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Abstract

Long-term potentiation (LTP) in nociceptive spinal pathways shares several features with hyperalgesia and has
been proposed to be a cellular mechanism of pain amplification in acute and chronic pain states. Spinal LTP is
typically induced by noxious input and has therefore been hypothesized to contribute to acute postoperative pain
and to forms of chronic pain that develop from an initial painful event, peripheral inflammation or neuropathy.
Under this assumption, preventing LTP induction may help to prevent the development of exaggerated
postoperative pain and reversing established LTP may help to treat patients who have an LTP component to their
chronic pain. Spinal LTP is also induced by abrupt opioid withdrawal, making it a possible mechanism of some
forms of opioid-induced hyperalgesia. Here, we give an overview of targets for preventing LTP induction and
modifying established LTP as identified in animal studies. We discuss which of the various symptoms of human
experimental and clinical pain may be manifestations of spinal LTP, review the pharmacology of these possible
human LTP manifestations and compare it to the pharmacology of spinal LTP in rodents.

Introduction
Pain arising from impending or actual tissue injury has
an important physiological role, protecting the body
from injury and promoting healing once injury has
occurred. Pain persisting in the absence of ongoing
nociceptive input from the periphery, or exceeding the
pain normally caused by ongoing nociceptive input, has
lost its physiological function and is therefore called
maladaptive or dysfunctional [1]. Dysfunctional pain is
thought to arise from altered processing of nociceptive
information in the central nervous system.
One of the symptoms of clinically relevant pain is

hyperalgesia, i.e. increased pain perception in response
to painful stimuli [1,2]. This implies the presence of a
mechanism that amplifies nociceptive excitation some-
where along the central nociceptive system. A synaptic
amplifier of nociception has been identified at the
synapses between primary afferent C-fibres, many of
which are nociceptive, and neurons in the superficial
dorsal horn of the spinal cord in rodents [3,4]. Amplifi-
cation of nociceptive signals at this site can be “switched

on” by noxious stimulation ("conditioning stimulation”)
of the associated nociceptive primary afferents. The
underlying cellular mechanism is long-term potentiation
(LTP) of synaptic strength, a mechanism also described
in cortical regions like the hippocampus where it is
thought to be the basis of memory formation [5].
Therefore, LTP at the first nociceptive synapse is cur-

rently regarded as a cellular model of hyperalgesia
induced by noxious stimulation. As general anaesthesia
without additional analgesia is not sufficient to protect
the spinal cord from intraoperative noxious input [6,7],
LTP in spinal nociceptive pathways may heighten acute
postoperative pain. Moreover, in many patients with
chronic dysfunctional pain, pain started to develop fol-
lowing an initial strong noxious input. Examples are
chronic postoperative pain following intraoperative nox-
ious input, chronic back pain developing from acute
lumbago or sciatica and persistent idiopathic facial pain
following major dental treatment [8-10]. Although there
is currently no direct proof of the role of spinal LTP in
human acute postoperative or chronic pain, some argu-
ments have accumulated in favour:

(1) In rodents, LTP can be induced not only by elec-
trical stimulation of primary afferents, but also by
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natural noxious stimulation, e.g. by peripheral
inflammation and nerve injury [4,11-13].
(2) The same conditioning stimulation that induces
LTP also leads to long-lasting hyperalgesia in freely
behaving rodents [14,15].
(3) In rodents, LTP is preferentially expressed at
synapses between nociceptive primary afferents and
neurokinin 1 (NK1) receptor expressing projection
neurons in lamina I, i.e. neurons that (a) relay noci-
ceptive information directly to the brain and (b)
have been shown to be necessary for the develop-
ment of chronic pain [4,16-18].
(4) In rodents, the pharmacology of the induction of
LTP is very similar to the pharmacology of induction
of long-lasting hyperalgesia by models of chronic
pain (inflammation, nerve injury), i.e. drugs that
block LTP induction also block hyperalgesia induc-
tion (Table 2).
(5) Conditioning electrical stimulation of the same
type that induces LTP in rodents has been shown to
induce long-lasting potentiation of pain perception
in humans [19,20].

In addition, is has recently been discovered that LTP
at synapses between C-fibres and superficial dorsal horn
neurons can also be induced by abrupt withdrawal of
opioids [21]. Amplification of nociceptive information
by LTP may therefore not only contribute to human
hyperalgesia following an initial painful event but also to
the clinically important phenomenon of hyperalgesia fol-
lowing opioid withdrawal [22].
A critical point regarding the significance of spinal

LTP for long-lasting and chronic pain is its duration. In
the hippocampus and other cortical regions, LTP may
last between a few hours and the lifetime of the animal,
depending upon the conditioning stimulus, its repetition
and the experimental conditions [23,24]. Duration of
LTP in spinal cord has not been studied directly. In one
study, the hyperalgesia induced by LTP-inducing condi-
tioning stimulation in healthy rodents reversed without
further intervention after seven days [14]. In human
volunteers, relatively mild conditioning stimulation
causes hyperalgesia that lasts for about one day [25].
This time course seems consistent with a contribution
of LTP to hyperalgesia following strong noxious stimula-
tion, such as acute postoperative pain. In chronic pain
patients, several factors may coincide to perpetuate LTP
expression in nociceptive pathways, such as decreased
activity of endogenous antinociceptive systems [13,26]
or the presence of intermittent low-level nociceptive
input from the periphery that might “boost” the mainte-
nance of LTP, counteracting its natural reversal. Deter-
mining the factors influencing LTP duration beyond the
first hours after induction will be important to

understand the exact relationship between LTP and
hyperalgesia in chronic pain patients.
In conclusion, LTP in spinal nociceptive pathways is

in many respects an attractive model of short-term and
possibly also long-term hyperalgesia and pain following
noxious stimulation or opioid withdrawal. Preventing
LTP induction, e.g. in the intraoperative setting, may
prevent the development of exaggerated postoperative
pain. Reversing established LTP may help to treat
chronic pain patients who have an LTP component to
their chronic pain.
In the present review, we first summarize current

techniques for induction and recording of LTP in noci-
ceptive pathways in rodents, then we give an overview
of pharmacological and other possibilities to prevent
the induction of LTP and disrupt the maintenance of
established LTP in rodents. In the second part, poten-
tial manifestations of LTP in humans and the corre-
sponding experimental and clinical models are
discussed. Finally, the pharmacology of induction and
maintenance of hyperalgesia in these human models is
reviewed and compared to the pharmacology of LTP
in rodents.

