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Abstract

Substance Py

Background: Previous studies have demonstrated that intrathecal administration of the substance P amino-
terminal metabolite substance Py, (SP;5) and its C-terminal amidated congener induced antihyperalgesic effects in
diabetic mice. In this study, we studied a small synthetic dipeptide related to SP;; and endomorphin-2, i.e. Phe-
Phe amide, using the tail-flick test and von Frey filament test in diabetic and non-diabetic mice.

Results: Intrathecal treatment with the dipeptide increased the tail-flick latency in both diabetic and non-diabetic
mice. This effect of Phe-Phe amide was significantly greater in diabetic mice than non-diabetic mice. The Phe-Phe
amide-induced antinociceptive effect in both diabetic and non-diabetic mice was reversed by the o, receptor
agonist (+)-pentazocine. Moreover, Phe-Phe amide attenuated mechanical allodynia in diabetic mice, which was
reversible by (+)-pentazocine. The expression of spinal o1 receptor mRNA and protein did not differ between
diabetic mice and non-diabetic mice. On the other hand, the expression of phosphorylated extracellular signal-
regulated protein kinase 1 (ERK1) and ERK2 proteins was enhanced in diabetic mice. (+)-Pentazocine caused
phosphorylation of ERK1T and ERK2 proteins in non-diabetic mice, but not in diabetic mice.

Conclusions: These results suggest that the spinal o, receptor system might contribute to diabetic mechanical
allodynia and thermal hyperalgesia, which could be potently attenuated by Phe-Phe amide.
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Background

Diabetes is a global disease with an estimated worldwide
prevalence of 2.8% in 2000, and this is predicted to
climb to 4.4% in 2030 [1]. Diabetic neuropathy is seen
in about 60% of all diabetic patients [2]. While the
symptoms of diabetic polyneuropathy include hyperalge-
sia (hypersensitivity to noxious stimuli), hypoalgesia
(loss of pain sensation) is also possible [3]. This pain is
poorly relieved by opiates and the treatment regimen is
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usually based on the use of antiepileptics and antide-
pressants, which often have inadequate effects and are
associated with a high prevalence of side effects [4].
There is a great need for new strategies for the treat-
ment of diabetic neuropathy.

We recently demonstrated that substance P;_; (SPy_7;
H-Arg-Pro-Lys-Pro-Gln-Gln-Phe-OH), administered
spinally, could attenuate thermal hyperalgesia in diabetic
mice [5]. SP;_7 is formed from substance P (SP; H-Arg-
Pro-Lys-Pro-Gln-Gln-Phe-Phe-Gly-Leu-Met-NH,). SP
was discovered as a neuropeptide by Von Euler and
Gaddum in 1931 [6] and is involved in pain signaling,
peripheral inflammation and the maintenance of hyper-
algesia [7]. SP is enzymatically degraded into several
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fragments, some of which retain their biological activity
[8-10]. The main N-terminal fragment, SP;_,, exerts sev-
eral effects that are opposite those of SP, e.g. the hepta-
peptide has antinociceptive [11], anti-inflammatory [12]
and antihyperalgesic effects [5]. In addition, the hepta-
peptide attenuates several withdrawal signs in mor-
phine-dependent rodents [13,14] and the development
of morphine tolerance [13]. These effects are mediated
through a specific receptor for SP;_,, which was detected
in the rat and mouse spinal cord [15,16] and the rat
ventral tegmental area [17], and is distinct from any of
the known opioid and tachykinin receptors.

We previously reported that the o, receptor might be
involved in the effect of SP;_; and its amidated analogue,
SP;.7-NH, [5,18,19]. o, receptor ligands have poor affi-
nity for the SP; ; binding site [19] which may imply that
SP,_, has a downstream, rather than a direct, effect on
the o, receptor. On the other hand, the effects of SP,_,
on 6; receptors have been reported previously [20,21]
and the o, receptor is interesting to study since it has
been proposed to be involved in intracellular signaling
cascades that lead to pain hypersensitivity [22].

