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5-HT2CR blockade in the amygdala conveys
analgesic efficacy to SSRIs in a rat model of
arthritis pain
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Abstract

Background: Pain, including arthritic pain, has a negative affective component and is often associated with anxiety
and depression. However, selective serotonin reuptake inhibitor antidepressants (SSRIs) show limited effectiveness in
pain. The amygdala plays a key role in the emotional-affective component of pain, pain modulation and affective
disorders. Neuroplasticity in the basolateral and central amygdala (BLA and CeA, respectively) correlate positively
with pain behaviors. Evidence suggests that serotonin receptor subtype 5-HT2CR in the amygdala contributes
critically to anxiogenic behavior and anxiety disorders. In this study, we tested the hypothesis that 5-HT2CR in the
amygdala accounts for the limited effectiveness of SSRIs in reducing pain behaviors and that 5-HT2CR blockade in
the amygdala renders SSRIs effective.

Results: Nocifensive reflexes, vocalizations and anxiety-like behavior were measured in adult male Sprague–Dawley
rats. Behavioral experiments were done in sham controls and in rats with arthritis induced by kaolin/carrageenan
injections into one knee joint. Rats received a systemic (i.p.) administration of an SSRI (fluvoxamine, 30 mg/kg) or
vehicle (sterile saline) and stereotaxic application of a selective 5-HT2CR antagonist (SB242084, 10 μM) or vehicle
(ACSF) into BLA or CeA by microdialysis. Compared to shams, arthritic rats showed decreased hindlimb withdrawal
thresholds (increased reflexes), increased duration of audible and ultrasonic vocalizations, and decreased open-arm
choices in the elevated plus maze test suggesting anxiety-like behavior. Fluvoxamine (i.p.) or SB242084 (intra-BLA)
alone had no significant effect, but their combination inhibited the pain-related increase of vocalizations and
anxiety-like behavior without affecting spinal reflexes. SB242084 applied into the CeA in combination with systemic
fluvoxamine had no effect on vocalizations and spinal reflexes.

Conclusions: The data suggest that 5-HT2CR in the amygdala, especially in the BLA, limits the effectiveness of SSRIs
to inhibit pain-related emotional-affective behaviors.
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Background
Pain is a multidimensional experience that includes not
only sensory-discriminative but also emotional-affective
and cognitive components [1,2]. Certain antidepressants
have become part of the therapeutic strategy for different
types of persistent pain, including neuropathic pain, fibro-
myalgia, low back pain and headache [3-6], and they are
also considered for osteoarthritis pain [7]. Selective sero-
tonin reuptake inhibitor antidepressants (SSRIs) have low
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or inconsistent analgesic efficacy [4,6] but better overall
safety and tolerability compared to tricyclic antidepres-
sants [8].
The serotonergic system has long been known to play

an important role in pain modulation [9,10]. The family
of at least 14 serotonin (5-HT) receptor subtypes is di-
vided into seven groups (5-HT1R – 5-HT7R) based on
their structural and functional characteristics [11-13].
The heterogeneity of 5-HT receptors is believed to ac-
count for the differential inhibitory or excitatory effects
of 5-HT in the descending pain modulatory systems [9].
5-HT2C receptor (5-HT2CR) has emerged as a major tar-
get for improved treatment of neuropsychiatric disorders
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such as anxiety disorders [14-16]. 5-HT2CR has also
been implicated in adverse effects of 5-HT and SSRIs
[14] and in inconsistent clinical efficacy of SSRIs in neuro-
pathic pain [17]. 5-HT2CR is a Gq/11 protein-coupled
receptor expressed in GABAergic, glutamatergic, and
dopaminergic neurons [18,19]. Thus, 5-HT2CR can regu-
late the release of different transmitters to modulate exci-
tatory and inhibitory neurotransmission [20-22]. 5-HT2CR
mRNA and protein show widespread distribution in the
human and rat brain, including in the amygdala where
particularly high levels are found in the lateral-basolateral
area [23,24].
The amygdala, a subcortical area known for its key role