Recording and induction of LTP in rodent spinal
nociceptive pathways
Recording of LTP in rodent spinal nociceptive pathways
LTP is defined as a long-lasting increase of synaptic
strength [5] that can be mediated by either pre- or post-
synaptic mechanisms, or both. Synaptic strength is the
magnitude of the postsynaptic response (i.e. postsynaptic
current or potential) in response to a single presynaptic
action potential at a monosynaptic connection. Record-
ing of LTP therefore has two prerequisites (1) investiga-
tion of a monosynaptic connection and (2) recording of
postsynaptic currents or potentials. In the spinal cord,
there are currently two methods to record synaptic
strength in nociceptive pathways that fulfil the above
requirements [2,27]. Both investigate the synaptic con-
nection between primary afferent C-fibres (many of
which are nociceptive) and superficial dorsal horn neu-
rons, which is therefore the focus of the present review.
In vivo, synaptic strength between primary afferent C-
fibres and superficial dorsal horn neurons can be mea-
sured in adult rodents by stimulating the sciatic nerve
and recording C-fibre-evoked field potentials in superfi-
cial dorsal horn that are known to reflect summation of
postsynaptic, mainly monosynaptically evoked currents
[3,28]. In vitro, spinal cord slice preparations from
young rodents with long dorsal roots are most often
used to selectively investigate the synapse between C-
fibres and neurons with a known role in nociceptive
processing, e.g. lamina I projection neurons that express
the neurokinin 1 (NK1) receptor [4,17].
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Several alternative methods have been used to investi-
gate spinal LTP, but may not fulfil all of the above
requirements. C-fibre evoked field potentials recorded in
deep dorsal horn [14,29] are very similar to those
recorded in superficial dorsal horn, but it is not clear if
they reflect monosynaptic transmission from C-fibres.
Action-potential firing recorded extracellularly from
deep dorsal horn wide dynamic range (WDR) neurons
[30,31] may in part reflect synaptic strength at the first
nociceptive synapse but may also be affected by modifi-
cations of membrane excitability and synaptic inhibition.
Optical imaging after bulk-loading of spinal cord slices
with voltage-sensitive dyes does not allow distinction
between neuronal and non-neuronal structures and
between pre- and postsynaptic structures [4,32]. Where
data from these studies is used in the text or tables, it is
specifically indicated.

Voltage-sensitive dye can also be loaded into the pre-
synaptic terminals of primary afferents over the dorsal
root. This approach allows to selectively monitor presy-
naptic electrical activity, but the exact relationship to
transmitter release is not known [32].

Induction of LTP in rodent spinal nociceptive pathways
LTP at the synapse between primary afferent C-fibres
and superficial dorsal horn neurons can be induced by
various protocols, including strong noxious stimulation
of the input pathway and application of certain drugs
(Table 1). Most studies use noxious electrical stimula-
tion of the dorsal root or sciatic nerve that can be
exactly controlled regarding stimulus intensity and dura-
tion and is therefore highly reproducible. Both high fre-
quency stimulation (HFS, several bursts at 100 Hz) and
low frequency stimulation (LFS, 2 Hz for several min) of

Table 1 Methods to induce LTP

Type of
stimulation

Protocol in
vivo

in
vitro

Comments References

Electrical nerve
stimulation: C-
fibres

HFS 100 Hz for 1 s, repeated
2-20 times at 10-20 s
intervals

• • [3,4,6,17,40,65,70,90,92,101,102,108,110,113,133,134,143,144,268,269]
(superficial dorsal horn), [14,29,114,270] (deep dorsal horn)

LFS 2 Hz, 120 s • • [4,7]

1-2 Hz, 40-100 s paired
with postsynaptic
depolarisation

• [38,271]

IFS 10 Hz for 1 s, repeated 12
times at 10 s

• [83]

20 Hz for 5 s, repeated 4
times at 10 s intervals

• [3]

Electrical nerve
stimulation: Aδ-
fibres

HFS 100 Hz for 1 s, repeated
90 times at 10 s intervals

• LTP only in
spinalised rats

[36]

Natural noxious
stimulation

Noxious heat, pinching
(hindpaw)

• LTP only in
spinalised rats

[13]

Formalin, capsaicin
injection (hindpaw)

• [4,13]

Sciatic nerve transsection
or crush

• [11]

Sural nerve crush • LTP only in
spinalised rats

[13]

Pharmacological
stimulation

NMDA, substance P,
neurokinin A

• LTP only in
spinalised rats

[272]

ATP • [122]

BDNF, SKF 38393
(Dopamine receptor D1/
D5 agonist), 8-Br-cAMP
(PKA activator)

• Late, protein-
synthesis-
dependent
phase of LTP

[91,140]

Abrupt withdrawal of
remifentanil or DAMGO

• • No LTP upon
tapered
withdrawal

[21,42]

TNF-a • LTP only in
neuropathic
animals

[111]

HFS, high frequency stimulation; IFS, intermediate frequency stimulation, LFS, low frequency stimulation.
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Table 2 Targets for prevention of LTP induction

Target Substance Action at
target

HFS LFS Opioid
with-
drawal

in
vivo

in
vitro

Comments References Effect of
equivalent drugs
on hyperalgesia
induction*

AMPAR AMPAR NBQX antagonist X • WDR neuron AP firing [30] X [273]

NMDAR NMDAR AP5, D-AP5,
MK 801,
ketamine

antagonist X X X • • NMDAR antagonists also prevent LTP
induced by nerve transsection [11], BDNF
[140] and LTP of human pain perception
[20]

[4,7,13,17,21,42,83,101,102,134,268,274] X [275]

