1.8+£0.2 1.7£0.1
3+04 3+03 3+£03 2+0.2 1.7+0.2 1.7+03

Parameters were averaged across data from 2 subjects for automated straight reaches, reaches avoiding one obstacle and reaches avoiding
2 obstacles. Parameters included the maximum velocity peak (out of multiple peaks) in cm/s, the maximum bending (k in cm), the maximum
twisting (T in degrees), the difference in distance travelled delta between the point of maximum bending and the point of maximum speed
along the hand path (in cm)-negative values indicate that the peak bending occurred prior to the peak velocity; the time tau to reach the first
velocity peak (in ms), and the unit less ratio of total hand path length (cm) to distance travelled to the first velocity peak (cm) -a value of 2

means that the speed profile was symmetric. The 2way-ANOVA results (averaged F-value and Prob>F across the 6 most affected targets and

2 monkeys) are displayed in the first column.

the total movement duration ¢. This result extended to
other families of reaches in the present study.

Figure 5 depicts the performance of the same animal
for the cases of straight reaches, reaches around 1 OB and
reaches around 2 OB. In each case the distribution of this
temporal parameter tau was predictive of the underlying
distribution of path lengths scaled by hand path curva-
ture. As the length and curvature of the path increased
the tau-distribution across space orderly changed with a
monotonically increasing trend for targets located across
the body (contra-lateral to the performing arm) and a
monotonically decreasing trend for ipsi-lateral targets.
We had previously used different distance metrics, each
specific to each tau-family to characterize this phenome-

non [9] (see also the figure 6and appendix 1) illustrating
length minimizing curves with respect to these different
distance-metrics for 3 different space curvatures). The
performance of the other subject was also consistent with
this one's.

The time to reach the maximum acceleration: The tem-
poral profiles of the magnitude of the acceleration
revealed that the hand trajectories in general had several
acceleration peaks. We obtained the percentage of the
total movement duration time that it took to reach the
absolute maximum acceleration for each condition and
plotted the distribution of this parameter across all target
locations and reach repetitions. Since the total length of
the path relates to the overall duration of the reach, we
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Figure 4 The dynamics-invariant nature of tau in the first pulse of the reach. (A) Monkey speed profiles from hand motions to targets 1-3 contra-
lateral to the moving arm and 4-6 ipsi-lateral to the moving arm. For each target, trials are colored as learning (blue) and automatic (green) in the same
order in which they were recorded. Criteria for automaticity were consistency in the distance delta travelled up to the first velocity peak, a single ve-
locity peak and consistency in the total duration t. Yellow marks the acceleration phase (first pulse of the reach) with a highly variable distance delta
travelled at a consistent time tau. Dots mark the first velocity peak. Notice that unlike point-to-point straight reaches these curved reaches have
skewed speed profiles. Their acceleration phase is shorter than their deceleration phase in the contra-lateral targets. (B) Ipsi-lateral targets 4-6 have a
longer acceleration phase. (C) Mean tau values at each measured location +/- two standard deviations from the mean. Twelve out of 15 locations were
used to fit a surface through the points using Matlab interpolation scheme (central location was the fixation point and the other 2 missing points were
blocked by obstacles). (D) Trajectory time-invariant area and perimeter symmetries were not affected by the learning of the new dynamics or by the
skewed shape of the speed profiles.

also examined the distance delta travelled to the first
velocity peak, as the hand completes the first pulse of the
reach.

In straight reaches the distribution of the percent of
time that it took to reach the absolute maximum acceler-
ation along the curve turned out to be strongly bimodal
according to the Hartigan's dip test [25,26] for bimodality
(p < 107-6, dip = 0.09). A mixture of Gaussians fit yielded
55% of trials with the maximum acceleration reached ear-
lier at 10% of the total time and 45% of the trials with the

maximum acceleration reached later at 20% of the total
time.

Further analyses of all trial-times in each class revealed
that each class of trials was composed of reaches to all
target locations (uniformly distributed across space) and
trials performed uniformly at all times (early and late) in
the block. These results ruled out a possible effect of tar-
get location preference (e.g. ipsi-vs. contra-lateral or
upward vs. downward preferences) or an effect of fatigue
(early vs. late trials in the block). This bi-modal distribu-
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Figure 5 Geometric invariant at the crossroad of time and distance. Typical hand trajectories to targets in space with and without obstacles
pooled from experiments in one day of early training (from one subject and similar to the other). Initial acceleration phase highlighted in yellow. (B)
Fitted surfaces to obtain the mean temporal maps (tau ms) across space to reach the first peak velocity (red dots) on the way to targets in (A). On the
xy-plane we represent by dots the locations of the targets and by cylinders the location of the obstacle(s). The distribution of tau reveals the underlying
distribution of path length scaled by path curvature. (C) Time invariant geometric ratios (each point is from a trajectory) significantly co-varied. The
similarity of the area and the perimeter ratios was confirmed by the Friedman's test [27] with the slopes and the intercepts of the regression lines as
((1,39,-0.21,[1,38,-0.20), [1,36.-0.20)) for straight, 1 obstacle and 2 obstacles respectively.

