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Abstract
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Background: Previous studies have demonstrated that p38 MAPK signal transduction pathway plays an important
role in the development and maintenance of inflammatory pain. Electroacupuncture (EA) can suppress the
inflammatory pain. However, the relationship between EA effect and p38 MAPK signal transduction pathway in
inflammatory pain remains poorly understood. It is our hypothesis that p38 MAPK/ATF-2/VR-1 and/or p38 MAPK/
ATF-2/COX-2 signal transduction pathway should be activated by inflammatory pain in CFA-injected model.
Meanwhile, EA may inhibit the activation of p38 MAPK signal transduction pathway. The present study aims to
investigate that anti-inflammatory and analgesic effect of EA and its intervention on the p38 MAPK signal
transduction pathway in a rat model of inflammatory pain.

Results: EA had a pronounced anti-inflammatory and analgesic effect on CFA-induced chronic inflammatory pain
in rats. EA could quickly raise CFA-rat's paw withdrawal thresholds (PWTs) and maintain good and long analgesic
effect, while it subdued the ankle swelling of CFA rats only at postinjection day 14. EA could down-regulate the
protein expressions of p-p38 MAPK and p-ATF-2, reduced the numbers of p-p38 MAPK-IR cells and p-ATF-2-IR cells
in spinal dorsal horn in CFA rats, inhibited the expressions of both protein and mRNA of VR-1, but had no effect on

Conclusions: The present study indicates that inhibiting the activation of spinal p38 MAPK/ATF-2/VR-1 pathway
may be one of the main mechanisms via central signal transduction pathway in the process of anti-inflammatory
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Background

Inflammatory pain is a very common symptom in clinical
practice. Patients mainly suffer from ongoing pain (spontan-
eous pain), evoked pain, and hyperalgesia. Among several
types of chronic pains, chronic inflammatory pain has been
recognized to be most common and difficult to treat. The-
rapy for inflammatory pain has been composed of sympto-
matic treatment with nonsteroidal anti-inflammatory drugs
(NSAIDs), but long-term uses of this agent has shown side
effects such as gastrointestinal toxicity and cardiovascular
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toxicity [1,2]. Thus, there is a need for anti-inflammatory
pain treatment with less side effects.

P38 mitogen-activated protein kinase (MAPK) signal
transduction pathway is typically activated by cellular
stress and pro-inflammatory cytokines and plays a critical
role in inflammatory responses. Systematic or intrathecal
administration of p38 MAPK inhibitor has been shown to
effectively alleviate inflammation and arthritis [3,4]. The
activated p38 MAPK is translocated to the nucleus, where
it can phosphorylate transcriptional factors such as ATF-2
[5]. The synthesis of several pro-inflammatory mediators
such as cyclooxygenase-2 (COX-2), interleukin-1p (IL-1p),
vanilloid receptor-1 (VR-1) in the spinal cord are up-
regulated by p38 MAPK [6-8].
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Electroacupuncture (EA), a Chinese medical therapy,
is a modified acupuncture method which utilizes elec-
trical stimulation and has been used to reveal the anal-
gesic effects on acute pain and chronic inflammatory
pain [9-11]. Clinical trials show that EA has beneficial
effects in patients with various inflammatory diseases
[12-14]. Experimental studies demonstrate that EA sig-
nificantly inhibits complete Freund’s adjuvant- (CFA) or
collagen-induced hind paw inflammation and hyper-
algesia in a rat model [15-17]. In relation with EA anal-
gesia and its mechanism in the inflammatory pain, there
were lots of studies focusing on the analgesic effect of
EA via opioid system and inflammatory mediators in
CFA-induced and carrageenan-induced inflammatory
pain models [18-21]. However, the underlying mecha-
nisms of EA for inflammatory pain are still not completely
understood. We previously reported that EA could atte-
nuate CFA-induced inflammatory pain, at least in part,
through suppressing numbers of p-p38 MAPK IR-cells in
spinal cord [22]. In this study, we first used a rat CFA
model to observe whether p38 MAPK signal transduction
pathway in spinal cord plays an important role in inflam-
matory pain, and then to investigate whether EA may re-
lieve inflammatory pain by counteracting the activation of
p38 MAPK signal transduction pathway.

Results

Anti-inflammatory activity of EA

As shown in Figure 1A, the percentage swelling of the
paw in each group was evaluated by the water displace-
ment plethysmometer at six time points, 1 day before
and 1, 3, 7, 14, 21 days after saline/CFA injection. The
repeated-measures ANOVA with between-subjects fac-
tors revealed differences in the percentage swelling of
rat's paw over days (P<0.01) and between groups
(P<0.01). There was significant interactive effect between
days and groups (P<0.01). Post-hoc LSD tests showed a
significant difference between control group and other
three groups (P<0.01). However, no difference in the
paw edema was found between CFA group and CFA
+Sham EA group. An anti-swelling effect was observed
in the CFA+EA group when compared with that in CFA
group (P<0.05) and CFA+Sham EA group (P<0.01).
However, a significant difference in the paw edema was
also found between control group and CFA+EA group
(P<0.05).