in emotions and affective disorders [25], is now recognized
as an important neural substrate for the emotional-
affective dimension of pain based on preclinical studies
from our group [for reviews see [26,27]] and others
[28-31] and clinical work [32,33]. Amygdala activity corre-
lates positively with pain behaviors in animals. Increases of
amygdala activity can elicit or enhance pain responses
even in the absence of tissue injury [34-41]. Conversely,
deactivation of the amygdala inhibits pain in different ani-
mal models [28,42-49]. Recent studies in humans also
show increased amygdala activity in experimental and
clinical pain [50-54]. The amygdala circuitry that contrib-
utes to emotional-affective aspects of pain is centered on
the lateral-basolateral (LA-BLA) and central (CeA) nuclei
[26,27]. The CeA receives nociceptive information
through a direct pathway from the spinal cord and brain-
stem (external lateral parabrachial area) and highly
processed affect-related information through an indirect
pathway from the LA-BLA network via posterior thalamus
[26,27]. Neuroplasticity characterized by enhanced excita-
tory transmission [44,45,55-61] and loss of inhibitory con-
trol [61,62] develops in this circuitry in models of
inflammatory and neuropathic pain. As a result, abnor-
mally enhanced CeA output generates emotional-affective
behaviors and modulates nocifensive responses through
direct and indirect projections to brainstem and forebrain
areas [26,27].
The amygdala receives a strong serotonergic projection

from the dorsal raphe nucleus [63,64], which exerts excita-
tory and inhibitory effects on neuronal activity through dif-
ferent receptor subtypes [65,66]. There is evidence for
increased 5-HT release in the amygdala (BLA) in aversive
states [16,67,68]. 5-HT2CR in the BLA but not CeA contrib-
utes critically to anxiogenic behavior and anxiety disorders
[15,16,69] and mediates anxiogenic side effects of acutely
administered antidepressants such as SSRIs [4,70,71]. Syn-
aptic and cellular effects of 5-HT2CR in the amygdala are
largely unknown but 5-HT2CR activation in the BLA facili-
tated NMDA receptor-mediated synaptic plasticity in BLA
neurons [72] and induction of hippocampal LTP [73],
suggesting that 5-HT2CR can control amygdala output.
In this study, we tested the hypothesis that 5-HT2CR in
the amygdala (BLA but not CeA) contributes to the lim-
ited effectiveness of SSRIs on pain behaviors and that
blockade of 5-HT2CR in the BLA renders SSRIs effective
in reducing emotional-affective behaviors in a model of
arthritis pain. To do so we applied a selective 5-HT2CR an-
tagonist (SB242084 [74]) stereotaxically into BLA or CeA
and administered a selective SSRI (fluvoxamine [75]) sys-
temically (intraperitoneally, i.p.). The effect of each drug
alone and of their combined application was determined.

Results
Spinal reflexes (hindlimb withdrawal thresholds), audible
and ultrasonic vocalizations, and anxiety-like behavior in
the elevated plus maze (EPM) were measured in adult male
Sprague Dawley rats with (n = 61) or without (n = 38) arth-
ritis. Arthritic pain was induced by intraarticular injec-
tions of kaolin and carrageen into the left knee joint.
Sham rats were handled the same way as arthritic rats
but the needle was inserted into the knee without
injecting any compounds (see Methods). Behaviors and
drug effects were measured 5–6 h after arthritis induc-
tion or needle insertion (shams). Drugs or vehicle were
administered systemically (i.p.) and stereotaxically into the
right basolateral (BLA) or central (CeA) nuclei of the
amygdala (see Figure 1). Each animal was tested with only
one drug regimen. Audible and ultrasonic vocalizations
were measured simultaneously (see Methods) and spinal
reflex thresholds were also determined in these animals
(counter-balanced for order of tests). EPM performance
was tested in separate groups of animals.