0.5 1 0 0.5 1
Arearatio

tion defined two trial classes in the straight reaches, one
in which the peak acceleration preceded the peak velocity
and the other in which the peak acceleration followed the
peak velocity. The distribution of time stamps in these
trials revealed an alternating strategy whereby it took
mostly one or two trials across all repetitions to switch
from one trial class to the other. This is depicted in figure
7f. We discuss potential reasons for this performance
strategy later.

The OB avoidance block yielded a very different picture
with a unimodal uniform distribution of the percent of
the total time that it took to reach the maximum accelera-
tion a. This was the case when avoiding 1 (Hartigan's dip
= 0.03, p = 0.6, failed bimodality test) as well as 2 OB(s)
(Hartigan's dip = 0.01, p = 0.2, failed bimodality test).

The distribution of delta was also different when com-
paring the procedural straight reach and the new OB-
avoidance reach. During automated straight reaches, the
trial distribution of delta was unimodal and uniform
across targets (failed the Hartigan's bimodality test, dip =
0.03; p = 0.5). Avoiding 1 OB also failed the bimodality
test (dip = 0.02, p = 1). However learning to avoid 2 OB(s)
yielded a significantly non-unimodal distribution (Harti-
gan's bimodality test, dip = 0.09, p < 10*-6). Figure 7a, b
shows the distributions of the percentages of time to
maximum acceleration and the distributions of the por-
tions of the path length travelled up to the maximum
velocity for straight vs. highly curved OB-avoidance
around two obstacles. Notice the complementary differ-
ences between fully automated straight reaches and
highly curved reaches around 2 obstacles when the sys-



Torres Behavioral and Brain Functions 2010, 6:21
http://www.behavioralandbrainfunctions.com/content/6/1/21

Page 10 of 20

tic scenario (see appendix 1).
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Figure 6 Gradient-flow-driven distance-metric preserving transformation from intended goals to postural configurations in a more realis-
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tem was still undergoing learning of the new curved tim-
ing. As in the a-bimodal distribution, each of the 2 classes
of the delta-bimodal distribution was composed of trials
to all targets and time-of-occurrence in the experimental
block. Figure 7c shows the distributions of the relative
timings of speed and acceleration maxima for fully auto-
mated straight and curved timings. Notice the structure
similarity to the straight timing inherited by the curved
timing, as well as the shifted centres contracting the time
separation between the kinematics critical points.

Figure 7f shows the distribution of trial time stamps.
Each panel refers to one delta class -short or long. This
distribution revealed an alternating strategy between the
two trial classes. The number of trials that it took to
switch from one class to the other across random reached
was mostly 1 or 2, i.e. given trial n in one class, most likely
trial n+1 would be in the other class. Despite this alter-
nating strategy, when grouping trials per target, there was
a slow monotonically increasing trend in each class that
coincided with the order in which the trial was acquired.
This is depicted in figure 7d for data from several consec-
utive days of training.

The total time of the motion: The movement duration
relates to the total length of the trajectory so we mea-
sured both quantities and the other spatio-temporal
parameters in each block. The OB-avoidance total path
length ranged between 37 cm and 79 cm for ipsi-lateral

targets and between 39 cm and 105 cm for contra-lateral
targets. The partial distance delta travelled up to the first
velocity peak varied between 10 cm and 36 cm for
straight reaches and between 11 cm and 60 cm for curved
reaches around 1 and 2 OB(s). The total movement dura-
tion time ¢ in ms ranged between 420 ms and 1,600 ms for
ipsi-lateral targets and between 500 ms and 1000 ms for
contra-lateral targets. It was highly variable at the begin-
ning of the learning, for example in a single session it
evolved from 1,600 ms until it became stable at 700 ms in
the most affected ipsi-lateral target.