For comparisons among groups at all time points, the
results by One-way ANOVA for independent sample
identified that the percentage swelling of the paw in
three CFA injected groups were all markedly higher than
that in control group at corresponding time points
(P<0.01). However, CFA+EA group showed a significant
lower score compared with the CFA and CFA+Sham EA
groups at day 14 and day 21 after CFA injection.
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Analgesic activity of EA

Mean paw withdrawal thresholds (PWTs) for all ex-
perimental groups were shown in Figure 1B. The
repeated-measures ANOVA with between-subjects indi-
cated differences over days (P<0.01) and between groups
(P<0.01). There was a significant interactive effect be-
tween days and groups (P<0.01). Post-hoc LSD tests
indicated no significant difference in PWTs between
CFA+Sham EA group and CFA group. However, the
CFA+EA group showed an available hypoalgesic effect
when compared with CFA group and CFA+Sham EA
group (P<0.01). A significant difference PWTs was also
found between control group and CFA+EA group
(P<0.05).

To compare four groups at all time points, as shown in
Figure 1B, no difference in basal PWTs among groups was
observed before saline or CFA injection. PWTs in CFA
group and CFA+Sham EA group were lower obviously
than those in control group at corresponding time points
(P<0.01), and reached its lowest at post-injection day 7.
After EA stimulation, the rats’ PWTs were increased rap-
idly and significantly higher than those in CFA group and
CFA+Sham EA group at day 3, 7, 14, 21 after CFA injec-
tion (P<0.01), and showed no difference with those in con-
trol group (P>0.05).

CFA-induced p38 MAPK activation in the spinal cord

To investigate the possible over-expression of p-p38
MAPK activated by peripheral inflammation, we injected
rat subcutaneously 0.1 ml CFA into the plantar surface
of right hind paw. It induced a localized swelling and
hypersensitivity to mechanical stimuli (Figure 1A-B),
which persisted for 21 days through the duration of the
experiment. An anti-p-p38 MAPK antibody was used to
study the changes in p38 MAPK activation. P-p38
MAPK immunohistochemistry showed a low basal consti-
tutive expression in the L4-6 spinal dorsal horn in rats of
saline-injected control group (Figure 2A). The inflamma-
tion induced by CFA injection resulted in the induction of
p-p38 MAPK in the dorsal horn on the ipsilateral side of
L4-6 spinal cord (Figure 2). The increase was detectable
and reached a peak at day 3 after CFA injection, and
remained elevated with a slow decline until day 14. The
most prominent increase of p-p38 MAPK IR cells was
found in the laminas I-IV of the dorsal horn.

CFA-induced ATF-2 activation in the spinal cord

The changes of the activation of ATF-2 in spinal dorsal
horn, in response to inflammation, were studied by im-
munohistochemistry. p-ATE-2 IR cells were also found
in the laminas I-IV of the L4-6 spinal dorsal horn. A
moderate basal constitutive expression of p-ATF-2 IR
cells was observed in L4-6 spinal dorsal horn. CFA-
injection induced a substantial increase in the number of
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Figure 1 Behavioral test of rats in each group at different time-point. A. Ipsilateral percent swelling of the paw of rats in each group at
different time-point. The percent swelling of the paw was assessed by using plethymometer and water displacement method. The percent
swelling of the paw was measured pre-injection and on day 1, 3, 7, 14 and 21 after saline/CFA injection. All data are expressed as means+SEM,
n=12. **P<0.01 vs. group Control. # & P<0.01 vs. group CFA. ® P<0.05, ® ® P<0.01 vs. group CFA+Sham EA. B. Ipsilateral paw withdrawal
thresholds (PWTs) of rats in each group at different time-point. PWTs were assessed by using dynamic plantar aesthesiometer. PWTs were
measured pre-injection and on day 1, 3, 7, 14 and 21 after saline/CFA injection. All data are expressed as means+SEM, n=12. **P<0.01 vs. group

Control. * 4 P<0.01 vs. group CFA. ® ® P<0.01 vs. group CFA+Sham EA.

p-ATE-2 IR cells in the ipsilateral dorsal horn (Figure 3).
The increase was detected at day 3 after injection, reached
a peak on day 7, and was maintained till day 14. On day
21, expression of p-ATF-2-IR cells almost returned to its
basal constitutive level.