Co-application of intra-BLA SB242084 and systemic
fluvoxamine decreased vocalizations and anxiety-like
behavior of arthritic rats.
Audible vocalizations
Audible vocalizations evoked by innocuous (300 g/30 mm2)
and noxious (1200 g/30 mm2) compression of the knee for
15 s were measured in sham controls (Figure 2A and 2C)
and in arthritic rats (Figure 2B and 2D). In sham rats, the
following drug regimen had no effect on the duration of
audible vocalizations compared to vehicle (n = 6 rats):
stereotaxic application of a selective 5-HT2CR antagonist
(SB242084 [74], 10 μM, concentration in microdialysis
fiber) into BLA together with systemic vehicle administra-
tion (n = 7 rats); systemic administration of a selective
SSRI (fluvoxamine [75], 30 mg/kg, i.p.) together with
ACSF vehicle application into BLA (n = 7 rats); and com-
bined application of systemic fluvoxamine and intra-BLA
SB242084 (n = 7 rats). Arthritic rats showed increased
audible vocalizations to normally innocuous (Figure 2B)
and noxious (Figure 2D) stimuli, reflecting allodynia and
hyperalgesia, respectively (see vehicle-treated group, n = 7
rats). Intra-BLA application of SB242084 (10 μM, n = 6)



Figure 1 Histological verification of drug application sites.
Diagrams adapted from Paxinos and Watson [107] show coronal
sections through the right hemisphere at different levels posterior to
bregma (indicated by numbers). Next to each diagram are shown in
detail the basolateral (BLA) and central nuclei (CeA) of the amygdala.
The boundaries of the different amygdala nuclei are easily identified
under the microscope (see Figure 1 in [45]). Each symbol indicates
the location of the tip of one microdialysis probe. Open circles, BLA;
filled circles, CeA.
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or systemic administration of fluvoxamine (30 mg/kg,
i.p., n = 5) had no effect on audible vocalizations of
arthritic rats. However, the combination of intra-BLA
SB242084 and systemic fluvoxamine (n = 7) signifi-
cantly decreased the duration of audible vocalizations
to innocuous (P < 0.001) and noxious stimuli (P < 0.01,
Dunnett’s multiple comparison tests), reversing the ef-
fect of arthritis. The data suggest that 5-HT2CR block-
ade allows an SSRI to inhibit higher integrated pain
behaviors.

Ultrasonic vocalizations
Ultrasonic vocalizations evoked by innocuous (300 g/
30 mm2) and noxious (1200 g/30 mm2) stimulation of the
knee joint were measured in sham control (Figure 3A
and 3C) and arthritic rats (Figure 3B and 3D). In sham
rats, none of the drug regimen (SB242084, 10 μM, n = 7;
fluvoxamine, 30 mg/kg, n = 7; co-application of
SB242084 and fluvoxamine, n = 7 rats) had a significant
effect on the duration of ultrasonic vocalizations com-
pared to vehicle (n = 6 rats). Arthritic rats showed in-
creased vocalizations to normally innocuous (Figure 3B)
and noxious (Figure 3D) stimuli (see vehicle-treated
group, n = 7 rats). The combination of intra-BLA
SB242084 and systemic fluvoxamine (n = 7) inhibited
ultrasonic vocalizations significantly (P < 0.001, Dunnett’s
multiple comparison tests) compared to vehicle (n = 7
rats). SB242084 alone had no effect (n = 6) and fluvox-
amine alone inhibited ultrasonic vocalizations to noxious
stimuli slightly but significantly (n = 5, P < 0.05). The data
suggest that 5-HT2CR blockade induces or enhances the
ability of an SSRI to inhibit affective pain behaviors.