We previously performed a thorough structure-activity
relationship study of SP;_; involving an alanine-scan and
truncations as well as C- and N-terminal modification
of the heptapeptide. Amidation of the heptapeptide
increased its affinity for the SP; ; binding sites [23] and
produced a stronger effect than the native heptapeptide
when used in behavioral tests [18,19]. The C-terminal
part of SP; -, especially the phenylalanine at position
seven, is most essential for its binding. This finding,
together with the knowledge that endomorphin-2 (EM-
2; H-Tyr-Pro-Phe-Phe-NH,) binds to the SP;_, binding
site, resulted in the development of low-molecular, pep-
tidergic ligands [24]. We discovered that the dipeptide
H-Phe-Phe-NH, (Phe-Phe amide) had the same affinity
for the SP; ; binding site as the endogenous heptapep-
tide. Therefore, the present study was designed to exam-
ine the ability of this dipeptide to attenuate allodynia
and thermal hyperalgesia in diabetic mice.

Results

Effect of Phe-Phe amide on the thermal nociceptive
threshold in diabetic and non-diabetic mice

The baseline tail-flick latencies in diabetic mice were
shorter than those in non-diabetic mice, indicating that
diabetic mice have a reduced pain threshold (Figures 1A
and 1B). As shown in Figure 1A, i.t. administration of
Phe-Phe amide dose-dependently increased the tail-flick
latencies in non-diabetic mice. Two-way ANOVA indi-
cated a significant main effect of Phe-Phe amide treat-
ment (Fy, 250 = 46.59, P < 0.001), time (F4 250 = 58.8, P <
0.001), and the interaction between Phe-Phe amide
treatment and time (Fig250 = 6.93, P < 0.001). A dose-
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Figure 1 Time-response curve for the intrathecal injection of
Phe-Phe amide on the tail-flick latency in non-diabetic (A) and
diabetic (B) mice. The nociceptive threshold was determined by
the tail-flick test 5, 30 60 and 90 min after injection of the
dipeptide. Each point represents the mean with S.EM. for 10-12
mice. *P < 0.05 and ***P < 0.001 vs. saline-treated group.

dependent increase in tail-flick latency was seen in dia-
betic mice, but with greater potency (Figure 1B). Two-
way ANOVA indicated a significant main effect of Phe-
Phe amide treatment (F4 530 = 382.55, P < 0.001), time
(Fa230 = 338.56, P < 0.001), and the interaction between
Phe-Phe amide treatment and time (Fyg, 230 = 45.71, P <
0.001). Since the antinociceptive effect of Phe-Phe
amide was more potent in diabetic mice, the ability of
Phe-Phe amide to produce an increase in the tail-flick
latency in diabetic mice is greater than that in non-dia-
betic mice.

Effects of opioid receptor antagonists on Phe-Phe amide-
induced antinociception in diabetic and non-diabetic
mice

To investigate whether the opioid system is involved in
the effect seen with Phe-Phe amide, we examined the
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effects of opioid receptor antagonists on the prolonga-
tion of the tail-flick latency seen after the administration
of 2 pmol Phe-Phe amide. This dose was chosen accord-
ing to the results of the dose-response study, where it
was shown to produce an evident antinociceptive
response in both diabetic and non-diabetic mice. Pre-
treatment with the non-selective opioid receptor antago-
nist naloxone (1 mg/kg, i.p.) inhibited the Phe-Phe
amide-induced increase in the tail-flick latency in non-
diabetic mice (Figure 2A) as well as in diabetic mice
(Figure 2B). In contrast to naloxone, neither p-, 8-, nor
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Figure 2 Effects of opioid receptor antagonists on Phe-Phe
amide (2 pmol, i.t.)-induced antinociception in non-diabetic (A)
and diabetic (B) mice. Naloxone (NLX, 1 mg/kg ip) and naltrindole
(NTI, 3 mg/kg, s.c.) were administered 30 min before the injection of
Phe-Phe amide. B-Funaltrexamine (3-FNA, 20 mg/kg, s.c) and nor-
binaltorphimine (BNI, 20 mg/kg, s.c.) were administered 24 h before
injection of the Phe-Phe amide. Each column represents the mean
with SEM. for 6-11 mice. ***P < 0.001 vs. respective before Phe-Phe
amide-treatment group; ###P < 0.001 vs. saline-pretreated Phe-Phe

amide group (Bonferroni test).
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r-opioid receptor antagonists had any effect on the Phe-
Phe amide-induced prolongation of the tail-flick latency
(Figure 2A and 2B).