NMDA-2B R Ro 25-6981 antagonist X • WDR neuron AP firing [276,277] X [276]

mGluRs mGluRI AIDA, 4-CPG antagonist X X • • The mGluR1 antagonist LY367385 reduces
long-lasting facilitation of presynaptic
excitation [32] (optical imaging)

[38,40] X [278-280]

mGluRII, III EGLU,
LY341495,
MSOP

antagonist 0 • [40]

VGCC T-type
VDCC

mibefradil, Ni2
+

antagonist X X • • [4,7,17]

a2δ-subunit
of VGCCs

gabapentin 0 • [65] 0 [60,62]

NK1R NK1R RP67580,
703,606

antagonist X X • • [3,4,7,17] X [69,281]

GABAAR GABAAR diazepam Current
amplifier

X • [70]

Opioid
receptors

μ-opioid
receptors

fentanyl,
DAMGO

agonist X X • • Drugs depress baseline responses.
Fentanyl prevents LTP at low but not
high doses

[6,83] X [282]

Descending
inhibition

a2-
adrenergic
receptors

clonidine agonist X • [90] X [283] (human
capsicin model)

5-HT3
receptor

odansetron antagonist X • WDR neuron AP firing [31]

D1/D5
dopamine
receptor

SCH 23390 antagonist 0 • Selectively blocks L-LTP but not E-LTP [91]

Anaesthetic
gases

isoflurane,
sevoflurane,
urethane

0 0 0 • [3,4,6,7,21] and others

Xenon X • [92]

Neurotrophins TrkB
receptor

K252a, TrkB- Fc Trk
inhibitor,
BNDF
scavenger

0 0 • Blocks L-LTP after LFS [140] X [284]
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Table 2 Targets for prevention of LTP induction (Continued)

EphR-ephrin
signalling

EphB R EphB1-Fc
EphB2-Fc

antagonist X • [101,102] X [100,102,285,286]

EphB R ephrinB1-Fc agonist 0 • [101,102]

NO-pathway NOS L-NMMA, L-
NAME

inhibitor X X • • [14,29]: deep dorsal horn. Induction of
long-lasting facilitation of presynaptic
electrical activity by LFS is reduced by
blockers of nNOS and iNOS [32] (optical
imaging)

[4,14] X [14,287,288]

extracellular
NO

PTIO,
hemoglobin

scavenger X X • • [4,14] X [289] (NMDA-
induced
hyperalgesia)

sGC ODQ, MD inhibitor X X • • [4,29]

mono-, poly
ADPRT

nicotonamide,
benzamide

inhibitor 0 • [29]

Signal
transduction
pathways

CaMKII KN-93, AIP,
NK-62

inhibitor X X 0 • • [4,7,21,143] X [290]

PKA Rp-CPT-cAMPS inhibitor X • [143] X [291,292]
(hyperalgesia
induced by i.th.
CGRP/subcutaneous
bee venom injury)

PKC Chelerythrine,
Gö 6983,
GF109203X

inhibitor X X X • • [4,7,21,143] X

PLC U73122 inhibitor X X • • [4,7,17] X [293]

IP3R 2-APB inhibitor X X • [4,17]

RyR Dantrolene,
ryanodine

inhibitor X X X • [7,21,108]

ERK PD98059 inhibitor X • [110] X [294]

JNK SP600125 inhibitor 0 • Same drugs prevent induction of LTP by
TNF-a in neuropathic rats

[111] X [295]

p38 MAPK SB203580 inhibitor 0 • [111] X [296,297]

Glial cells/
neuroimmune
mechanisms

Glial
metabolism

fluorocitrate inhibitor X • Deep dorsal horn. Under fluorocitrate, HFS
induces LTD. Also blocks induction of
long-lasting potentiation of presynaptic
electrical activity by LFS [32] (optical
imaging)

[114] X [298]

Microglia
metabolism

minocycline inhibitor X • Under minocycline, HFS induces LTD [113] X [299]

Ruschew
eyh

et
al.M

olecular
Pain

2011,7:20
http://w

w
w
.m

olecularpain.com
/content/7/1/20

Page
5
of

37



Table 2 Targets for prevention of LTP induction (Continued)

Microglia
SKF (Src-
family
kinases)

PP2, SU6656 inhibitor X • HFS activates SFKs selectivey in microglia.
Under SKF inhibitors, HFS induces LTD

[113] X [124]

GLT-1 DHK inhibitor X • Deep dorsal horn [128] X [300]

TNF a
receptor

TNF-a agonist 0 • [111] X [301]

TNF-a TNF-a
antibody

inhibitor • Optical imaging [123] X [302,303]

IL-6 IL-6 antibody inhibitor • after bulk loading of voltage-sensitive dye;
LTP induced by abmeATP X

[123] X [304] mechanical
hyperalgesia
induced by
fractalkine injection;
[297]

X, complete block or significant inhibition of LTP induction (left part of the table) or hyperalgesia induction (right part of the table).

0, no effect on LTP induction.

* Gives example of reports where spinal administration of drugs before induction of hyperalgesia prevented or significantly depressed or delayed the development of hyperalgesia in response to peripheral
inflammation, nerve injury or LTP-inducing conditioning stimulation. Where other stimuli were used to induce hyperalgesia, this is indicated. For a more complete review of drugs influencing hyperalgesia and
allodynia, see [2].
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primary afferent C-fibres induce LTP at the first noci-
ceptive synapse in vivo [3,4] and in vitro [4,17]. While
HFS may reflect the discharge of a subtype of C-fibres
at the beginning of noxious mechanical stimuli [33], LFS
is similar to discharge rates of C-fibres during peripheral
inflammation [34]. Indeed, LTP can also be induced by
peripheral inflammation (injection of formalin into the
hindpaw, [4]) and, after removal of descending inhibi-
tion, by noxious heat or mechanical stimulation of the
skin [13]. Mechanical nerve injury is a frequently used
animal model of neuropathic pain and also induces LTP
[11,13]. A subset of primary afferent C-fibres express
the transient receptor potential channel subfamily V
member 1 (TRPV1) that is activated by both noxious
heat and capsaicin and plays a major role in the induc-
tion of heat hyperalgesia [35]. Selective activation of
these fibres by injection of capsaicin into the hindpaw
has been shown to be sufficient for LTP induction [4],
making TRPV1 antagonists or other methods that target
the function of TRPV1-expressing C-fibres a potentially
attractive target for prevention or modification of LTP
at nociceptive spinal synapses. However, this has not
been tested directly.
LTP at the synapse between primary afferent C-fibres