Anxiety-like behavior and locomotion
Open-arm choice in the elevated plus maze (EPM) was
measured for 5 min in sham control rats and in arthritic
rats as a negative indicator of anxiety-like behavior [76].
Compared to sham controls (n = 6), arthritic animals (n = 6)
showed decreased preference for the open arms indicating
an increase in anxiety-like behavior in the pain state (see
vehicle control groups in Figure 4A and 4B). The combin-
ation of intra-BLA SB242084 (10 μM) and systemic fluvox-
amine (30 mg/kg) had no effect in control rats (n = 5)
compared to vehicle (n = 6) but increased the open-arm
choice of arthritic rats (n = 6) compared to vehicle (n = 6)
significantly (P < 0.05, Dunnett’s multiple comparison
tests), suggesting an anxiolytic effect in the pain state.
Intra-BLA SB242084 (n = 7) or systemic fluvoxamine
(n = 7) alone had no significant effect in arthritic rats.
Compared to sham controls (n = 6), arthritic rats (n = 6)
showed decreased exploratory behaviour measured as the
total number of entries into the open and closed arms of
the EPM for 30 min (Figure 4C). None of the drug regimen
(SB242084, 10 μM, n = 7; fluvoxamine, 30 mg/kg, n = 7;
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Figure 2 Drug effects on audible vocalizations. Effects of intra-BLA infusion of a selective 5-HT2CR antagonist (SB242084, 10 μM), systemic
administration of an SSRI (fluvoxamine, 30 mg/kg, i.p) and combined administration of SB242084 and fluvoxamine on audible vocalizations
evoked by innocuous (300 g/30 mm2, A,B) and noxious (1200 g/30 mm2, C,D) stimulation of the knee joint in sham control (A,C) and arthritic
(B,D) rats. The drug combination had significant inhibitory effects in the arthritis pain model. *,*** P < 0.05, 0.001, compared to vehicle control
(first bar in each histogram), one-way ANOVA followed by Dunnett’s multiple comparison tests. Bar histograms show means ± SEM of the total
duration vocalizations over a 1 min period following the onset of the mechanical stimulus.
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co-application of SB242084 and fluvoxamine, n = 6 rats)
had a significant effect on locomotor activity in arthritic
rats. In sham controls, only the combination of SB242084
and fluvoxamine was tested and had no significant effect
on locomotor activity (n = 5).

Co-application of intra-BLA SB242084 and systemic
fluvoxamine had no effect on spinal reflexes.
Thresholds of hindlimb withdrawal reflexes evoked by
mechanical compression of the knee joint were measured
in sham controls (Figure 5A) and arthritic rats (Figure 5B).
Compared to controls (n = 6 rats) arthritic rats (n = 7) had
decreased thresholds, reflecting increased spinally orga-
nized reflexes and mechanical hypersensitivity (see vehicle
groups in Figure 5A and 5B). None of the drug regimen
had a significant effect in control rats (SB242084, 10 μM,
n = 7; fluvoxamine, 30 mg/kg, n = 7; co-application of
SB242084 and fluvoxamine, n = 7 rats) and in arthritic rats
(SB242084, n = 6; fluvoxamine, n = 5; co-application of
SB242084 and fluvoxamine, n = 7 rats). The data suggest
that blockade of 5-HT2CR in the BLA allowed the seroto-
nergic system to affect supraspinally but not spinally orga-
nized behaviors.