Automated straight reaches showed consistent move-
ment duration for each location despite the randomness
of the target presentation. This contrasted with the ear-
lier trials of the OB-avoidance learning block where the
total duration was highly variable yet with a consistent
monotonically decreasing trend at each randomly cued
target location. The last portion of the OB-avoidance
block was characterized by a more consistent duration in
each target location. For each target location we observed
statistically significant differences between the auto-
mated straight and OB-avoidance reaches. Likewise,
there were significant differences within the OB-avoid-
ance block when we compared earlier and later trials of
the block, with a significant effect of target location
(alpha level 0.01). Table 1 lists these results in detail for 6
of the most affected target locations.
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Figure 7 Hand trajectories: Straight vs. curved timing and distance. (A) Automated straight timing had two trial-clusters according to the per-
centage of total movement time to attain the maximum magnitude of the acceleration vector. In one trial-class the hand accelerated maximally much
earlier than in the other. Across spatial targets trials lasted 500-700 ms. (B) Learning the curved timing turned this distribution unimodal. (C) Automated
straight timing showed two clusters of trials according to the relative time difference between velocity and acceleration maxima. Negative values in-
dicate that the maximum magnitude of the acceleration was reached before the maximum speed. Automated curved timing trials lasted 700-850 ms,
spread out the clusters and shifted (contracted) the time-length relative difference between speed and acceleration maxima. (D) Straight path had a
unimodal uniform distribution of distance (delta) travelled to the peak velocity. (E) Curved-distance learning turned this distribution non-unimodal.
(F) Alternating adjustment strategy of delta in curved-timing learning. If in trial n the hand would travel a short delta, most probably in trial n+1 the
hand would travel a long delta. (D) When grouping consecutive trials in one day a monotonic trial-by-trial trend was revealed with an increase of the
delta adjusted from one trial to the next. This trend was also observed across consecutive days of training during a week. Blue are from the (multi-
peaked speed) learning phase and green are from the (single-peaked speed) automated motions.

Invariant symmetries of the intended reaches

Despite significant differences in all trajectory parame-
ters as a function of target location; and as a function of
the learning stage of OB-avoidance, the area and the
perimeter ratios pooled across all target locations and
repeats for each animal formed a unimodal distribution
clustered tightly around 1/2. This distribution was similar
for both quantities and remained so despite striking dif-
ferences in temporal dynamics (figure 4D) or hand path
curvature (figure 5C).

The similarity of the area and the perimeter ratios
denoting their co-variation was confirmed by the
(27]

Friedman's test

yielding
(p =0.75; Z;f:z <0.13, meanmnks[6.45,6.52,6.60]) for

straight reaches, OB-avoidance with 1 and 2 obstacles;

and during learning curved vs. automated curved reaches
(p =0.85; ;(gle < 0.07, meanranks[6.5,6.45] ) Figure 4

shows the invariance of these symmetries and their co-

variation for strikingly different temporal dynamics
across space. Figure 5 shows their invariance to different
geometries expressed in different families of hand trajec-
tory curvatures. Furthermore a two-tailed pair wise t-test
at the 0.01 alpha-level did not reject the null hypothesis of
1/2 mean-value for co-variation of the ratios, both during
early learning and late automatic trials. Regression lines
were obtained for each case and they yielded also signifi-
cant similarity in slopes and intersections.

Violation and recovery of the invariant symmetries and
their co-variation in unintended reaches

During the early trials of the third block of straight
reaches (A') both subjects manifested motion trajectories
similar to those observed during OB-avoidance. Their
hand paths were curved and the temporal profiles along

the hand paths were highly variable. A distinct difference
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was that the consistency of the parameter tau was no lon-
ger present. Eventually the simultaneity of the delta-tau
pair quantified during the first pulse of automated
straight reaches was regained in this block. Attaining this
synchronicity however, took many trials (at least 5 per
each of the 14 targets). At that stage we found as in the A-
block, similar bimodal distribution of the percent of time
to reach the maximum acceleration relative to the maxi-
mum speed, and a unimodal distribution of the distance
delta travelled to reach the first velocity peak. Figure 8
shows the violation of the symmetries' co-variation,

quantified by the failure of the Friedman's similarity test
(p <107°; xfle < 52.7, meanranks[11.9, 3.5]) for the

earlier de-adaptation trials and the later automated

straight trials.

Discussion

This work investigated (1) if there were new movement
regularities conserved across various families of goal-
directed voluntary reaches; and (2) if the regular patterns
across reaches would remain conserved despite high
motion variability during the natural learning of a new
procedural act. We found that during intended goal-
directed reaches, despite significant statistical effects of
target location and learning stage on many relevant spa-
tio-temporal movement parameters, there was a new
symmetry linked to hand trajectories. This symmetry was
captured by two ratios of the hand trajectories, which sig-
nificantly co-varied across space and remained invariant
to changes in temporal dynamics, to changes in hand
path curvature and to changes in the arm postural paths
required to achieve differently curved hand trajectories
across the three-dimensional physical space.

It is important to notice that all research questions
addressed here are part of a research program investigat-
ing the cross roads between geometry and temporal
dynamics during unconstrained intentional actions. This
program aims at further developing the idea of an inter-
nal model of the body's temporal dynamics [28,29] by
providing a representational model of the intended
motion timing that can be compared to the actual timing
from the movement's execution. Temporal dynamics
relate to the total path length and to the speed-accelera-
tion critical points of the motion (maxima and minima)
defining key segments. Our new approach proposes that
such dependencies on relative timings must play a role on
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how we plan and learn the temporal patterns of new and
complex motions.