Involvement of c-receptors in Phe-Phe amide-induced
antinociception in diabetic and non-diabetic mice

We recently demonstrated that the antihyperalgesic
effects induced by both SP;_; and its analogue SP; ;-
NH, in diabetic mice may involve o, receptors. There-
fore, we also evaluated the possible involvement of the
o, receptor by examining the effect of the agonist
(+)-pentazocine on Phe-Phe amide-induced antinoci-
ception in diabetic and non-diabetic mice. Pretreat-
ment with (+)-pentazocine attenuated the Phe-Phe
amide-induced prolongation of the tail-flick latency in
both non-diabetic (Figure 3A) and diabetic mice (Fig-
ure 3B).

Effect of Phe-Phe amide on mechanical allodynia in
diabetic mice

Phe-Phe amide produced a significant increase in the
thermal threshold in diabetic and non-diabetic mice. In
the next step of the experiment, we investigated the
effect of Phe-Phe amide on the mechanical threshold in
diabetic and non-diabetic mice. As shown in Figure 4,
the mechanical threshold in diabetic mice was lower
than that in non-diabetic mice, indicating that diabetic
mice exhibit mechanical allodynia (Figure 4A and 4B). L.
t. administration of Phe-Phe amide (2 pmol) did not
affect the mechanical threshold in non-diabetic mice
(Figure 4A). In contrast to non-diabetic mice, the
decrease in the mechanical threshold in diabetic mice
was reversed by treatment with Phe-Phe amide, an effect
which in turn was attenuated by i.t. pretreatment with
(+)-pentazocine (Figure 4B). Although i.t. treatment
with Phe-Phe amide did not affect the mechanical
threshold in non-diabetic mice, i.t. administration of
(+)-pentazocine decreased the mechanical threshold in
non-diabetic mice, which was reversed by i.t. treatment
with Phe-Phe amide (Figure 4A).

This i.t.-administered (+)-pentazocine-induced
decrease in the mechanical threshold in non-diabetic
mice suggests that the o; receptor may play a role in
mechanical allodynia. To confirm this possibility, the
effect of the o, receptor antagonist BD1047 on the
(+)-pentazocine-induced decrease in the mechanical
threshold in non-diabetic mice was examined. L.t. pre-
treatment with BD1047 completely reversed the
decrease in the mechanical threshold in (+)-pentazo-
cine-treated non-diabetic mice (Figure 5A). Lt. treat-
ment with BD1047 slightly, but not significantly,
increased the mechanical threshold in diabetic mice,
while the mechanical threshold in non-diabetic mice
was not affected (Figure 5B).
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Figure 3 Effect of the 6;-receptor agonist (+)-pentazocine [(+)
PTZ, 10 mg/kg, s.c] on the Phe-Phe amide (2 pmol, i.t.)-
induced prolongation of the tail-flick latency in non-diabetic
and diabetic mice. (+)PTZ was administered subcutaneously 30
min prior to the administration of Phe-Phe amide. Each column
represents the mean with SEM. for 10 mice. *P < 0.05, ***P < 0.001
vs. respective before-treatment group; #P < 0.05, ###P < 0.001 vs.
vehicle-pretreated group (Bonferroni test).

Expression of ¢, receptor mRNA and proteins in the
spinal cords of diabetic and non-diabetic mice

The behavioral studies strongly suggested that the spinal
G, receptor system is enhanced in diabetic mice. More-
over, the potent antinociceptive and antiallodynic effect
of Phe-Phe amide in diabetic mice might be correlated
with enhanced activity in the spinal o, receptor system.
To clarify this possibility, the expression of 6, receptor
mRNA and protein was examined in the spinal cords of
diabetic and non-diabetic mice. Reverse-transcription
semi-quantitative PCR indicated that the level of o3
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Figure 4 Effect of Phe-Phe amide (2 pmol, i.t.) on the
mechanical threshold in diabetic and non-diabetic mice. The
nociceptive threshold was determined by a von Frey filament test
30 min after dipeptide injection. (+)-Pentazocine [(+)PTZ, 10 nmol, i.
t] was administered 10 min prior to the injection of Phe-Phe amide.
Each point represents the mean with SEM. for 7-11 mice. *P < 0.05
vs. respective before-treatment group; #P < 0.001 vs. vehicle-

pretreated group (Bonferroni test).