Co-application of intra-CeA SB 242084 and systemic
fluvoxamine had no effect on spinal reflexes and
vocalizations in arthritic rats.
Since the CeA serves as a major output nucleus for
amygdala function related to pain modulation, we tested
if 5-HT2CR also played a role in this nucleus (Figure 6).
We only tested the combination of SB242084 and flu-
voxamine since the previous results showed that fluvox-
amine alone and SB242084 applied into BLA had no
effect. We also performed these tests in arthritic animals
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Figure 3 Drug effects on ultrasonic vocalizations. Effects of intra-BLA infusion of the selective 5-HT2CR antagonist (SB242084, 10 μM), systemic
administration of the SSRI fluvoxamine (30 mg/kg, i.p) and combined administration of SB242084 and fluvoxamine on audible vocalizations
evoked by innocuous (300 g/30 mm2, A,B) and noxious (1200 g/30 mm2, C,D) stimulation of the knee joint in sham control (A,C) and arthritic
(B,D) rats. The drug combination had significant effects in the arthritis pain state. *,*** P < 0.05, 0.001, compared to vehicle control, one-way
ANOVA followed by Dunnett’s multiple comparison tests. Same display as in Figure 2.
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only since the combination of intra-BLA SB242084 and
systemic fluvoxamine had no effect in normal animals.
The results show that coapplication of intra-CeA
SB242084 (10 μM) and systemic fluvoxamine (30 mg/kg)
had no significant effect on audible and ultrasonic vocali-
zations to (normally) innocuous and noxious stimuli and
on spinal reflexes in arthritic rats (n = 5 rats for each
parameter).

Discussion
The novelty of this study is the finding that blockade of
5-HT2CR in the BLA, but not CeA, can induce or enhance
the ability of an SSRI to inhibit emotional-affective pain
behaviors in an animal model of arthritis pain. The results
suggest that 5-HT2CR in the BLA prohibits beneficial
pain-inhibiting effects of serotonin (5-HT), which is con-
sistent with previous reports that 5-HT2CR in the amyg-
dala (BLA but not CeA) contributes critically to
anxiogenic behavior and anxiety disorders [16,69,77] and
mediates anxiogenic side effects of antidepressants includ-
ing SSRIs [4,70,78]. 5-HT2CR antagonists have anxiolytic
and antidepressant effects [79-82], block the SSRI-induced
increase of fear expression [71] and potentiate the anti-
depressant effects of SSRIs [83].
The present study provides not only further evidence

for an important role of the amygdala in emotional-
affective aspects of pain [26,27] but also identifies the se-
rotonergic system as a powerful modulator of amygdala
function in pain. Blockade of 5-HT2CR by itself had no
effect, but increasing the serotonergic drive with an SSRI
engaged this receptor so that its blockade allowed 5-HT
to inhibit pain behaviors. Since this strategy affected
supraspinally organized behaviors (vocalizations and
anxiety-like behaviors) but not spinal reflexes, the bene-
ficial 5-HT effects appear to be due to an action in the
brain. Our data suggest that 5-HT2CR acts in the BLA to
block pain-inhibiting effects of SSRIs. The synaptic and
cellular mechanisms remain to be determined.
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Figure 4 Drug effects on anxiety-like behavior and locomotion. Open-arm choice in the elevated plus maze (EPM) was measured for 5 min
as the ratio of open-arm entries to the total number of entries expressed as % in sham controls (A) and arthritic animals (B). The combination of
intra-BLA SB242084 (10 μM) and systemic fluvoxamine (30 mg/kg) had no effect in sham controls but increased the open-arm choice of arthritic
rats significantly. *P < 0.05, compared to vehicle, one-way ANOVA followed by Dunnett’s multiple comparison tests). (C) Evaluation of locomotor
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decreased in arthritic rats. The different drug regimen tested in arthritic rats had no effect. Bar histograms show means ± SEM.