and superficial dorsal horn neurons can also be induced
by manipulations not directly activating the input path-
way. In spinalized animals, prolonged burst stimulation
of primary afferent Aδ-fibres induces LTP of C-fibre-
evoked field potentials, possibly reflecting heterosynaptic
potentiation [36]. LTP can also be induced in the
absence of presynaptic activity by application of certain
drugs (Table 1). Of special interest may be the induction
of LTP by abrupt opioid withdrawal that may represent
a cellular mechanism of opioid-induced hyperalgesia
[21].

Modulation of spinal LTP in rodents by drugs and
counterirritation
Prevention of spinal LTP induction in rodents
Intracellular Ca2+ rise in the postsynaptic neuron is a
central step in the induction of many forms of LTP
[5,37], including LTP in spinal dorsal horn [4,17,21,38].
When spinal LTP is induced by HFS or LFS, the mas-
sive release of glutamate from nociceptive primary affer-
ents is thought to induce a postsynaptic depolarisation
(primarily via a-amino-3-hydroxy-5-methyl-4-isoxazole-
propionic acid [AMPA] receptors) strong enough to
remove the Mg2+ block from the N-methyl-D-aspartate
(NMDA) receptor. Ca2+ influx through the NMDA
receptor is one of the key signals that activates the
intracellular machinery involved in LTP induction
[2,27,39]. However, the postsynaptic Ca2+ rise achieved
by NMDA receptor activation alone seems to be insuffi-
cient to induce LTP, as several parallel pathways that

increase intracellular Ca2+ have been shown to be neces-
sary for LTP induction (e.g., Ca2+ influx through T-type
voltage-gated Ca2+ channels [VGCCs] and Ca2+ release
from intracellular stores, triggered by activation of NK1
receptors and metabotropic glutamate receptors of
group I [mGluRIs], see [3,4,7,17,38,40]).
Therefore, LTP induction by conditioning stimulation

can be interfered with at different stages: (1) Manipula-
tions that reduce basal synaptic transmission at the first
nociceptive synapse have the potential to prevent induc-
tion of LTP by indirectly preventing NMDA receptor
activation. This is likely the case for μ-opioid-receptor
antagonists (reduction of transmitter release and reduc-
tion of postsynaptic depolarization), AMPA receptor
antagonists and g-aminobutyric acid receptors of type A
(GABAAR) agonists/current enhancers (prevention of
postsynaptic depolarization) (2) Drugs that directly
interfere with NMDA receptor activation (e.g. NMDA
receptor antagonists, Xenon, possibly EphB receptor
antagonists) (3) Drugs that interfere with additional
sources of activity-dependent intracellular Ca2+ rise (e.g.
antagonists of T-type VGCCs, NK1 receptors or
mGluRIs) (4) Drugs that interfere with intracellular
pathways downstream from Ca2+ influx (see section on
signal transduction pathways). Targets for prevention of
LTP induction are summarized in Table 2, illustrated in
Figure 1 and are discussed below. Table 2 also shows
that the pharmacology of prevention of LTP induction
is equivalent to the pharmacology of the prevention of
hyperalgesia induction in animal models of inflamma-
tion and neuropathic pain.
Synaptic strength between primary afferent C-fibres

and superficial dorsal horn neurons can be modified
bidirectionally, with LTP or long-term depression (LTD)
being induced depending on modalities of stimulation
and on the stimulated pathway [36]. For cortical
synapses, it has been proposed that the quantitative
level of the activity-dependent rise in postsynaptic Ca2+

determines whether synaptic strength will increase or
decrease. LTP is believed to occur with higher Ca2+ ele-
vations that activate protein kinases while LTD would
occur at lower Ca2+ elevations that activate protein
phosphatases, possibly with a large “neutral” Ca2+ range
between both states, where neither LTP nor LTD is
induced [37,41]. In spinal cord, this has not been tested
directly. However, drugs that interfere with intracellular
Ca2+ levels, like mGluRI receptor antagonists, can con-
vert spinal LTP into LTD when applied during condi-
tioning stimulation [38], suggesting that Ca2+

dependence of LTP vs. LTD may be similar in spinal
cord and cortex.
In addition to conditioning stimulation, LTP between

primary afferent C-fibres and superficial dorsal horn
neurons can also be induced by abrupt opioid
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withdrawal [21]. It has been proposed that this novel
form of LTP is induced postsynaptically, sharing
mechanisms with stimulation-induced LTP, as it is abol-
ished by preventing postsynaptic Ca2+ rise and by block-
ing postsynaptic G-protein coupled receptors or
postsynaptic NMDA receptors [21]. The pre- vs. postsy-
naptic expression of opioid withdrawal LTP is currently
a matter of debate, see [42] and our eLetter commenting
on this paper available on the journal’s web site.
Glutamate receptors
The induction of nearly all forms of spinal LTP is
blocked by application of NMDA receptor antagonists
(Table 2). This makes Ca2+ influx through the NMDA
receptor and consequent activation of downstream Ca2+

dependent signal transduction one of the central
requirements for the induction of spinal LTP [2,27].
At normal resting potential levels, such as present

during baseline synaptic transmission, glutamate that

binds to the NMDA receptor may or may not induce
Ca2+ influx because, depending on its subunit composi-
tion [43], the NMDA receptor channel may be blocked
by Mg2+ ions [44]. During LFS or HFS, massive gluta-
mate release followed by strong activation of AMPA
receptors is thought to provide the postsynaptic depolar-
ization necessary to remove the Mg2+ block from the
NMDA receptor channel and enable LTP induction.
The role of AMPA receptors has not been tested
directly in superficial dorsal horn LTP, but induction of
long-lasting facilitation of action potential discharges in
WDR neurons is reduced by submaximal block of
AMPA receptors [30].
While most types of AMPA receptors are permeable

only for Na+, AMPA receptors lacking the GluR2 subu-
nit are in addition permeable for Ca2+ [45]. Ca2+-perme-
able AMPA receptors have been found on superficial
dorsal horn neurons, including NK1 receptor expressing