receptor mRNA in the spinal cord in diabetic mice was
not different from that in non-diabetic mice (Figure
6A). Moreover, the expression of the 6; receptor protein
in the spinal cord was unchanged in diabetic mice (Fig-
ure 6B). o, receptors have been shown to translocate
from the mitochondrion-associated endoplasmic reticu-
lum membrane to the plasma membrane, which leads to
functional activation [25]. Therefore, the expression of
the o, receptor in the cytosol and membrane fractions
in the spinal cords of diabetic and non-diabetic mice
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Figure 5 Effect of the o,-receptor antagonist BD1047 on
(+)-pentazocine [(+)PTZ, 10 nmol, i.t.J-induced lowering of the
mechanical threshold in non-diabetic and diabetic mice.
BD1047 was injected i.t. 10 min prior to the administration of (+)
PTZ. Each column represents the mean with SEM. for 10 mice. *P <
0.05 vs. respective before-treatment group; #P < 0.05 vs. vehicle-
pretreated group (Bonferroni test).

was examined. The expression of o, receptors in the
cytosol and membrane fraction of the spinal cord in dia-
betic mice was not different from that in non-diabetic
mice (Figure 6C and 6D).

Effect of (+)-pentazocine on the phosphorylation of ERK1
and ERK2 proteins in the spinal cords of diabetic and
non-diabetic mice

Since o; receptor expression was not changed in dia-
betic mice, the function of 6; receptors in diabetic mice
might be enhanced in the spinal cord. Therefore, we
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examined the effect of (+)-pentazocine on the phosphor-
ylation of the extracellular signal-regulated protein
kinase 1 (ERK1) and ERK2 proteins in the spinal cords
of diabetic and non-diabetic mice. The expression of
ERK1 and ERK2 proteins in the spinal cord of diabetic
mice was not different than that in non-diabetic mice
(Figure 7A and 7B). In contrast to the expression of
ERK1 and ERK2 protein, the expression of phosphory-
lated ERK1 and ERK2 proteins was increased in the
spinal cord of diabetic mouse compared to non-diabetic
mice (Figure 7B and 7D). Treatment with (+)-pentazo-
cine did not affect the expression of ERK1 and ERK2
protein in the spinal cords of diabetic and non-diabetic
mice (Figure 7A and 7B). Treatment with (+)-pentazo-
cine increased the phosphorylation of ERK1 and ERK2
in the spinal cord of non-diabetic mice (Figure 7A and
7B). In contrast to non-diabetic mice, phosphorylation
of ERK1 and ERK2 was not observed in diabetic mouse
spinal cord after treatment with (+)-pentazocine (Figure
7B and 7D).

Discussion

The present results showed that the i.t. administration
of Phe-Phe amide increased the tail-flick latency in dia-
betic and non-diabetic mice the same as larger SP-
related peptides [5,18]. The Phe-Phe amide-induced
increase in the tail-flick latency in diabetic mice was
greater than that in non-diabetic mice. The antinocicep-
tion elicited by the dipeptide in both diabetic and non-
diabetic mice was completely blocked by the non-selec-
tive opioid receptor antagonist naloxone. However, none
of the more selective p-, 6- or k- opioid receptor
antagonists (B-funaltrexamine, naltrindole and nor-
binaltorphimine, respectively) affected Phe-Phe amide-
induced antinociception, suggesting that the antinoci-
ceptive effect of the dipeptide amide does not involve
these receptors. Tsao and Su [26] previously reported
that the (+)- stereoisomer of naloxone may interact with
the o, receptor. We recently found that SP;_; produced
a o, receptor-sensitive antinociception in diabetic and
non-diabetic mice [5], and that Phe-Phe amide exhibited
high affinity for the specific binding site of SP;_, [24].
We observed in the present study that i.t. pretreatment
with (+)-pentazocine attenuated the Phe-Phe amide-
induced antinociception in diabetic and non-diabetic
mice, suggesting that the o; receptor may be involved in
the antinociceptive effect of Phe-Phe amide.