Effect of EA on phosphor-p38 MAPK

As shown in Figure 4A-E, the numbers of p-p38 MAPK
IR cells were increased in the L4-6 ipsilateral spinal dorsal
horn on day 14 after CFA-injection, compared with that
in saline group. After Sham EA treatment, the numbers of
p-p38 MAPK IR cells were not decreased as compared
with CFA group (P>0.05). While, stimulation of EA mark-
edly decreased the numbers of p-p38 MAPK-IR cells,

compared with that both in CFA group (P<0.01) and CFA
+Sham EA group (P<0.01). We also used Western blotting
method to detect p-p38 MAPK protein expression in the
L4-6 ipsilateral spinal dorsal horn at day 14 after CFA-
injection or saline-injection. It was observed that expres-
sions of p-p38 MAPK protein in rats of CFA group and
CFA+Sham EA group were much higher than that in rats
of control group. EA significantly suppressed the expres-
sions of p-p38 MAPK protein, compared with that in CFA
group (P<0.05) and CFA+Sham EA group (P<0.05). In
addition, the increased numbers of p-p38 MAPK IR cells
in the superficial spinal dorsal horn was suppressed by the
EA treatment at 3 d, 7 d and 14 d after CFA injection
(P<0.01) (Additional file 1: Figure S1).
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Figure 2 CFA induces p38 MAPK activation in the ipsilateral spinal cord dorsal horn at different time-point. A-E. Immunohistochemistry
shows p-p38 MAPK IR cells in the L4-6 ipsilateral spinal cord dorsal horn of Control rats (A), CFA rats at 3d (B), 7 d (C), 14 d (D) and 21 d (E).
F. Quantification of p-p38MAPK IR shows that CFA induces p-p38 MAPK IR cells expression in the L4-6 ipsilateral spinal cord dorsal horn after day
3-14. **P<0.01 vs. group Control, n=3-5. All data are expressed as means+SEM. Scale bars: 100 um, section thickness: 30 um.

Effect of EA on phosphor-ATF-2

The numbers of p-ATF-2 IR cells in the L4-6 ipsilateral
spinal dorsal horn in rats of CFA group were greatly in-
creased compared with that in control group on day 14
after CFA injection. After Sham EA treatment, the num-
bers of p-ATF-2 IR cells were not obviously decreased
(P>0.05). However, stimulation of EA was able to mark-
edly decrease the numbers of p-ATF-2 IR cells, compared
either with CFA group (P<0.01) or with CFA+Sham EA
group (P<0.01) (Figure 5A-E). Meanwhile, we applied
western blotting method to detect p-ATF-2 protein ex-
pression in the L4-6 ipsilateral spinal dorsal horn in rats at
day 14 after CFA-injection. It was shown that expressions
of p-ATF-2 protein in rats of CFA group and CFA+Sham
EA group were much higher than that in rats of saline
group. EA strongly inhibited the expression of p-ATEF-2
protein, compared with that in CFA group (P<0.05) and
CFA+Sham EA group (P<0.05) (Figure 5F-G). In addition,

we also tested the effect of EA on ATF-2 activation at 3 d,
7 d, 14 d and 21 d after CFA injection. As the same as p38
MAPK, the increased numbers of p-ATF-2-IR cells in the
superficial spinal dorsal horn were suppressed by the EA
treatment at 3 d, 7 d and 14 d after CFA injection (P<0.01)
(Additional file 1: Figure S2).

Effect of EA on COX-2 mRNA and protein expressions

In the control group, COX-2 mRNA was expressed in the
L4-6 ipsilateral spinal dorsal horn at low level. At day 14
after CFA injection, relative quantity of COX-2 mRNA ex-
pression of CFA group was increased, but had no signifi-
cant difference with control group. After EA stimulation,
relative quantity of COX-2 mRNA expression seemed less
than that of CFA group and CFA+Sham EA group, but
without significant difference (Figure 6A). We further
detected COX-2 protein in the L4-6 ipsilateral spinal dor-
sal horn at 14th day after CFA injection. It was found that
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Figure 3 Phosphor-ATF-2 IR cells expression in the Ipsilateral spinal cord dorsal horn in CFA rats at different time-point. A-E.
Immunohistochemistry shows p-ATF-2 IR cells in the L4-6 ipsilateral spinal cord dorsal horn of Control rats (A), CFA rats at 3 d (B), 7 d (C), 14 d (D) and
21 d (E) after CFA injection. F. Quantification of p-ATF-2 IR shows that CFA induces p-ATF-2 IR cells expression in the L4-6 ipsilateral spinal cord dorsal
horn after day 3-14. **P<0.01 vs. group Control, n=3-5, All data are expressed as means=SEM. Scale bars: 100 um, section thickness: 30 um.

expressions of COX-2 protein showed no big difference
among the three experimental groups (Figure 6B-C).

Effect of EA on VR-1 mRNA and protein expressions

On day 14 after CFA injection, relative quantity of VR-1
mRNA expression in the L4-6 ipsilateral spinal dorsal
horn in rats of CFA group was significant higher than that
of control group. Sham EA treatment reduced the expre-
ssion of VR-1 mRNA to some extent, but showing no
marked decrease as compared with CFA group. EA stimu-
lation could remarkably down-regulate expression of VR-1
mRNA, compared with either CFA group or CFA+Sham
EA group (Figure 7A). VR-1 protein expression in the L4-6
ipsilateral spinal dorsal horn was also delected at 14 day
after CFA injection or saline injection. VR-1 protein was
expressed in the control group at low level. However, there
was highly expressed VR-1 protein in the CFA group and

CFA+Sham EA group. The over-expressed VR-1 protein
was obviously down-regulated by EA stimulation.