Figure 1 Targets for prevention of spinal LTP induction in rodents.
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projection neurons [46,47], making them potentially sui-
ted to play a prominent role in spinal LTP. However, it
is currently not known whether Ca2+ influx through Ca2
+-permeable AMPA receptors contributes to spinal LTP
under normal conditions. GluR2 knockout mice, where
presumably all AMPA receptors are permeable to Ca2+,
show enhanced spinal LTP that is independent of
NMDA receptors [48], demonstrating that under these
conditions, Ca2+ influx through AMPA receptors can
substitute for Ca2+ influx through NMDA receptors.
Intracellular Ca2+ rise may also be initiated by activa-

tion of metabotropic receptors, e.g. mGluRIs, which
mobilize intracellular Ca2+ from intracellular stores by
activation of ryanodine- and inositol-1,4,5-trisphosphate
(IP3) receptors via phospholipase C (PLC) [49]. Indeed,
induction of spinal LTP requires activation of mGluRIs
[38,40]. In contrast, inhibition of group II and III
mGluRs, that do not couple to the PLC/IP3 pathway
[50,51], does not affect spinal LTP [40]. mGluRIs are
also present on astrocytes [52], where they are thought
to be involved in long-lasting facilitation of electrical
activity in primary afferent terminals via the release of
nitric oxide (NO) [32].
Voltage-gated calcium channels (VGCCs)
The strong postsynaptic depolarization achieved during
HFS or LFS leads to activation of VGCCs that may thus
also contribute to the activity-dependent Ca2+ rise
necessary for LTP induction. VGCCs are present on
both primary afferent C-fibres and superficial dorsal
horn neurons [53,54], and can be classified according to
their activation threshold (high- or low-voltage gated
channels), their subunit composition and their pharma-
cology [55]. Low-threshold T-type VGCCs open below
action potential threshold [56] and their expression in
superficial dorsal horn neurons is associated with a
steep rise of intracellular Ca2+ during conditioning sti-
mulation that is necessary for induction of spinal LTP
[4,7,17].
The a2δ-subunit is an auxiliary subunit of high-

threshold VGCCs [57,58] that has recently become a
focus of interest as it is a target of gabapentin and preg-
abalin, drugs that are successfully used in the therapy of
neuropathic pain [59]. Gabapentin has little effect on
basal synaptic transmission or acute pain [60-64]. Con-
sistently, gabapentin does not affect LTP induction [65].
Results are different for actions of gabapentin on estab-
lished neuropathic or inflammatory pain and established
LTP (see below).
Neurokinin-1 receptors (NK1 receptors)
Repetitive stimulation of nociceptive primary afferents
such as during HFS or LFS releases substance P into the
dorsal horn [66], activating NK1 receptors located pri-
marily on projection neurons with cell bodies in lamina
I, III and IV [67,68]. Block of spinal NK1 receptors

attenuates the induction of thermal and mechanical
hyperalgesia [69]. This effect seems to rely on NK1
receptor expressing lamina I neurons because ablation
of these neurons reduces the expression of hyperalgesia
following nerve lesion or chronic inflammation [16,18].
Consistently, NK1 receptor antagonists block LTP
induction by HFS and LFS of primary afferent C-fibres
both in field potential recordings in vivo [3,7] and in
patch-clamp recordings from NK1 receptor expressing
lamina I projection neurons in vitro [4,17].
It has been proposed that activation of NK1 receptors

during HFS or LFS contributes to the intracellular Ca2+

elevation necessary for the induction of LTP by (1)
inducing Ca2+ release from IP3-sensitive intracellular
stores via activation of PLC and (2) by increasing Ca2+

influx through NMDA receptors via receptor phosphor-
ylation by PLC-activated protein kinase C (PKC) [7,17].
GABA and glycine receptors
GABA, acting on GABAA and GABAB receptors, and
glycine, acting on glycine receptors, are the main inhibi-
tory transmitters in spinal cord. Of the three receptor
types mentioned, only the GABAA receptor has been
studied in relation to spinal LTP, using application of
benzodiazepines [70] that enhance the action of GABA
at the GABAA receptor by increasing the frequency of
receptor channel openings [71]. Application of benzo-
diazepines prevents LTP induction [70]. As benzodiaze-
pines do not open the GABAA receptor channel in the
absence of GABA [71], this means that there is ongoing
or HFS-induced GABA release in spinal cord dorsal
horn that is not sufficient to block LTP induction on its
own but becomes sufficient when amplified by the
action of benzodiazepines. GABAA receptors are present
both on the central terminals of primary afferent C-
fibres, decreasing transmitter release, and on nociceptive
superficial dorsal horn neurons, inducing hyperpolariza-
tion and/or shunting excitatory currents [72]. It is cur-
rently not clear whether the block of LTP induction by
benzodiazepines is primarily due to reduced transmitter
release during conditioning stimulation or prevention of
the strong postsynaptic depolarization necessary for
removal of the Mg2+ block of the NMDA receptor chan-
nel and subsequent LTP induction.
Opioid receptors
Opioids are the gold standard for treatment of moderate
to severe pain, and spinal actions seem to have a promi-
nent role in their analgesic effect [73]. Of the three
major subtypes of opioid receptors, μ-, δ- and �-recep-
tors, μ-opioid receptors predominate in spinal dorsal
horn and are present on both primary afferent C-fibres
and excitatory superficial dorsal horn neurons [74,75].
�- and δ-opioid receptors have also been identified on
primary afferent fibres and/or superficial dorsal horn
neurons [76-78].
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Opioid receptors are mostly coupled to Gi/o proteins.
Activation leads to inhibition of voltage-gated Ca2+