The o, receptor system has previously been shown to
influence the mechanical pain threshold [22]. We observed
that the mechanical threshold in diabetic mice was lower
than that in non-diabetic mice. Treatment with Phe-Phe
amide increased the mechanical threshold in diabetic
mice, but not non-diabetic mice. This Phe-Phe amide-
induced antiallodynic effect in diabetic mice was
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attenuated by pretreatment with (+)-pentazocine, which
again suggests that the spinal 6; receptor system may be
involved. Interestingly, (+)-pentazocine by itself decreased
the mechanical threshold in non-diabetic mice. This
(+)-pentazocine-induced mechanical allodynia was attenu-
ated by pretreatment with the o; receptor antagonist
BD1047 and Phe-Phe amide, suggesting that the activation
of spinal o, receptors causes mechanical allodynia. It has
been reported that spinal 6; receptor activation enhances
the N-methyl-D-aspartate (NMDA)-induced nociceptive
response [27]. Moreover, mice that lack the 6 receptor

did not exhibit any mechanical allodynia after nerve liga-
tion [22], which confirms that activation of the spinal o,
receptor system might be involved in mechanical allody-
nia. On the other hand, i.t. administration of (+)-pentazo-
cine in diabetic mice did not affect the mechanical
threshold. A possible explanation for this finding is that
the spinal o, receptor-mediated system is already activated
in diabetic mice. This possibility is supported by the find-
ing that i.t. pretreatment with the o, receptor antagonist
BD1047 slightly, but not significantly, increased the
mechanical threshold in diabetic mice.
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I.t. administration of (+)-pentazocine produced
mechanical allodynia in non-diabetic mice (see Figure
4A) but did not affect the thermal nociceptive threshold
(Figure 3A). This suggests the differential modulation of
nociceptive pathways by 6, receptors depending on the
stimulus quality and modality. This adds to previous
findings that different receptor systems and mechanisms
are involved in diverse sensory abnormalities, such as
mechanical versus thermal pain [22,28-31].

We also examined the expression of the o; receptor
gene transcript and protein in the spinal cord of both
diabetic and non-diabetic mice, and did not find any

differences. One of the few studies on the o; receptor in
diabetic mice demonstrated that there were no differ-
ences in the expression of the ¢; receptor gene tran-
script and protein in retinal ganglion cells between
diabetic and non-diabetic mice [32]. Furthermore, a
receptor binding study has indicated a decrease in o,
receptor density in the brains of long-term diabetic rats,
while relatively short-term diabetic rats did not show
any significant differences [33].

Since the expression of the spinal 6; receptor mRNA
and protein is not changed in diabetic mice, the func-
tion of o, receptors might be affected. Activation of the
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G, receptor increases the intracellular Ca** concentra-
tion by potentiating Ca®* entry at the plasma membrane
and Ca”*" mobilization from endoplasmic stores. Pre-
viously, it has been reported that o, receptors are func-
tionally coupled to the NMDA receptor [34-38] and
regulate intracellular Ca®* concentration through phos-
pholipase C and IP; [39,40]. Ca®* entry into neurons
through the NMDA receptor or mobilization through
IP; may initiate the intracellular ERK signaling cascade
in spinal dorsal horn neurons [41], thus contributing to
central sensitization. The present study indicates that
the expression levels of phosphorylated ERK1 and ERK2
are increased in diabetic mice compared to non-diabetic
mice, while the expression levels of ERK1 and ERK2
protein are not changed. These results suggest that
spinal ERK signaling is already activated in the spinal
cord of diabetic mice. Moreover, i.t. treatment with
(+)-pentazocine increased the phosphorylation of ERK1
and ERK2 proteins in the spinal cord of non-diabetic
mice, but not diabetic mice. This observation suggests
that the stimulation of spinal 6 receptors produces the
activation of ERK signaling. A previous report indicated
that ERK on the ipsilateral side of the spinal cord dorsal
horn was activated in nerve-ligated mice [42]. This ERK
activation in the spinal cord after nerve ligation was not
observed in 6 receptor knockout mice [22], which sup-
ports our present finding that ; receptors are responsi-
ble for the regulation of ERK signaling in diabetic mice.
Since (+)-pentazocine did not increase the phosphoryla-
tion of spinal ERK protein in diabetic mice, the
increased phosphorylation of ERK1 and ERK2 protein in
the spinal cord may be, at least in part, due to the
enhancement of 6, receptor-mediated functions.