Discussion

As a complementary and alternative medicine, EA has
been accepted worldwidely, mainly for the treatment of
acute and chronic pains. It is well know that EA has a
good effect of anti-inflammation and analgesia. From
this study, we found that the analgesic effect of EA had
the property of a rapid onset, long duration and being
strengthened along with EA treatment times, which was
consistent with our previous report [22]. Interestingly, it
was also found that the role of anti-inflammatory and
analgesic effect of EA was not synchronistic. After re-
peated EA administration, quite a strong difference in
the PWTs were found on day 3 between CFA+EA group
and CFA group, and statistically significant difference
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Figure 4 Effect of EA on p-p38MAPK expression in the ipsilateral spinal dorsal horn at 14 day after CFA injection. A-E.
Immunohistochemistry shows p-p38 MAPK IR cells in the L4-6 ipsilateral spinal cord dorsal horn of Control rats (A), CFA rats (B), CFA+EA rats

(C) and CFA+Sham EA rats (D) at 14 day after CFA injection. E. Quantification of p-p38 MAPK IR shows that EA suppresses p-p38 MAPK IR cells in
the L4-6 ipsilateral spinal dorsal horn at 14 day after CFA injection. **P<0.01 vs. group Control. & 4 P<0.01 vs. group CFA. ® ® P<0.01 vs. group
CFA+Sham EA. n=3-5. Scale bars: 100 um, section thickness: 30 um. F, G. Western blotting analysis reveals that EA suppresses p-p38 MAPK protein
in the L4-6 ipsilateral spinal dorsal horn at 14 day after CFA injection. G. Quantification of F. p-p38 MAPK protein in normalized against 3-actin.
n=4-6, **P<0.01 vs. group Control. 4 P<0.05 vs. group CFA. ® P<0.05 vs. group CFA+Sham EA.
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was observed from day 3 to day 21. However, the onset
of anti-inflammatory effect of EA appeared later than its
analgesic effect. It was not until 14 treatments with EA,
we firstly observed the difference in the paw edema of
rats in CFA+EA group and that of CFA group. It could
be predicted that EA got quicker analgesic effect, maybe
through mediating some other way, not or not only by
intervening on pro-inflammatory mediators in the treat-
ment of inflammatory pain. Although EA analgesia is
well documented, its mechanisms have not been thor-
oughly clarified. The present study demonstrates, for the
first time, that EA suppressed the expression of p-p38
MAPK and its downstream p-ATF-2 as well as gene and
protein expressions of VR-1 in the spinal dorsal horn,

but had no inhibitory effect on gene and protein expres-
sions of COX-2. Therefore, inhibition of the p38 MAPK
activation may be the one of central pain sensitization
mechanisms of EA analgesia for inflammatory pain.

The MAPK family includes p38 MAPK, extracellular
signal regulated kinase (ERK1/2), c-jun N-terminal kinase
(JNK), ERK7/8, ERK3/4 and ERK5 [23]. Initiation of the
p38 MAPK cascade involves activation through a classic
MAPK kinase kinase (MAP3K) — MAP kinase kinase
(MKK) pathway. The p38 MAPK pathway is activated by
a wide range of environmental or cellular stresses and
proinflammatory cytokines and plays important roles in
cell death, neurodegeneration, and inflammation [3]. Re-
cently, p38 MAPK activation was shown to contribute to
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Figure 5 Effect of EA on p-ATF-2 expression in the ipsilateral spinal dorsal horn at 14 day after CFA injection. A-E. Immunohistochemistry
shows p-ATF-2 IR cells in the L4-6 ipsilateral spinal cord dorsal horn of Control rats (A), CFA rats (B), CFA+EA rats (C) and CFA+Sham EA rats (D) at
14 day after CFA injection. F. Quantification of p-ATF-2 IR shows that EA suppresses p-ATF-2 IR cells in the L4-6 ipsilateral spinal dorsal horn on 14 day
after CFA injection. **P<0.01 vs. group Control. 4 4 P<001 vs. group CFA. ® ® P<0.01 vs. group CFA+Sham EA. n=3-5. Scale bars: 100 pm, section
thickness: 30 um. F, G. Western blotting analysis reveals that EA suppresses p-ATF-2 protein in the L4-6 ipsilateral spinal dorsal horn at 14 day after
CFA injection. F. Quantification of G. p-ATF-2 protein in normalized against B-actin. n=4-6, *P<0.05, **P<0.01 vs. group Control. * P<0.05 vs. group
CFA. ® P<0.05 vs. group CFA+Sham EA.