It is generally believed that an internal representation of
movement variables -such as position and velocity- is
maintained in the neural activity (whether in intrinsic
joint and muscles or extrinsic coordinates) and used to
update and monitor the state of the system. Such repre-
sentations are thought to be stored as internal models
[29-31] that may provide a neural representation of the
body-environment interaction dynamics.

It is accepted that these internal models can be charac-
terized by dependence on a motion state -a mapping
between motor commands and resulting limb motions-
rather than by a dependence on the times when they
occur [32]. Empirical support for this general assumption
is limited to a few force field-adaptation and learning
studies specifically addressing the absolute timing issue
[33,34]. No evidence for a central absolute representation
of time -a ticking clock dictating the moment-to-moment
timing of state variables-has ever been found. Interest-
ingly, no previous studies have addressed the relative tim-
ings between acceleration and velocity state variables,
even though the learning of different force patterns may
require the coordination of such relative timings in order
to control motor learning at different time scales.

The present work uncovered a bimodal distribution of
maximum acceleration-magnitude relative to maximum
velocity-magnitude suggesting that relative timings are
indeed important to learn new curved point-to-point
reaches. Each bump of the unveiled bimodal distribution
reflected separable acceleration timing relative to the
maximum speed, suggesting that -generally for both
automated straight and automated curved timings-the
peak velocity can serve as a critical reference point.

These data demonstrate that in addition to a depen-
dency on the motions' states, the system's performance in
general straight and curved reaches also manifests a
dependency on the times when these states occur. In par-
ticular the relative timings of these states' critical points
(maximal acceleration relative to maximal speed) appear
to play an important role in the learning of new curved
reaches. Models of motor learning that treat time as a
free parameter and that leave out such relative-temporal
dependencies will not account for these empirical results
of unconstrained three-dimensional complex reaches
performed at the subjects' own pace.

In both automated straight and curved OB-avoidance
reaches studied here the hand path length remained con-
sistent despite the temporal learning and despite the
arm's redundant d.o.f. Motivated by these empirical
results, in all 3 cases (straight, 10B and 2 OB(s)) we
examined the portion of the total path length that it took
the hand to reach maximum velocity (denoted delta in
cm) and that lasted tau ms. These parameters indicate
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Figure 8 Violation and recovery of the geometric invariant symmetry when there was a mismatch between intended and actual paths. (A)
Hand trajectories to targets in the absence of obstacles show the initial residual after-effects (magenta color) from the previous block when highly fast
and curved automatic OB-avoidance motions had been executed to avoid obstacles. Such trajectory changes were not intended. The inertial forces
still present in the arm seemingly overrode the intended abstract goals of reaching straight to the targets but eventually the performance converged
to trajectories that were compliant with the goals (black) and the ratios were again 1/2. (b) Trajectory bending in the early (magenta) and late (black)
trials of the same block and their corresponding speed profiles show the initial inconsistency of the (tau, delta) parameters which eventually became
synchronized when the motion was once again automated. (C) The high variability of the spatial map of tau in the earlier trials contrasted with the
stable consistent map in the late trials. The target locations in (A) are marked with stars on the map. (D) The invariant similarity of the area and the
perimeter ratios broke down when tau was highly variable and there were unintended curved hand paths in place of a more desirable straight solu-
tion. Over the course of several trials the system recovered from this "perturbed" state and regained the invariant.

where and when in the path the hand attains the speed
maximum. The temporal analyses had revealed the speed
maximum as a possible critical point of reference to time
the reach. The spatial analyses revealed that these critical
points largely depended on the reliable path length -used
to update relative distances during learning.

The questions addressed in this work were motivated
by our geometric characterization of intentional arm-
hand motions. In each case we had previously character-
ized the curve to reach a target as the shortest-distance
path with respect to a task-dependent Riemannian dis-
tance metric. In curved reaches for the (delta, tau)-asso-
ciations, we had proposed that these parameters could

play a key interchangeable role in predicting ahead sen-
sory-motor temporal lags [9]. We systematically found
here that tau and delta did play important roles in the rel-
ative timings of acceleration and speed during automated
reaches. During the learning stages of new curved tim-
ings, the time and distance parameters inverted their
roles as the system converged to an (automated) synchro-
nous first pulse.

The hand path curvature played a significant role on
this motor-learning process as it determined the cases in
which the learning of the new motion timing was based
on the adjustments of the distances travelled by the hand
at a fixed time-length in relation to the maximum speed.
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In this regard it was important to divide the hand trajec-
tory into different critical temporal land marks defining
different segments along the motion path. This further
relative-timing refinement revealed that later points
along the temporal path were more affected by the error-
correction process. This process was driven by the trial-
by-trial adjustments of the distance travelled by the hand
after the maximum speed had been attained, prior to
reaching the intended target. Eventually the hand con-
verged to a smooth timing and travelled two segments.
The overall motion then consistently lasted a similar time
length.