channels, opening of G-protein coupled inwardly rectify-
ing K+-channels (GIRKs) and inhibition of adenylyl
cyclase [79]. These mechanisms decrease synaptic trans-
mission and neuronal excitability of spinal neurons by
both pre- and postsynaptic actions, i.e. by induction of
hyperpolarisation, by inhibition of transmitter release
from neuronal terminals and/or by interfering with
intracellular protein kinases and gene transcription [80].
Most of the opioids in clinical use target the μ-opioid

receptor. At the synapse between primary afferent C-
fibres and spinal dorsal horn neurons, μ-opioid receptor
agonists acutely inhibit synaptic transmission by a pre-
dominantly presynaptic mechanism involving inhibition
of N- and P/Q-type VGCCs [21,81,82]. As described
above, depression of basal synaptic transmission is able
to interfere with LTP induction by conditioning stimula-
tion. Indeed, μ-opioid receptor agonists block LTP
induction when administered prior to conditioning sti-
mulation both in vitro and in vivo [6,83]. Interestingly,
in vivo this effect is present only at medium doses but
not at high doses of i.v. fentanyl, possibly due to an acti-
vation of NMDA receptors by opioid receptor agonists
[84]. μ-opioid receptor agonists may activate NMDA
receptors either directly [85] or indirectly via activation
of PKC or cAMP-dependent protein kinase (PKA)
[86,87]. Although a strong depression of basal synaptic
transmission by reducing presynaptic transmitter release
should probably be sufficient to prevent LTP induction,
it has not been tested directly which of the above
described actions of μ-opioids are crucial in preventing
spinal LTP. The effect of application of δ- or �-opioid
receptor agonists during induction of spinal LTP has
not been studied so far.
Receptor systems targeted by descending pathways:
Adrenergic, dopaminergic and serotonin receptors
Spinal nociception is subject to descending control from
several brain regions, including midbrain periaqueductal
gray (PAG), the nucleus locus coeruleus, the nucleus
raphe magnus (NRM) and the rostral ventromedial
medulla (RVM). Descending control can have both inhi-
bitory and facilitatory effects on nociceptive spinal trans-
mission and critically influences the pain experience in
acute and chronic pain states [88]. The descending con-
trol systems exert their effects by releasing a variety of
neurotransmitters and/or neuromodulators, such as nor-
epinephrine, serotonin (5-hydroxytryptamine, 5-HT) and
dopamine [89].
Removing descending control in deeply anaesthetized

adult rats by spinalization leads to a potentiation of C-
fibre evoked field potentials by up to 250% of control
[36]. Prolonged burst stimulation of the sciatic nerve at
Aδ-fibre strength produces LTD of C-fibre-evoked field

potentials in intact rats but LTP in spinalized animals
[36]. Similarly, spinalization facilitates LTP induction by
natural noxious stimulation [13]. These results demon-
strate that the descending control system has an overall
tonic inhibitory effect on C-fibre-mediated synaptic
transmission that counteracts LTP induction. Consis-
tently, mimicking activation of descending inhibitory
pathways by spinal application of the a2-adrenergic
receptor agonist clonidine before HFS prevents LTP
induction [90]. The effects of 5-HT or dopamine ago-
nists on LTP induction have not been examined. Block
of D1/D5 dopamine receptors does not affect LTP
induction [91]. Block of the excitatory 5-HT3 receptor,
hypothesized to be involved in descending facilitatory
pathways, reduces the long-lasting increase in WDR
neuron action potential firing induced by HFS [31].
Anaesthetic gases
Deep surgical levels of anaesthesia with either urethane,
isoflurane or sevoflurane are insufficient to prevent LTP
induction of C-fibre-evoked field potentials following HFS
[6], LFS [4,7] or opioid withdrawal [21]in vivo. In contrast,
the noble gas xenon, which has not only anaesthetic but
also NMDA receptor blocking properties, prevents induc-
tion of LTP at C-fibre synapses in intact rats [92].
Neurotrophin receptors
Brain-derived neurotrophic factor (BDNF) is constitu-
tively synthesized in a subpopulation of primary afferent
C-fibres [93] and is released into the superficial layers of
the spinal dorsal horn along with substance P and gluta-
mate in an activity-dependent manner [94]. Its receptor
TrkB, a tyrosine kinase, had been found on both pri-
mary afferents and superficial dorsal horn neurons [95].
BDNF is not necessary for induction of LTP [12] but
has been reported to be involved in LTP maintenance
and can induce LTP in the absence of primary afferent
input (see Table 1 and below).
Transsynaptic Eph-ephrin interactions
The ephrins (ephrinA and B with subtypes) are mem-
brane-bound presynaptic proteins that bind to postsy-
naptic Eph receptor tyrosine kinases (EphA and EphB
receptors with subtypes), regulating dendritic spine for-
mation and controlling synaptic organization by interac-
tion with AMPA, NMDA and mGluR receptors [96-99].
Within the B subclass, which has been studied in spinal
cord, ligand-receptor binding is not subtype-specific (e.
g., ephrinB2 is able to activate the EphB1 receptor) [98].
EphrinB2 is present in small, nociceptive dorsal root

ganglion neurons, and EphB1 receptors have been
detected in superficial dorsal horn, suggesting that the
transsynaptic Eph-ephrin interaction may be involved in
spinal nociceptive processing [100]. Indeed, EphB-
ephrinB signalling is necessary for both the induction of
LTP by HFS and the induction of hyperalgesia in mod-
els of inflammatory and neuropathic pain [100-102]. It
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has been proposed that this is due to interactions
between EphB receptors and NMDA receptors. Acti-
vated EphB receptors associate with synaptic NMDA
receptors [96] and induce NMDA receptor phosphoryla-
tion, possibly via phosphorylation of the NR2B subunit
involving Src kinase activity, thereby increasing Ca2+