nociceptive responses in the spinal dorsal horn and dosal
root ganglion (DRQG) following inflammation and/or nerve
injury. Following nerve injury, p-p38 MAPK levels
sequentially increased in neurons, microglia, and astro-
cytes of the spinal dorsal horn; In addition, nerve injury-
induced p-p38 MAPK occurred early and was long lasting
[24-27]. Moreover, intrathecal injection of p38 MAPK
inhibitors attenuated nociceptive response in different
neuropathic pain animal models [25,28-31]. Several re-
ports also indicated that a very robust increase of p-p38
MAPK in spinal dorsal horn induced hindpaw inflamma-
tion [4,6,32-34]. For example, bee-venom induced rapid
increase in p-p38 MAPK in the spinal: p-p38 MAPK
began to increase at 1 hour, reached a peak on day 3, and
then decreased to normal level on day 7 [32]. In particular,

different laboratories have shown that p-p38 MAPK was
increased in spinal cord by CFA [4], formalin [6], capsaicin
[33], or carrageenan [34]. Besides, intrathecal administra-
tion of the p38 inhibitor prevented inflammation-induced
thermal and mechanical hypersensitivity [4,32]. In present
study, we demontrated that the numbers of p-p38 MAPK-
IR cells in spinal dorsal horn increased and reached at
peak at day 3 after CFA injection, maintained for 14 days.
The level of p-p38 MAPK protein expression in CFA
group have returned to the base at day 21 after CFA-
injection, however, inflammation and pain were still
existed at that moment. The reason for this is unclear and
is worthy of further study.

It is indicated that p38 MAPK is involved in the con-
trol of VR-1 mediated glioma apoptotic cell death [8].
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Another study reports that p38 MAPK activated in the
DRG following peripheral inflammation, by increasing
VR-1 levels in nociceptive peripheral terminals, contri-
butes to the maintenance of inflammatory pain [35]. P38
MAPK can potentially regulate protein expression in
several different ways, activating transcription factors such
as eukaryotic translation initiation factor 4E (eIF4E), Ets
likely kinase (ELK-1), and cAMP response element bind-
ing protein (CREB) to increase transcription [36-38],

increasing mRNA stability [39] or increasing translation.
One major target of p38 MAPK is the translation factor
ATF-2. ATF-2 (originally called CRE-BP1) is a member of
the ATF/CREB family of transcription factors and is cha-
racterized by a basic zipper domain that consists of basic
amino acids and a leucine zipper region, which acts as a
DNA-binding region. The ATF-2 subfamily contains three
members: ATF-2, CRE-BPa, and ATEF-7 (originally known
as ATF-a) [40]. ATF-2 regulates gene expression via the
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binding of ATF-2, as a homodimer, to the recognition
sequences of the cAMP-response element (CRE) or via
formation of a heterodimer with activating protein-1
(AP-1) that binds to CRE sequences. Thus, ATF-2 can
interact with other members of the ATF family and with
members of the AP-1 family [41]. It has been shown that
p-p38 MAPK is involved in regulation of ATF-2 [42],
which then binds to DNA and turns on the target gene

[43]. In current report, we found that the numbers of
p-p38 MAPK-IR cells at the same time coincided with the
numbers of p-ATF-2-IR cells in spinal dorsal horn. So we
presumed that ATF-2 as the downstream of p38 MAPK
may play an important role in inflammatory pain.

It is now realized that a certain members of the transient
receptor potential (TRP) receptors are key molecular inte-
grators of the initiation and maintenance of pain. Vanilloid
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receptor-1 (VR-1), known as the transient receptor poten-
tial ion channel TRPV], is essential for generating and
transmitting pain [44,45]. It has been found to be ex-
pressed within those components of the peripheral and
central nervous systems involved in pain detection, trans-
mission and regulation [46]. It is all known that VR-1 can
be found in a large population of primary sensory neurons,
within the spinal cord itself, and within the brain. It has
been reported that deletion of VR-1 is important for medi-
ating thermal hyperalgesia and inflammatory swelling after
CFA-induced inflammation [47]. This study was suppor-
ted by other complementary studies which showed that
the severity of arthritis in rodent models was reduced
when VR-1 was either blocked or deleted [48]. VR-1 also
plays an important role in mechanical hyperalgesia of
inflammatory pain. When wild-type and VR-1 null mice
are injected in one knee joint with CFA, the VR-1 null
mice develops mild joint swelling (evidencing edema) and
reduced mechanical hypersensitivity as compared with
wild-type animals [49]. In present study, periphery inflam-
mation induced a high expression of VR-1 in ipsilateral
spinal dorsal horn on 14 day. EA could down-regulate the
expressions of both VR-ImRNA and protein in spinal dor-
sal horn with increased PWTs.