We speculate that it is possible that during the later
portions of the movement trajectory sensory-motor feed-
back was used to correct errors between intended and
actual executed dynamics. This was evidenced in the later
corrections of the jerky speed profiles, which disappeared
as the earlier delta became consistent. In contrast to the
later corrections, in the earliest pulse of the trajectory
(so-called open loop) information on the distance-to-be-
travelled seemed more adequate than actual motor feed-
back (possibly not yet fully available) to estimate adjust-
ments in the upcoming dynamics and to achieve
(eventually) a systematically consistent overall timing. In
this earlier portion of the reach the system may have
placed a tighter bound on the variability of the length of
time devoted to the segment. This was evidenced in the
low variability of the parameter tau throughout the learn-
ing process.

Regarding the interactions between geometry and rela-
tive-timing, the rate of change of the distance accumu-
lated along the highly curved hand path in principle
interacts with the acceleration of the curve at each point
(the vector perpendicular to the velocity vector tangent
to the curve). If there had been extreme changes in dis-
tance travelled, the hand would have fallen out of the
intended direction along the path and collided with the
OB(s). Yet this was not the case during curved-timing
learning. Throughout the learning process -despite dif-
ferent dynamics - the curvature of the path and its overall
length were systematically conserved across random
repeats to the same target.

Path length conservation facilitated distance-based
adjustments when learning the curved timing. The
unveiled bimodal distribution of delta manifested during
the adjustment phase contained trials from all targets.
This uniformity ruled out an explanation of the non-uni-
modal distribution solely based on the subjects' biases
due to comfort (preferred spatial target location) or effort
(fatigue in the later trials of the block). The composition
of the classes showed mostly an alternating distance-
adjusting strategy where if trial n was in the short-length
trial class then trial n+1 would most probably be in the
long-length trial class. This systematisation suggested
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that the system was running two learning processes
simultaneously, one short-term based on trial-by-trial
error corrections and one long-term quantified across
days of training. We had previously tracked longitudinally
the long term learning ([9] and see also figure 7g), but the
short-term process presently addressed here revealed
new general relative-timing features of both straight and
curved reaches (figure 7c).

The present results fully agree with previous reports,
which had suggested different time scales for motor
learning in the context of a different force-field paradigm
[18]. In the force-field context, motor learning is studied
under high spatio-temporal constraints and external
forces which were not imposed in the present work. Our
results extend the previous findings to motor learning in
three dimensions, recruiting more of the arm's d.o.f. and
occurring at the subjects' self-determined, preferred
tempo. This suggests that motor learning at different
time scales seems to be a general feature of the primate
arm system, manifested whether or not movement time is
bounded a-priori by the experimenter.

The data from both animals showed that whenever the
intended path geometry and tau were consistent, the
symmetries and their co-variation held. We found that
the uncovered invariant of hand motions was violated
whenever the executed motion path miss-matched the
intended path. This was the case during the de-adapta-
tion trials where different forces were still present in the
arm system from the previous experimental block. To
describe this new phenomena we borrowed the term
"after-effects" from the well known motor learning para-
digm that uses force fields to alter arm dynamics [35]. In
our case however, unlike in the force-field paradigm, no
external perturbations had been imposed to the arm. The
observed effects were endogenous in origin and came as a
residual force from the previous OB-block, where highly
curved and fast trajectories had been repeatedly exe-
cuted. The system was "perturbed” out of its default state
and this perturbation inevitably over ruled the intended
path straight to the target. It took many repeats for the
system to de-adapt from the highly fast and curved
motions and to recover the invariant. After several trials
(approximately 70, 5 per target) the invariant symmetry
and the co-variation of the ratios was again expressed in
the hand motion trajectories. The intended straight paths
defined by the goal once again matched the actual exe-
cuted paths.

During the de-adaptation trials tau was highly variable
at each target location. This was in contrast to the other
blocks of automated straight reaches, and OB-avoidance
learning where this temporal landmark of the hand tra-
jectory remained consistent. In those cases, we had found
that the variability of tau was negligible compared to the
variability of delta. We had quantified the systematic con-
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sistency of tau even during the striking changes in overall
temporal dynamics from motor learning, yet during de-
adaptation tau varied significantly between the mean val-
ues of the 2 motor programs for straight and curved
paths.

During de-adaptation trials the parameter delta also
had comparable variability to that of the parameter tau.
An immediate sensory-motor strategy was not evident in
these trials at first. The inevitable arm state seemed to
have over ruled the intended sensory-motor transforma-
tion strategy. Yet eventually, after many trial-and-error
repeats, with no apparent systematic pattern of variability
in the hand trajectories, the system regained synchrony of
delta and tau, and the bimodal trial-distribution of a was
again quantified. Perhaps systematic de-adaptation pat-
terns could have been identified in the arm muscles
domain, but our recordings of the arm kinematics at 120
Hz limited our ability to address different sources of noise
and their possible meanings with regards to important
lower-level control strategies.