Grégoire and Neugebauer Molecular Pain 2013, 9:41 Page 6 of 12
http://www.molecularpain.com/content/9/1/41
The amygdala receives serotonergic input predomin-
antly from the dorsal raphe nucleus [63,64] and increased
5-HT release in the amygdala (BLA) is associated with
aversive states [16,67,68]. 5-HT2CR activation in the BLA
increased synaptic activation of BLA neurons [72]. A pos-
sibly scenario to explain the findings of our study is that
5-HT2CR activation drives BLA output to increase activity
in the CeA, which serves as the output nucleus for major
amygdala function and accounts for amygdala-dependent
emotional-affective aspects of pain [26,27]. 5-HT2CR
knockout data linked 5-HT2CR-mediated anxiogenic be-
havior to the activation of CRF-containing neurons in the
CeA [15]. Our previous studies established an important
role of the CRF system in pain-related amygdala functions
[35,45,84-86]. CeA neurons project directly or indirectly
to brainstem and forebrain areas involved in the expres-
sion of aversive behaviors and pain modulation, including
the periaqueductal gray [26,87-89]. Direct brainstem pro-
jections from CeA can be glutamatergic [90], but CRF-
containing CeA neurons also include a population of
GABAergic neurons [91,92]. Therefore, the positive cor-
relation between amygdala output and pain behaviors can
result from descending facilitation or disinhibition.
A single administration of fluvoxamine had pain-

relieving effects in our study when combined with block-
ade of 5-HT2CR in the BLA, which is consistent with the
observation that analgesic effects of anti-depressants are
independent of their anti-depressant effects that usually
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occur only after weeks [5,7]. Fluvoxamine alone had no
effect except for a slight inhibition of ultrasonic vocaliza-
tions evoked by noxious stimulation in arthritic rats.
Other studies reported weak effects of systemic fluvox-
amine in the formalin pain test [93,94] and mixed effects
in the hot plate test [93,95]. Intrathecal fluvoxamine had
anti-allodynic effects in a neuropathic pain model (par-
tial nerve ligation) and these were reduced by intrathecal
administration of a 5-HT2A/2CR antagonist [96]. There is
some evidence, however, that 5-HT2CR activation in the
spinal cord may have inhibitory effects in neuropathic pain
models [97,98], possibly mediated by indirect noradrenergic
mechanisms [99]. Our data suggest that 5-HT2CR activa-
tion in the amygdala mediates undesirable effects of 5-HT.
Some technical aspects of our study deserve consider-

ation. We used selective compounds at concentrations
that are well established in the literature (SB242084
[22,100-102]; fluvoxamine [75,96]). However, while the
drug concentration in the microdialysis fiber is known,
the dose administered can only be estimated. Compara-
tive data from our previous microdialysis and in vitro
studies [45,55,58,84,85,103,104] indicate that the tissue
concentration is at least 100 times lower than in the mi-
crodialysis probe due to the concentration gradient
across the dialysis membrane and diffusion in the tissue.
Therefore, drugs were dissolved in ACSF at a concentra-
tion 100 times that predicted to be needed. Microdialysis
was chosen for drug delivery because it provides steady
state drug levels without a volume effect [105]. Spread of
drug and site of action need to be considered. Drug ap-
plication into the CeA had no effect. These placement
control experiments suggest that the drug did not spread
beyond a distance of 1 mm around the tip of the micro-
dialysis probe to reach the BLA, which is consistent with
our previous estimates [35,48,84,85]. The distance be-
tween the tips of the microdialysis probes in the BLA
(effective drug administration site) and CeA (ineffective
control site) is about 1 mm.
Conclusion
Pharmacological blockade of 5-HT2CR in the amygdala
(BLA but not CeA) allows SSRIs to inhibit emotional-
affective pain responses and anxiety-like behavior in an
arthritis pain model. The study contributes novel insight
into 5-HT functions in the brain and into brain mecha-
nisms of pain.
Methods
Animals
Male Sprague Dawley rats (225–250 g) were housed in a
temperature controlled room and maintained on a
12 h day/night cycle, with free access to food and water.
On the day of the experiment, rats were transferred from
the animal facility and allowed to acclimate to the labora-
tory for at least 1 h. At the end of the experiment, the ani-
mal was euthanized by decapitation using a guillotine
(Harvard Apparatus Decapitator). All experimental proce-
dures were approved by the Institutional Animal Care and
Use Committee (IACUC) at the University of Texas
Medical Branch (UTMB) and conformed to the guidelines
of the International Association for the Study of Pain
(IASP) and of the National Institutes of Health (NIH).
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Arthritis pain model and sham controls
A localized mono-arthritis was induced in the left knee
joint by intra-articular injections of kaolin (4%, 80–100 μl)
and carrageenan (2%, 80–100 μl) through the patellar liga-
ment. This treatment paradigm reliably leads to inflamma-
tion and swelling of the knee within 1–3 h, reaches a
maximum plateau at 5–6 h, and persists for several days
[106]. Therefore, the 5–6 h time point was selected for
measuring behaviors and testing drug effects. In sham
control rats, the syringe was inserted into the knee joint
cavity under the same conditions as in arthritic animals
except that no compound was injected. Vehicle was not
injected in sham animals because intraarticular saline in-
jection causes a temporary swelling of the joint [55], which
is one of the cardinal symptoms of an inflammation. To
avoid any latent effect of increased intraarticular pressure,
vehicle (sterile saline) was not injected in sham animals.