Several factors have verified that p-p38 MAPK could
up-regulate many proinflammatory mediators such as
COX-2, IL-1p and VR-1 [6-8]. It has been demonstrated
that local induction of COX-2 at the site of peripheral and
the subsequent release of prostaglandin E, (PGE,) has
major roles in peripheral pain sensitization, which alters
the threshold and excitability of the nociceptive peripheral
terminal [50]. In addition to this peripheral action, COX-2
and prostaglandin also have a central function. The
central PGE, produced by COX-2 induced an electro-
physiological transmitter release, direct depolarization of
postsynaptic membranes and inhibiting glycine receptor
activation [50]. The upregulation of central COX-2 level,
induced by peripheral inflammatory stimuli such as CFA
[51] and carrageenan [52], was linked to inflammatory
allodynia and hyperalgesia. However, COX-2 just plays an
important role in the development, but not maintenance
of inflammation. Spinal COX-2 mRNA increased to a
peak at 4 h after a intraspinal injection with IL-1a [53]
and similarly increased to a peak at 4 h [53] or 8 h [54]
after mechanical injury to the spinal cord. The expression
of COX-2 protein also increased in the spinal cord during
hindpaw inflammation at 4—6 h induced by CFA, paralleled
the COX-2mRNA, and returned to baseline within 3 d after
induction of inflammation [55]. According to another re-
port, the expression of COX-2 mRNA on the ipsilateral side
of spinal cord obtained from CFA injection was significantly
increased at both 6 hour and 3 day after CFA injection
compared with that from the saline-treated mice [56]. In
agreement with above studies, we detected that the level of
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COX-2 mRNA in ipsilateral spinal dorsal horn was in-
creased respectively at 5 hour and 3 day (Additional file 1:
Figure S5), and returned to baseline within 14 day after
CFA-induction of inflammation. Whereas, EA treatment
did not suppress the increase of COX-2 mRNA expression
in spinal dorsal horn at 5 hour, 3 day and 14 day.

As we mentioned above, robust p38 MAPK activation
was essential for VR-1 and COX-2 expression in SCDH
after peripheral inflammation, and it could regulate ATF-2
phosphorylation in SCDH of CFA-induced inflammation.
Our previous report has demonstrated that EA analgesia
and anti-inflammation were associated with its inhibition
of spinal p38 MAPK activation [22]. In agreement with
our previous study, pre-eletroacupuncture treatment has
prophylactic analgesic effects on rats suffering from vis-
ceral pain by suppressing the local and spinal p38 MAPK
[57]. The p38 MAPK signal transduction pathway is partly
involved in the regulatory mechanism of this analgesic
effect. Another study has reported that EA could improve
immune suppression involving in the signaling pathway of
p38 MAPK [58]. In this study, we first systemically investi-
gated whether EA treatment might regulate the down-
stream materials of p38 MAPK. We found that EA did
suppress the activation of the p38 MAPK and its down-
stream p-ATF-2 as well as VR-ImRNA and protein, but
had no influence on gene and protein expressions
of COX-2 at day 14 after CFA injection. Similarly, this
study showed significant analgesic effect of EA at day 14
after CFA-injection, as well as a relative weak anti-
inflammatory effect. PWTs of CFA+EA group had no
difference with that of control group on day 14 in CFA-
induced inflammatory pain, but the percent paw swelling
of CFA+EA group had remarkable difference with that of
control group at the same time. It could be suggested that
both COX-2 and VR-1 play essential roles in inflammatory
pain, however, EA just regulates the expressions of VR-1
mRNA and protein, and does not have obvious effect on
COX-2 mRNA and protein expressions. It is well known
that COX-2 mainly regulates the release of inflammatory
mediators, leading to the generation of inflammatory pain,
and VR-1 enhances the excitability of nerve resulting in
pain [59,60]. Therefore, we speculate that the analgesic ef-
fect of EA, different from the mechanism of NASIDs, is
not reached by inhibiting the release of inflammatory cy-
tokines but rather by regulating pain sensitization, because
we have not observed a suppressing effect of EA on COX-
2 mRNA and protein, but an inhibitory effect on p38
MAPK, ATF-2 and VR-1 expressions.

Conclusions

It is the feature of EA treatment that the desynchronized ef-
fect of analgesia and anti-inflammation exists when applied
to alleviate inflammatory pain. EA can significantly attenu-
ate CFA-induced inflammatory pain, which, at least in part,
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is contributed to its regulation of p38 MAPK/ATF-2/VR-1
pathway but not of p38 MAPK/ATF-2/COX-2 path-
way in the persistent phase of inflammatory pain. In
addition, EA could be a good complementary and alter-
native medicinal therapy in clinic for treatment of chronic
inflammatroy pain.

Methods

Animal

In total, 126 male Sprague—Dawley rats (Department of
Animal Sciences China), weighing between 220-240 g,
were used for this study. They were housed six per cage
on a 12-h light/dark cycle with controlled temperature
and free accessed to food and water. Efforts were made
to minimize animal discomfort and reduced numbers of
animals used. All rats were used strictly in accordance
with the National Institutions of Health Guide for the
Care and Use of Laboratory Animals.

Model establishment and experimental groups
Inflammatory pain model was established by injecting
subcutaneously with 0.1 ml Complete Freund’s Adjuvant
(CFA, Sigma, USA) into right hindpaw of rats.