The present results do not clarify the action site of
Phe-Phe amide. Our recent findings clearly indicated
that Phe-Phe amide has very high affinity for the SP;
binding site [24], which is distinct from the neurokinin
receptors, NK1 and NK3 [15,24]. Our previous studies
suggested that SP;_; might be related to the o receptor
system, since a o1 receptor agonist could reverse the
effect of SP; , on hyperalgesia and naloxone-precipitated
morphine withdrawal signs [5,19]. However, (+)-penta-
zocine has very low affinity for the SP; ; binding site
[19], suggesting that SP;_; and its analogues modulate
the effect of the o, receptor system rather than directly
acting as ligands for o, receptors.

Conclusions

The present study suggests that the antinociceptive and
antiallodynic effects induced by Phe-Phe amide occur
through modulation of the spinal ¢; receptor system via
the SP;_; binding site. Furthermore, the spinal c; recep-
tor system appears to contribute to the thermal hyperal-
gesia and mechanical allodynia seen in diabetic mice.
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Based on the present results, compounds that bind to a
SP1-7-specific binding site, like Phe-Phe amide, might
be attractive for the treatment of pain symptoms asso-
ciated with diabetic neuropathy. Notably, this small syn-
thetic dipeptide, with high affinity for the SP;_; binding
site, had a more pronounced in vivo effect than larger
SP-related peptides. Since Phe-Phe amide has analgesic
properties similar to those of SP;_; as well as a smaller
size, it is an interesting starting point for the develop-
ment of new drugs to relieve neuropathic pain.

Methods

This study was carried out in accordance with the
Declaration of Helsinki and/or with the guide for the
committee on the care and use of laboratory animals of
Hoshi University, Tokyo, which is accredited by the
Ministry of Education, Science, Sports and Culture.

Animals

Male 4-week-old ICR mice (Tokyo Animal Laboratory
Inc, Tokyo) weighing about 20 g at the start of the
experiment were used. The mice had free access to food
and water and were housed five per cage in an animal
room that was maintained at 24 + 1°C with a 12-h dark/
light cycle. All behavioral experiments were performed
between 10:00 and 19:00 each day.

Induction of diabetes with streptozotocin

Mice were rendered diabetic by an intravenous injection
of streptozotocin (200 mg/kg) prepared in a 0.1 N
citrate buffer at pH 4.5. Age-matched animals were
injected with vehicle alone. Experiments were conducted
two weeks after the administration of streptozotocin.
Animals with a serum glucose level exceeding 400 mg/
dl were considered diabetic.

Assessment of thermal hyperalgesia

The antihyperalgesic response was evaluated using the
tail-flick test (KN-205E Thermal Analgesimeter, Nat-
ume, Tokyo, Japan) as described by D’amour and Smith
[43]. Briefly, the mouse was gently restrained in a tube.
The tail was positioned in a groove underneath a 50 W
projection bulb with the dorsal part of the tail facing the
light bulb. The light and timer were monitored with the
same switch. Twitching or movement of the tail is a
typical response elicited by heat. When this occurred,
light reached a photocell and the light and timer were
switched off. Latencies were determined as the mean of
two trials. The voltage of a 50 W projection lamp was
set to 50 V [44], which gave a baseline value in non-dia-
betic animals of 10-14 s. The cut-off time was set to 30
s to prevent injury to the tail. Tail-flick latencies were
measured 5, 30, 60 and 90 min after i.t. injection of
Phe-Phe amide.
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Assessment of tactile allodynia

Mechanical sensitivity was determined by probing the
plantar surface of the hind paw (von-Frey test) with a
calibrated plastic filament of a dynamic plantar aesthesi-
ometer purchased from Ugo Basile (Comerio, Italy).
Force was applied to the hind paw at a rate of 0.25 g/s;
the final force when paw withdrawal was observed was
measured automatically (mechanical threshold). A maxi-
mal cut-off of 5 g was used to prevent tissue damage. A
significant decrease in the mechanical threshold after
the induction of diabetes compared with that in vehicle-
treated animals was considered mechanical allodynia.
The mechanical threshold was determined as the aver-
age of two measurements per mouse. Values were
obtained before and 30 minutes after drug
administration.