Experimental protocol
On Day 1, a guide cannula for drug (or artificial CSF,
ACSF) application by microdialysis was stereotaxically
inserted into the right BLA or CeA. On Day 2, 5–6 h
after the induction of arthritis (or needle insertion for
shams), behavioral experiments were performed 30 min
after the systemic (i.p.) injection of the fluvoxamine or
its vehicle (0.9% NaCl solution) in combination with an
intra-BLA or intra-CeA application of SB242084 (or
ACSF vehicle) for 20 min. SB242084 (selective 5-HT2CR
antagonist) and fluvoxamine (SSRI) were purchased
from Tocris Bioscience.

Drug application by microdialysis
Rats were deeply anaesthetized with pentobarbital so-
dium (Nembutal®, 50 mg/kg, i.p.) on Day 1. A guide can-
nula (David Kopf Instruments) was stereotaxically
implanted into the right BLA or the right CeA, using
the following coordinates: BLA, 2.8 mm caudal to
bregma, 4.8 mm lateral to midline, 7.6 mm depth; CeA,
2.3 mm caudal to bregma, 4.0 mm lateral to midline,
7.0 mm depth [107]. Guide cannulas were affixed to the
skull with dental acrylic (Plastic One, Roanoke, VA).
Antibiotic ointment (Solosite Gel, Smith and Nephew)
was applied to the exposed tissue to prevent infection.
Local application of Lidocaine HCl (1%, 100 μl of
10 mg/ml) was done to minimize surgical pain and to
prevent the animal from scratching of the surgical area



Grégoire and Neugebauer Molecular Pain 2013, 9:41 Page 9 of 12
http://www.molecularpain.com/content/9/1/41
upon recovery. On Day 2, a microdialysis probe (CMA/
Microdialysis 11, Solna Sweden) that extended 1 mm be-
yond the tip of the guide cannula, was inserted for stereo-
taxic drug application into the amygdala. The probe was
connected to an infusion pump (Harvard Apparatus,
Holliston, MA) using polyethylene-50 tubing. Drugs or
ACSF (vehicle) were applied for 20 min at a rate of 5 μl/
min to establish equilibrium in the tissue. ACSF was oxy-
genated, equilibrated to pH 7.4 and contained the follow-
ing (in mM): 125.0 NaCl, 2.6 KCl, 2.5 NaH2PO4, 1.3
CaCl2, 0.9 MgCl2, 21.0 NaHCO3, and 3.5 glucose.
SB242084 was dissolved in ACSF on the day of the experi-
ment at a concentration 100-fold that predicted to be
needed in the tissue based on data in the literature
[22,100-102] because of the concentration gradient across
the dialysis membrane and diffusion in the tissue
[45,48,84,85]. At the end of the experiment, rats were de-
capitated and injection sites were verified histologically
after injection of methylene blue (1 μl) and plotted on
standard diagrams adapted from Paxinos and Watson
[107] (see Figure 1).