The rats were separated randomly into 4 groups: 1) con-
trol group, 0.1 ml saline injection as used for CFA injec-
tion; 2) CFA group, 0.1 ml CFA injection, immobilization;
3) CFA+EA group, 0.1 ml CFA injection, immobilization
and with EA stimulation; 4) CFA+ Sham EA group, 0.1 ml
CFA injection, immobilization and with Sham EA stimulation.

EA treatment

The EA treatment procedure was the same as reported in
our previous study [22]. Rats were loosely immobilized by
assistants’ hands. Four stainless steel acupuncture needles
of 0.25 mm in diameter were inserted a depth of 5 mm
into bilateral “Zusanli” (ST36, 5 mm lateral to the anterior
tubercule of the tibia) and “Kunlun” (BL60, at the ankle
joint level and between the tip of the external malleolus
and tendo calcaneus) acupoints. It has been showed that
these two acupoints were good at treat inflammatory pain
[61]. The two ipsilateral needles were connected with the
output terminals of the HANS Acupuncture point Nerve
Stimulator (LH-202H, Huawei Co., Ltd., Beijing, China).
The EA parameters were set as follows: square wave
current output (pulse width: 0.2 ms); intensities ranging
from 1-2 mA (each intensity for 15 min, totaling 30 min);
at a 100 Hz and 2 Hz alternating frequencies (automatic-
ally shifting between 100 Hz and 2 Hz stimulation for
three seconds each) [62]. The stimulation was given for
30 min, once per day, and started on day 1 after CFA in-
jection when the assessment of behavioral test has been
finished. Sham EA group animals received needle inser-
tion subcutaneously into ST36 and BL60, but without
electrical stimulation.
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Behavioral testing

Twelve rats of each group were included for assessment
of behavioral test, which consist of paw volume and paw
withdrawal thresholds (PWTs). Paw volume and PWTs
were measured before CFA/saline injection (as Base) and
1 day after CFA/saline injection (before EA stimulation),
3, 7, 14 and 21 day after CFA/saline injection (after EA
stimulation).

Paw volume

Paw volume was measured by a water displacement
plethysmometer (7140, UGO Basile, Italy). The right
hindpaw was immersed in a chamber containing electro-
lyte solution up to the boundary between hairy and
nonhairy skin, and the volume displacement was deter-
mined electronically. The percentage swelling of the paw
was calculated by the following formula: % swelling=
(VeVo)/Vx100, where V, is the paw volume after CFA/
saline injection and V, is basal paw volume.

PWTs

Rats were placed on a metal mesh table and adapted to
the new environment. The mechanical stimulus was de-
livered to the plantar surface of right hind paw from
below the floor of the test chamber by an automated
testing device (dynamic plantar aesthesiometer 37450,
UGO Basile, Italy). A steel rod (diameter of 0.5 mm) was
pushed against the hind paw with ascending force. The
force went from 0 to 50 g over a 20 s period. When the
animal withdrew its hind paw, the mechanical stimulus
was automatically stopped, and the force at which the
animal withdrew its paw was recorded as PWTs. With-
drawal responses were taken from four consecutive trials
with at least 3min between trials and averaged.

Perfusion and tissue harvest

Animals were sacrificed after 3, 7, 14 and 21 days post-
model respectively. Rats were administered 10% choral
hydrate in a volume of 0.35 mL, i.p., per 100 g body
weight. Five animals of each group were perfused for im-
munohistochemical analysis. Once animals were deeply
anesthetized, they were quickly perfused with 150 ml
cold sterilized saline followed by 500 ml cold, fresh 4%
paraformaldehyde in 0.1 M phosphate-buffered saline
(PBS). The L4-6 segments of spinal cord were removed
and postfixed in the same fixative for 6 h at 4°C before
transfer to 15%, 30% sucrose for cytoprotection. Tissue
was then embedded in an optimum cutting temperature
medium, cut using a cryostat at a thickness of 30 pm
and processed as free floating sections. Thirteen animals
of each group were perfused with ice cold saline to clear
contaminating blood. The same region of spinal cord as
that used for western blot and qPCR snap frozen in li-
quid nitrogen and stored at —80°C.
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Immunohistochemistry

All of the sections were blocked with 5% goat serum in
TBST (0.1%Tween-20) for 1 h at 37°C and incubated
over one nights at 4°C with primary antibodies (diluted
in 5% BSA/TBST), The following primary antibodies
were used: rabbit anti-rat p-p38MAPK (1:200, CST,
USA), rabbit anti-rat p-ATF-2 (1:200, CST, USA). The
sections were then incubated for 1 h at 37°C with HRP-
conjugated-avidin (1:400). Following incubation with
HRP-conjugated-avidin (1:400) for 1 h at 37°C, sections
were incubated with DAB substrate for 30 s. The stained
sections were examined with a Leica microscope, and
images were captured with a CCD camera. The number
of p-p38 MAPK and p-ATEF-2 positive cells was counted
automatically five regions in a given area of upper left,
lower left, upper right, lower right and middle using
Image Pro Plus 6.0 under blinded conditions and aver-
aged. A minimum of five tissue sections/animal with a
minimum of three-five animals/group were counted.