influx through the NMDA receptor [103,104]. Consis-
tently, administration of exogenous EphB receptor acti-
vators lowers the threshold for LTP induction by
electrical stimulation in an NMDA receptor dependent
manner [102].
Nitric oxide (NO) pathway
The gaseous molecule NO is a cell-permeant neuromo-
dulator that is synthesized on demand by the enzyme
nitric oxide synthase (NOS) that exists in different iso-
forms (neuronal, endothelial, inducible: nNOS, eNOS,
iNOS). NO-imaging has shown that NO is released into
the dorsal horn by repetitive stimulation of nociceptive
primary afferents such as during LFS [105]. Consistently,
LTP induction by HFS and LFS is blocked when NO
production is suppressed, when NO is prevented from
crossing the extracellular space, or when the primary
target of NO, soluble guanylyl cyclase (sGC), is inhibited
[4,14,29]. In contrast, activation of ADP-ribosyltrans-
ferases (ADPRTs), an alternative intracellular target of
NO, is not necessary for LTP induction [29]. As NOS is
very scarce both in lamina I projection neurons and in
primary afferents [106], NO seems to act neither as an
anterograde nor as a retrograde transmitter at the first
nociceptive synapse during LTP induction between pri-
mary afferent C-fibres and lamina I projection neurons.
It has been proposed that NO is produced in neighbor-
ing interneurons, glial cells or blood vessels, crosses the
extracellular space and acts in lamina I projection neu-
rons (most of which express sGC) and/or nociceptive
primary afferents (some of which also express sGC)
[4,32,106].
Intracellular signal transduction pathways
Signal transduction pathways involved in spinal LTP are
similar to those reported for hippocampal LTP [107].
Specifically, inhibitors of calcium/calmodulin-dependent
protein kinase II (CaMKII), PKA, PKC and PLC all have
been shown to prevent induction of spinal LTP (Table
2). PLC may induce Ca2+ release from intracellular
stores via IP3 receptors, providing part of the intracellu-
lar Ca2+ rise necessary for LTP induction [4,17]. Ca2+

release from intracellular stores via ryanodine receptors
(RyRs) has also been shown to be necessary for spinal
LTP induction [4,7,108].
Activation (phosphorylation) of mitogen-activated pro-

tein kinases (MAPKs) under different persistent pain
conditions is involved in the induction and maintenance
of pain hypersensitivity. In particular, nociceptive activ-
ity induces phosphorylation of spinal extracellular

signal-regulated kinase (ERK) via multiple neurotrans-
mitter receptors. Activated ERK, using different second
messenger pathways, regulates the activity of glutamate
receptors and potassium channels and induces gene
transcription [109], and is therefore positioned to parti-
cipate in both LTP induction and maintenance. Indeed,
inhibition of ERK phosphorylation prevents LTP induc-
tion by HFS. This is likely to rely on neuronal ERK
phosphorylation as HFS leads to a transient increase of
phosphorylated ERK followed by a lasting increase of
phosphorylated cAMP response element binding protein
(CREB) in ipsilateral spinal dorsal horn neurons, but not
in glial cells [110]. In contrast, block of c-Jun N-term-
inal kinase (JNK) and p38 MAPK does not prevent LTP
induction [111].
Less is presently known about the intracellular signal

transduction pathways required during induction of
opioid-withdrawal LTP. While CaMKII does not seem
to be necessary, block of PKC or RyRs has been shown
to prevent LTP induction by opioid withdrawal [21].
Glia cells
Both microglia and astrocytes have a role in the genera-
tion and maintenance of hyperalgesia following inflam-
mation or nerve injury [112]. Consistently, HFS or LFS
of the sciatic nerve induce activation of spinal glia cells
[15,113], and administration of an unspecific (fluoroci-
trate) or a microglia-specific glial metabolism inhibitor
(minocycline) prevents induction of spinal LTP by HFS.
At higher doses of these blockers, LTD is induced by
HFS instead of LTP [113,114], suggesting that spinal
glia have a role in the determination of the direction of
synaptic plasticity. Similarly, the long-lasting facilitation
of presynaptic excitation induced by LFS, as quantified
by optical imaging, is prevented by glial metabolism
inhibitors [32].
Microglia can be activated, e.g., by ATP that is

released by primary afferent fibres, interneurons or
astrocytes [115-117]. Activated microglia release proin-
flammatory cytokines, such as tumor necrosis factor a
(TNF-a) and interleukin 6 (IL-6), which increase excit-
ability of spinal neurons [118-121]. Spinal application of
ATP induces LTP which depends on activation of
microglia via P2X4 receptors and subsequent activation
of p38 MAPK in microglia [122]. Similarly, bath applica-
tion of the P2X receptor agonist abmeATP leads to
long-lasting facilitation of excitation in superficial dorsal
horn (quantified by optical imaging) which is prevented
by blocking glial metabolism or block of p38 MAPK or
by administration of antibodies against the pro-inflam-
matory cytokines TNF-a and IL-6 [123].
Recent studies have shown that peripheral nerve injury

induces activation of Src-family kinases (SFK) exclu-
sively in spinal dorsal horn microglia [124]. Similarly to
the effect of minocycline, blockers of SFKs not only
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prevent LTP induction following HFS, but instead lead
to induction of LTD, an effect that is not present during
simultaneous application of TNF-a [113]. Together,
these results show that activation of microglia is neces-
sary for the induction of HFS-induced LTP, and that sti-
mulation of microglia by ATP is sufficient for the
induction of spinal LTP. However, HFS-induced LTP
and ATP-induced LTP seem to use different signal
transduction pathways as ATP-induced LTP is blocked
by p38 MAPK inhibitors while HFS-induced LTP is not
[111,122]. In addition, spinal application of BDNF,
which induces LTP of C-fibre evoked field potentials,
activates microglia and up-regulates p- SFKs and p-p38
in microglia. Pre-treatment with minocycline, SFKs inhi-
bitors or p38 MAPK inhibitors prevents both microglial
activation and spinal LTP induced by BDNF [12].
Astrocytes are in close contact to neuronal synapses

where they actively regulate synaptic transmission, e.g.
by reuptake of glutamate from the synaptic cleft by the
glutamate transporter 1 (GLT-1) [125-127]. Inhibition of
GLT-1 prevents induction of spinal LTP following HFS
[128]. This effect could be mimicked by intrathecal
application of exogenous glutamate, suggesting that
accumulation of glutamate in the synaptic cleft impairs
LTP induction. Interestingly, this does not seem to be
due to glutamate excitotoxicity [128]. It has been sug-
gested that over-activation of NMDA receptors impairs
LTP [129]. Indeed, impaired hippocampal LTP induc-
tion in GLT1-/- mice could be overcome in the pre-
sence of low doses of NMDA receptor antagonists
[129]. Similarly, the induction of spinal LTP in the pre-
sence of fluorocitrate could be restored by application of
low concentrations of an NMDA receptor antagonist
[114].