Intrathecal injections

Phe-Phe amide and o ligands were administered by i.t.
injection as described by Hylden and Wilcox [45] using
a 25 ul Gastight™ syringe (Hamilton, USA) and a BD
Precisionglide® 30G 1/2 inch needle (Becton Dickinson,
USA). The mouse was restrained manually and the nee-
dle was inserted between the L5 and L6 vertebrae. This
site is near the end of the spinal cord and minimizes the
risk of spinal damage [45].

Western blot

The spinal cord was quickly removed following decapi-
tation to evaluate o, receptor proteins. To measure the
phosphorylation of ERK protein, decapitation was per-
formed 30 min after treatment with (+)-pentazocine.
The spinal cord was homogenized in ice-cold buffered
sucrose solution containing 20 mM Tris-HCl (pH 7.4), 2
mM EDTA, 0.5 mM EGTA, and 1 mM phenylmethyl-
sulfonyl fluoride plus 250 pg/ml leupeptin, 250 pg/ml
aprotinin, and 0.32 M sucrose. The homogenate was
then centrifuged at 1,000 x g for 10 min at 4°C, and the
resulting supernatant was centrifuged at 9000 x g for 20
min at 4°C. To separate the cytosol and membrane frac-
tions, the supernatant was ultracentrifuged at 100,000 x
g for 60 min at 4°C. The resulting supernatant was
retained as the cytosolic fraction. The pellet was resus-
pended in ice-cold Tris buffer (ice-cold buffer without
sucrose) and ultracentrifuged at 100,000 x g for 60 min.
The supernatant was discarded and the pellet was resus-
pended in ice-cold Tris buffer. The protein concentra-
tion was measured using a Bradford assay kit (Thermo
Fisher Scientific Inc., Suwannee, GA). Cytosol and
plasma membrane samples with the same amounts of
protein were diluted with an equal volume of 2x electro-
phoresis sample buffer containing 2% SDS and 10% gly-
cerol with 0.2 M dithiothreitol. Proteins (20 pg) were
separated by size on 5-20% SDS-polyacrylamide gradient
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gel using the buffer system and transferred to nitrocellu-
lose membranes in Tris-glycine buffer containing 25
mM Tris and 192 mM glycine. For immunoblot detec-
tion, the membranes were blocked in Tris-buffered sal-
ine (TBS) containing 5% non-fat dried milk or 1% non-
fat dried milk with 0.1% Tween 20 (Bio-Rad Labora-
tories, Hercules, CA, USA) for 1 hr at room temperature
with agitation. The membrane was immunoblotted over-
night at 4°C with antibodies against c; receptor (1:500;
Santa Cruz Biotechnology Inc., Santa Cruz, CA, USA),
ERK1 (1:1000; Cell Signaling Technology Inc., Danvers,
MA, USA), ERK2 (1:1000; Cell Signaling Technology
Inc.), phosphorylated ERK1 (Cell Signaling Technology
Inc.), and phosphorylated ERK2 (Cell Signaling Technol-
ogy Inc.). The membrane was washed in TBS containing
0.05% Tween 20 (TTBS), and then incubated for 2 h at
room temperature with horseradish peroxidase-conju-
gated goat anti-rabbit IgG or rabbit anti-goat IgG
(Southern Biotechnology Associates, Inc., Birmingham,
AL, USA) diluted 1:10,000 in TBS containing 5% nonfat
dried milk or 1% non-fat dried milk with 0.1% Tween
20. The antigen-antibody peroxidase complex was finally
detected by enhanced chemiluminescence (Pierce, Rock-
ford, IL, USA) and visualized using a Light-Capture II
imaging system (Atto Co., Tokyo, Japan). The intensity
of the band was analyzed and semi-quantified by com-
puter-assisted densitometry using the NIH imaging sys-
tem. Each value for o, receptors in diabetic and non-
diabetic mice was normalized by the respective value for
the internal control GAPDH.