Western blotting

Samples were kept at —80°C until manually homogenized
with liquid nitrogen and added to RIPA buffer (1% sodium
deoxycholate, 0.1% SDS, sodium orthovanadate, sodium
fluoride, EDTA, leupeptin, 150 mM NaCl,1% Triton X-100
,50 mM Tris, pH 7.4) containing protease inhibitors, phos-
phatase inhibitor. The homogenate was allowed to rest on
ice for 30 min and was then centrifuged at 15,000 rcf for
15 min at 4°C, and the supernatant collected. The protein
concentration of tissue lysates was determined with a
BCA protein Assay Kit, and 30 pg of protein was loaded
in each lane. Protein samples were separated on 5%-10%
SDS-PAGE gel and electrophoretically transferred to
nitrocellulose membranes (Millipore, USA). The mem-
branes were blocked with 5% low-fat milk in TBST for 1 h
at room temperature. We used rabbit anti-rat p-p38
MAPK (1:1000, CST, USA), rabbit anti-rat p-ATF-2
(1:1000, CST, USA), rabbit anti-rat COX-2 (1:300, Cayman,
USA), rabbit anti-rat VR-1 (1:200, Santa Cruz, USA) as
primary antibodies and horseradish peroxidase (HRP)-
conjugated goat anti-rabbit IgG as secondary antibody
(1:10000). Rabbit anti-rat B-actin (1:1000, CST, USA) was
used as internal control. The membranes were developed
with ECL kit (Pierce, USA) and the signals were captured
with Image Quant LAS 4000 (GE, USA). Scanned images
were analyzed by Image Quant TL7.0 Analysis Software
(GE, USA).

qPCR

After tissue homogenization in ice-cold tubes, total
RNA was extracted using Trizol (Invitrogen, France).
Reverse transcription was performed using 1 pg total
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RNA using the PrimeScript® RT reagent Kit With
gDNA Eraser (TaKaRa, Japan). Expression of COX-2
and VR-1 genes was analyzed by real-time quantitative
polymerase chain reactions (qPCR) using the CFX96™
real-time PCR detection system (Bio-Rad, USA). The
glyceraldehyde-3- phosphate dehydrogenase (GAPDH)
gene served as an internal control for expression levels
of target genes. Primers were synthesized to amplify a
gene segment of GAPDH of 288 base pairs (bp): 5'-
TGCTGAGTATGTCGTGGAG-3'(sense), 5-GTCTTC
TGAGTGGCAGTGAT-3(anti-sense). A 161-bp seg-
ment of the COX-2 gene was amplified with 5'-CACGG
ACTTGCTCACTTTGTT-3" (sense), and 5-AAGCGT
TTGCGGTACTCATT-3' (anti-sense). A 129-bp seg-
ment of the VR-1 gene was amplified with 5'-GAAAG
GATGGAACAACGGGCGC-3' (sense), and 5-GAAG
ATGTGGGGCTTGACTGG-3' (anti-sense). The primers
were designed based on sequences from the Genebank
database. EvaGreen (Bio-Rad, USA) served as a dye that
binds to amplified DNA to emit fluorescence during reac-
tions. EvaGreen recently emerged as an optimal green
fluorescent DNA dye for qPCR, it has equal or better sen-
sitivity compared with SYBR Green I. The reaction mix-
ture of 20 pl contained 10 pl SsoFast EvaGreen supermix
(Bio-Rad, USA), 0.4 ul sense and anti-sense primers (400
nM), 1.5 pl template complementary DNA, 7.7 pl Rnase/
Dnase-free water. Reactions (total volume, 20 pl) were in-
cubated at 95°C for 30 m, followed by 40 cycles of 10 s at
95°C and 30 s at 55.9°C (COX-2 mRNA) / 59.0°C (VR-1
mRNA). Water controls were included to ensure specifi-
city. Each sample was measured in triplicate, and data
points were examined for integrity by analysis of the amp-
lification plot. Adding the melting curve analysis in the
reaction condition, the analytical model: 65°C-95°C, an in-
crease of 0.5°C every 10 s. The comparative cycle thresh-
old Cq method was used for relative quantification of
gene expression. The amount of COX-2 mRNA and VR-1
mRNA, normalized to the GAPDH and relative to a cali-
brator, was given by 2244, with Cq indicating the cycle
number at which the fluorescence signal of the PCR prod-
uct crosses an arbitrary threshold set with the exponential
phase of the PCR.

Statistical analysis

All data were expressed as means + standard error mean
(SEM). The PWTs and the percentage swelling of paw
change data were normally distributed, and were there-
fore analyzed using repeated-measures ANOVA with
between-subjects factors. A one-way ANOVA for inde-
pendent samples compared differences between groups
at each time. Post hoc testing was performed with a
Fisher’s PLSD test for differences between groups. The
criterion for statistical significance was P<0.05.
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Additional file 1: Effect of EA on p38 MAPK pathway at different
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