Behavioral tests
Spinal reflexes
Thresholds of hindlimb withdrawal reflexes evoked by
mechanical stimulation of the knee joint were measured
as described in detail previously [106]. Mechanical stim-
uli of continuously increasing intensity were applied to
the knee joint using a calibrated forceps equipped with a
force transducer whose output was displayed (in g) on a
screen. The area of tissue compressed by the tip of the
forceps was 30 mm2. Withdrawal threshold was defined
as the minimum stimulus intensity that evoked a with-
drawal reflex. The test was repeated twice (5 min inter-
vals) and the values were averaged to calculate the
threshold (force in g/30 mm2).

Audible and ultrasonic vocalizations
Vocalizations were recorded and analyzed as described in
detail previously [42]. The experimental setup (U.S. Patent
7,213,538) included a custom-designed recording cham-
ber, a condenser microphone (20 Hz to 16 kHz) connected
to a preamplifier, an ultrasound detector (25 ± 4 kHz), fil-
ter and amplifier (UltraVox 4-channel system; Noldus
Information Technology, Leesburg, VA), and data acquisi-
tion software (UltraVox 2.0; Noldus Information Technol-
ogy), which automatically monitored the occurrence of
audible and ultrasonic vocalizations within user-defined
frequencies and recorded number and duration of digi-
tized events. Vocalizations in the audible and ultrasonic
ranges were recorded simultaneously but with different
microphones (condenser microphone and ultrasound de-
tector, respectively) connected to separate channels of the
amplifier. This computerized recording system was set to
ignore sounds outside the defined frequency range. Ani-
mals were placed in the recording chamber for acclimation
1 h before the vocalization measurements. The recording
chamber ensured the stable positioning of the animal at a
fixed distance from the sound detectors and allowed the
mechanical stimulation of the knee joint through openings
for the hindlimbs. Brief (15 s) innocuous (300 g/30 mm2)
and noxious (1200 g/30 mm2) mechanical stimuli were ap-
plied to the knee, using a calibrated forceps (see “Spinal
reflexes”). Total duration of vocalizations (arithmetic sum
of the duration of individual events) was recorded for
1 min, starting with the onset of the mechanical stimulus.
Audible and ultrasonic vocalizations reflect supraspinally
organized nocifensive and affective responses to aversive
stimuli [106,108].

Elevated plus maze test (EPM)
Anxiety-like behavior was determined using the EPM test
as described previously [85,106]. The EPM (Columbus In-
struments, OH) was constructed from stainless steel to fa-
cilitate inter-trial cleaning for elimination of odor cues. A
central quadrangle (10 × 10 cm) connected two opposing
open arms (50 cm long, 10 cm wide) and two opposing
closed arms (50 cm long, 10 cm wide, with 40 cm high
walls on both sides), arranged in the shape of a plus. The
platform was elevated 70 cm above the floor. An auto-
mated photocell system (Multi-Varimex v.1.00; Columbus
Instruments, OH, USA) recorded movements of the ani-
mal on a personal computer. At the beginning of each
trial, the animal was placed onto the central quadrangle
facing an open-arm. The EPM was inside a dark enclosure
to minimize anxiety levels in the absence of pain. Anxiety-
like behavior was determined by measuring the open-arm
preference (ratio of open-arm entries to the total number
of entries expressed as %) for 5 min. Animals that stayed
only in one arm were excluded from experiment.

Statistical analysis
All averaged values are given as the mean ± standard
error of the mean (SEM). GraphPad Prism 3.0 software
(Graph-Pad, San Diego, CA) was used for all statistical
analysis. For multiple comparisons, one-way analysis of
variance (ANOVA) was used followed by Dunnett’s mul-
tiple comparisons tests. Statistical significance was ac-
cepted at the level P < 0.05.
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