The invariance of the uncovered symmetry may reveal
a higher-level sensory-motor transformation and integra-
tion strategy common to several families of reaches per-
formed by the primate arm system. The learning
progression from the straight to the curved timings
revealed important features. The non-unimodal distribu-
tion of « in the automated straight reaches disappeared
when learning the curved timing. As the system built a
new curved temporal profile, the a-distribution turned
unimodal and the §-distribution turned non-unimodal.
Upon examination of relative timings at the end of the
learning process, we discovered that the newly automated
curved trajectories had similar non-unimodal relative-
timings structure as the automated straight trajectories.
The spread of the clusters had however changed and the
centres shifted. In the new curved timing there was a
contraction of the time-length separation between the
speed and the acceleration maxima.

The OB-avoidance learning strategy was closely tied to
the rate of change of the distance accumulated along the
first pulse of the reach in relation to the overall path
length: i.e. the percentage of the path covered. The path
length remained stable (low variability) throughout the
curved-timing learning process both in the postural and
in the hand domains. This stability in the face of so many
possible postural configurations suggested an initial geo-
metric strategy based on relative distances rather than on
relative timings. At the end of the learning process how-
ever (figure 7c), the straight relative-timing profile had
transferred to the curved path.

We speculate here that in visuo-motor acts the learning
of complex curves in high dimensions and their projec-
tion to three-dimensional space may initially rely on sens-
ing the distances covered by the end effector
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(proprioceptive sense of posture) and estimating ahead
(through vision or a visually-guided memory) the remain-
ing distance for various segments. Eventually, through
trial and error performance, aiming for a faster, less time-
segmented motion, the system may learn to rely on the
relative timings, as was manifested in the transfer from
automated straight to automated curved reaches. There is
evidence that smoothness maximization is important to
the motor system [4,36], yet relative timings -which we
found here for more complex curved three-dimensional
motions-had never entered as a goal in earlier character-
izations of the motor-control planning problem.

In our previous work [9] the longitudinal study of these
parameters -from when the animals were naive to when
they were highly trained and proficient-had revealed a
decoupling of the spatio-temporal parameters and
pointed to the distance-related parameter as a key ele-
ment for the learning of the motion's new tempo. The
present study confirms this observation and provides fur-
ther evidence that the system can use spatial distance-
sensing in the dark to guide the learning of new curved
timing.

Geometric Interpretation
We have previously proposed [9,11] that during motor
skill acquisition the motion curves described by the arm-
hand system can be characterized using Maupertuis'-
Jacobi's "Principle of Least Action” from variational
mechanics (Feynman 1965; Lanczos 1970; Jose and Sale-
tan 1998). This principle considers mechanical systems
whose Lagrangian function does not contain time explic-
itly, and brings out the relationship between conservative
systems and the non-Euclidean geometry of the underly-
ing configuration space. The "Principle of Least Action"
establishes that the problem of finding the solution of a
given dynamical problem is mathematically equivalent to
the problem of finding the geodesics of the underlying
space. In particular the description of the motion paths in
the learning stage can be computed as the shortest
"straight line" (a geodesic) between two definite end-
points in a Riemannian manifold [9,11] independent of
the time of the physical motion. According to our model,
the invariants described here emerge from the correct
spatio-temporal alignment between internally- and exter-
nally-based sensory input time-lags to preserve the map/
transformation between the intended action curves and
the corresponding actual execution's dynamics. This con-
servation is independent of the specific metrics or coor-
dinate functions of choice, but sensitive to the isometric
features of the map(s) that define the relations between
points in the sensory-motor spaces of interest.

According to our geometric model, under normal con-
ditions, the learning of new dynamics along new curved
paths would entail building an association between the
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general notion of distance (in a sensory space) to be trav-
elled along a geodesic direction (pointing along the short-
est-distance path) and the time lag that it would take for
sensory-motor feedback to return and be utilized to com-
plete the segment. Once the motor program became
automated, the time lag (which we sense from move-
ment) and the distance (which we can mentally represent
in some sensory space) would be interchangeable, so we
could have a representational model of the dynamics in a
"Least-Action-Principle" sense; i.e. we could have a repre-
sentational, time-invariant geometric model of the
dynamics motion path. To the naive system distance and
time would be separable but to the automated system
they would be equivalent. Whenever this association-
map became ambiguous or misaligned (as during de-
adaptation or brain injury [23]), such correspondence
would be violated and so would be the invariant symme-
tries and their co-variation. In this sense this is an invari-
ant that pertains to motions that are compliant with
intended sensory-motor transformations.