Semi-quantification of reverse-transcription polymerase
chain reaction (RT-PCR)

Total RNA was extracted from the mouse spinal cord
using a FastPure RNA isolation kit (Takara Bio Inc.,
Shiga, Japan) according to the manufacturer’s instruc-
tions. Total RNA was quantified by a spectrophotometer
at A260. Next, cDNA was synthesized by a PrimeScript
RT reagent kit (Takara Bio) with oligo dT primers. The
mouse sigmal receptor cDNA was amplified in 25 pl of
PCR solution containing 0.8 mM MgCl,, 250 nM NTP
mixture, and 0.5 units of platinum Taq DNA polymer-
ase with synthesized primers (0.5 uM) corresponding to
the mouse o, receptor cDNA (GenBankTM accession
number XM136229). The primers used were as follows:
5’-primer, 5-CAT TCG GGG CGA TAC TGG GC-3
(1-22); 3’-primer 5’-CCT GGG TAG AAG ACC TCA
CTT TT -3’(311-332). Samples were heated to 94°C for
2 min, 94°C for 30 sec, 55°C for 1 min, and 72°C for 2
min for 35 cycles. The final incubation was at 72°C for
10 min. The mixture was run on 1.5% agarose gel elec-
trophoresis with the indicated markers and primers for
the internal standard B-actin. The agarose gel was
stained with ethidium bromide and photographed with
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UV transillumination. The intensity of the band was
analyzed and semi-quantified by computer-assisted den-
sitometry using Image J. Data are expressed as a ratio to
B-actin.

Chemicals

The non-selective opioid receptor antagonist naloxone,
the o receptor agonist (+)-pentazocine, and the o,
receptor antagonist BD1047 were purchased from Sigma
Chemical Co (St. Louis, MO, USA). Phe-Phe amide was
prepared by using solid-phase peptide synthesis. Stan-
dard Fmoc conditions were used and the protecting
group was removed by 20% piperidine in DMF. The
coupling procedure was performed in N, N-dimethylfor-
mamide (DMF), using N-[(1H-benzotriazole-1-yl)-
(dimethylamino)methylene]-N-methylmethanaminium
hexafluorophosphate N-oxide (HBTU) as a coupling
reagent and N, N-diisopropylethylamine (DIEA) as a
base. The dipeptide was cleaved from the resin by the
addition of triethylsilane and 95% aqueous trifluoroactic
acid (TFA), and purified by RP-HPLC to give Phe-Phe
amide with purity above 99%. The selective p-opioid
receptor antagonist B-funaltrexamine, the selective 93-
opioid receptor antagonist naltrindole, and the selective
k-opioid receptor antagonist nor-binaltorphimine were
gifts from Toray Industries, Inc. (Kanagawa, Japan).
(+)-Pentazocine was dissolved in a vehicle solution of
90% sterile saline (0.9% NaCl), 5% dimethylsulfoxide
(DMSO), and 5% cremophore EL (Sigma), whereas all
other drugs were dissolved in saline. Naloxone and nal-
trindole were injected intraperitoneally (i.p.) and subcu-
taneously (s.c), respectively, 30 min before injection of
the peptide. (+)-Pentazocine was injected i.t. 10 min
before the injection of Phe-Phe amide. B-Funaltrexamine
and nor-binaltorphimine were injected s.c. 24 h before
injection of the peptide. L.t. pretreatment with BD1047
was performed 10 min before the administration of
(+)-pentazocine. The doses and routes for the adminis-
tration of each antagonist were according to previous
reports [5,46,47].

Statistical analysis

Data are presented as the mean + S.E.M. Differences
between treatment groups were evaluated using one-way
or two-way analysis of variance (ANOVA) followed by
the Bonferroni-Dunn test. At all times, a level of prob-
ability of 0.05 or less (P < 0.05) was considered
significant.

List of abbreviations

Phe-Phe amide: Phenylalanine-phenylalanine amide; SP: substance P; EM-2:
endomorphin-2; ANOVA: analysis of variance; i.p: intraperitoneal; i.t.
intrathecal; BD1047: N-[2-(3,4-dichlorophenyl)ethyl]-N, N, N-trimethylethane-
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