Conclusion

We have previously found in similar memory-guided
reaching contexts that adult human Parkinson's and Pari-
etal patients also violated this invariant, yet they could
repair the symmetries and their co-variation when the
appropriate source of sensory guidance was provided to
cue the spared systems. The deficit/repair pattern of the
symmetry was specific to the injured site and so was the
preferred source of sensory guidance. The present work
complements the patient data and strongly suggests that
this movement regularity is not merely a by-product of
the primate arm's biomechanics and its compliance with
the physical laws of motion. We believe that this invariant
reflects compliance with intended sensory-motor trans-
formation strategies of the primate brain and conclude
that it is a manifestation of mental laws governing the
control of voluntary arm movements.

Appendix 1

Paths generated with the gradient-flow-driven equation
dg = -G1 r° flatarget, ginit) At (i) described in [11] conserve
their length-minimizing property under local isometric
embedding (transformation). The Gauss Map of the vec-
tor 7 normal to the gradient flow at each point on the
Cost surface locally preserves the geodesic property (see
Additional file 1 for terminology). The gradient-path pro-
jected on the unit sphere is on a great circle (Figure 9A-
D). In such cases the projection of this path to the Euclid-

ean three-dimensional straight line and the computation
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of the trajectories' area-perimeter ratios reveal a symme-
try and similarity. Whenever this transformation is not
distance-metric preserving the ratios will not be 1/2 and

they will not co-vary (Figure 9E-H).

Figure 9(A) shows a geodesic family of postural trajec-
tories on the Q-Cost surface whose coordinates are q;-
shoulder, and q,-elbow rotations. Parameterization of the
surface is compatible with the metric and projects geode-
sics paths on the Q-Cost to geodesics paths on the X-Cost
surface according to equation (i) (fully described in
[9,11]) which measures the Cost (distance) along the z-
axis and descends to the target location xtarget pulled back
into the corresponding gtargetin Q according to the gradi-
ent rule. This gradient flow minimizes the remaining
(non-Euclidean) distance between current posture in Q
and final target in X subject to any additional priorities
and constraints that the task at hand may demand [9,11].
This geometric construction preserves the shortest dis-
tance path property and transforms "straight-lines" from
one space to the other. This is achieved with a change of
metric due to a change of coordinates when pulling back
from X to Q.

In the toy-model example of Figure 9 the forward map

f+,(9) = cos(qy) + cos(q, +45).»

fx,(q) = sin(q,) + sin(q, + q,) representing the arm's

is given by

endpoint.
The metric in X is pulled back into
Ga@)=71(f@)" -G(f@) T (f(@)
Q _ 2((1+cos(q,)) (1+cos(q,)) and
- (1+cos(q,)) 1
1 0
the metric in X is G( f(q) ) = |:O 1:|
The cost function in this case is

s g) = (<% 1, @) + (£, @)

In Figure 9(B) the gradient parallels the principal eigen-
vector of the Hessian (associated to the Second Funda-
mental Form [37], see Additional file 1) 2° f along the

path. This is measured by cos(i, N) =1 indicating that

the normal N to the surface at each point along the path
parallels the normal 7 to the gradient vector, which is the
acceleration of the curve. This means that the geodesic

curvature is 0 (see Additional file 1). The normal to the
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Figure 9 Geodesic vs. non-geodesic families of sensory-motor path transformations (see appendix 1).
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gradient does not pull away from the normal to the sur-
face at each point along the path. The gradient flow paral-
lel-transports the normal vector to the surface (and to the

gradient) from the start to the end of the simulated reach.

All points from all 5 paths fall on the line of cos(7i, N) =1.

Figure 9(C) focuses on a single path from the family and
its projection to the Euclidean straight line on the Carte-
sian plane. Notice that even in 2 dimensions with no
joint-angle redundancy finding the path is an ill-posed
problem as different paths in Q correspond to the same
path and end point target in X. In Figure 9(D) the Gauss
Map projects the geodesic path in Q to a great circle on
the unit sphere and conserves the geodesic property
because the gradient equation builds in general a local
isometric embedding when the metric and parameteriza-
tions are compatible as in this case. The projection of this
great-circle path on the Euclidean straight line in three
dimensions yields the symmetric area-perimeter ratios
and they co-vary in such ideal cases where the local

embedding is isometric. The black dots are the projection

on the unit sphere of N, the vector normal to the surface
at each point. Figure 9(D) shows the same family as in (A)
in the case when the metric and Q-parameterization are
incompatible and the family of paths generated with the
gradient equation are non-geodesics (are not length-min-
imizing curves). The projection on the X-Cost surface has
excess curvature. The transformation between Q and X
does not preserve the length minimizing property. In Fig-
ure 9(F) the gradient and the leading eigenvector of the
Hessian are no longer parallel, so their dot product (the
cosine of their angle) is no longer 1. Figure 9(G) focuses
on a single postural path on the Q-Cost surface. This q-
path projects to a curved x-path that does not minimize
the notion of Euclidean distance. Figure 9(H) shows that
the path on the Gauss Map does not fall on a great circle
of the unit sphere. In this case the transformation map
does not preserve the geodesics property. The projection

of these kinds of paths on the Euclidean straight line nei-
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ther yields the symmetric area-perimeter ratios nor their

co-variation.

The results illustrated here in lower dimensions extend
to higher dimensions for a more realistic characterization
of this problem Figure 6.

Figure 6(A) shows the many-to-one feature of the f~-map
from postures to hand position. The star marks an
abducted posture used later in (D) to simulate a reach.
Figure 6(B) shows the case of reaching a target from a
comfortable posture and travelling along a length-mini-
mizing path. Figure 6(C) shows the path deformation
through a change in distance metric and an isometric
transformation from hand to posture space. The same
target location was used in the simulation of this change
in geometry. The cost included two main segments in this
case, one to pull the hand to travel a given delta, it is
turned to 0 as the hand attains that critical point and the
other term takes over to complete the second motion seg-
ment. The cost in this case was defined by 2 §-segments
but in general for more complex motions one needs to
several

define O-segments:

3

(g xSy = sz[x:" @] 35 @] ¢ s S - o) |

i=1 =

driven by the 4; = D) where D; is given as a
1

1
1+e(F)0i-
visually sensed desired distance quantity and §, is the dis-
tance traversed that changes as the gradient flow changes
the hand position, (*) is the sign which alternates as each

segment is completed to drive the term towards 0 [9].

The distance-based formulation presented here can be
converted to a time-based formulation of relative-tempo-
ral segments tracking differences between angular and
linear velocities and accelerations. In addition the A-
terms can be defined by other smooth-differentiable real-
valued functions to represent different tasks. Since the
gradient is a linear operator, the gradient of the sum (of
all segments adding up to the total length or duration of
the reach) equals the sum of the individual gradients of
each segment. Thus the segmented learning process can
be modelled using the general gradient equation (i) and
the excess segment-terms that make the motion jerky can
be turned to O as the system learns to smooth out the tim-
ing. Likewise, more complex realistic multi-segmented
motions in posture space can be geometrically character-
ized using the gradient approach. In such cases the limb
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segments can be synchronized or de-synchronized using
a higher level temporal coordination scheme. Figures
6(D)-(E) show the results of simulating the motion along
a length minimizing path from different initial postures
to reach the same target. Figure 6(F) shows the three-
dimensional hand traces from gradient flows that pre-
serve the symmetries and their similarity in different
geometries.

Notice that this general gradient-flow solution could be
applied to other non-brain problems. Thus, it is not
implied here that this is the brain solution to this set of
problems. What seemed striking were two findings: (1)
this arbitrary model predicted area-perimeter related
symmetries that held in actual primate arm motions of
several kinds (it would have not been possible to have a-
priori constructed this result in a series of reaching
experiments, or under present motor-control schemes to
have a-priori controlled the motions of a robotic arm in
such a way); (2) the simulated situations in which these
symmetries and their co-variation would break down also
existed in the empirical case. In the model this violation
was predicted for non-isometric mapping of the gradient
flow. In the after-effect data the invariants were indeed
violated when the system mismatched the intended
straight and the actual curved motion-path flow. The real
system however, eventually recovered the symmetries
and their similarity thus suggesting a default preference
for a sensory-motor transformation strategy. This strat-
egy seemed congruent with what the model had specifi-
cally predicted under local isometric embedding.

This suggests that under normal circumstances the
geometric transformations that give rise to actual motion
paths from the primate arm can be on average well char-
acterized by the local isometric embedding of the pro-
posed PDE. Furthermore despite motor noise the
symmetries from the data manifested invariance to
straight or curved timings. The actual trajectories could
be on average well characterized by different families of
length minimizing curves and still preserve the similarity
of the time-invariant symmetric ratios so long as -regard-
less of the sensory space geometry-the transformation
from visual to body coordinates was distance-preserving
(isometric).

Both in the model and in the veridical paths the ratios
were shown to be independent of the curvature and tim-
ing. Previous empirical data had shown the speed invari-
ance of voluntary postural and hand reaching paths
[9,10,38,39] even when loads were attached to the arm.
Because this measure is insensitive to changes in tempo-
ral dynamics and emerges from coordinate transforma-
tions similar to those which the brain requires to perform
in sensory-motor integration processes, we can use it as a
model to monitor the departure of the primate arm sys-
tem's motion paths from the geometrically "ideal" cases.
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Further theoretical work will be necessary to fully under-
stand the new empirically unveiled straight-curved time-
distance equivalence.

Additional material

Additional file 1 Supplementary material contains a glossary of geo-
metric terminology and a proposed computational method to further
pursuit the study of this invariant symmetry in more complex
motions.
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