Interference with spinal LTP consolidation and
modification of established spinal LTP in rodents
In the clinical context, patients often present with
already established hyperalgesia, e.g. in the form of
chronic pain. If LTP indeed contributes to certain forms
of chronic pain, then the question arises how established
LTP can be therapeutically modified. Reduction of
synaptic strength during established LTP may be differ-
entiated into transient ("symptomatic”) and permanent
("causal”) approaches. Symptomatic approaches will
temporarily suppress synaptic transmission at the poten-
tiated synapse but not affect the causal processes that
maintain LTP, so that synaptic strength will return to
elevated levels after wash-out of the drug. In contrast,
causal approaches will reverse the intracellular modifica-
tions that maintain LTP and thus permanently revert
(depotentiate) synaptic strength towards normal values.
In hippocampus, the maintenance of LTP induced by

electrical stimulation can be divided into two distinct

phases [107,130]. The early phase of LTP (E-LTP) sets
in immediately after LTP induction but gradually fades
away over the first few hours. It involves modification of
pre-existing proteins like phosphorylation of synaptic
AMPA receptors [131]. Consolidation of LTP requires
expression of the late phase of LTP (L-LTP), which
slowly develops during the hours after LTP induction
and relies on de novo protein synthesis and gene tran-
scription, e.g. resulting in the insertion of new AMPA
receptors in the subsynaptic membrane [132]. According
to the different mechanisms underlying the two phases
of LTP, they may be affected by different drugs. In the
rat spinal cord, the late, protein-synthesis-dependent
consolidation phase of LTP slowly develops during the
first few hours after stimulation, reaching its full expres-
sion between 3 and 6 hours after LTP induction [133].
Some drugs do not affect LTP induction but selectively
interfere with spinal LTP consolidation by inhibiting the
development of L-LTP when given before spinal LTP
induction (antagonists at D1/D5 dopamine receptors,
TrkB receptors, poly-ADRPTs, see Table 3). Other
drugs induce a slow decay of LTP when given very early
(15 min) but not later (30 min) after LTP induction
(inhibitors of PKA, PKC, ERK, see Table 3). Kinetics
and time course suggest that these drugs act by interfer-
ing with L-LTP development while leaving established
E-LTP unaffected.
Although the time course of the different phases of

LTP in humans is currently unknown, modification of
fully established L-LTP is presumably most important
for possible clinical applications. Thus, animal experi-
ments identifying drugs or interventions of possible
clinical interest for the causal treatment of established
LTP-associated hyperalgesia should be designed as fol-
lows: (1) induction of LTP by HFS, LFS, natural nox-
ious stimulation or opioid withdrawal, (2) application
of the drug during fully established L-LTP (i.e. at least
3 h, better 6 h after LTP induction [133]) and (3) if
LTP is depressed, true reversal should be differen-
tiated from prolonged drug action by application of
an antagonistic drug to ensure that the effect persists
after the drug action has been terminated. Alterna-
tively, recording should be continued for a time per-
iod ensuring complete washout of the drug. Few
studies have tested the effect of drugs or interventions
during established L-LTP (≥ 3 h after LTP induction,
see Table 3). Currently, only two drugs have been
identified that depress established L-LTP (diazepam
and clonidine), and only for diazepam, true reversal of
L-LTP has been corroborated by use of an antagonis-
tic drug.
Targets for modification of LTP during the mainte-

nance phase are summarized in Table 3, illustrated in
Figure 2 and are discussed below.
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Table 3 Targets for interference with LTP consolidation and modification of established LTP

Start of drug application

Target Substance
Action at
target HFS LFS

in
vivo

in
vitro

Before
LTP

induction

During
early
phase
(0-2 h)

During
late
phase
(≥ 3 h)

Effect on L-LTP
(unless stated
otherwise) Comments References

NMDAR NMDAR MK 801, ketamine antagonist • • • 0 [101,134]

VGCC a2δ-subunit Gabapentin • • • X/? (E-LTP/L-LTP) [65]

NK1R NK1R RP67580, 703,606 antagonist • • • 0 [3]

GABAAR GABAAR 3-APSA agonist • • • X/0
(E-LTP/L-LTP)

[70]

GABAAR Diazepam*,
midazolam

Current
amplifier

• • • • X Depression not reversed by
bicuculline

[70]

Opioid
receptors

μ-opioid
receptors

Morphine agonist • • • X/?
(E-LTP/L-LTP)

[65]

Descending
inhibition

a2-adrenergic
receptor

Clonidine agonist • • • • X Biphasic depression [90]

D1/D5
dopamine
receptor

SCH 23390 antagonist • • • X [91]

Anaesthetic
gases

Isoflurane • • • • 0 Drug present during entire
experiment

[4,6,7]

NO-pathway NOS L-NAME inhibitor • • • 0 Deep dorsal horn [29]

extracellular NO hemoglobin scavenger • • • 0 [29]

sGC ODQ inhibitor • • • 0 [29]

mono-, poly-
ADRPT

Benzamide inhibitor • • • X [29]

Adenosine
receptors

A1 receptor Cyclopentyladenosine agonist • • • X Superficial/deep dorsal horn. Drug
inhibits LTP at both A-fibre and
C-fibre synapses

[142]

Neurotrophins TrkB receptor K252a, TrkB- Fc Trk
inhibitor,
BNDF
scavenger

• • • • 0/X Blocks development of L-LTP in
response to LFS but not HFS

[140]

EphR-ephrin
signalling

EphB R EphB1-Fc antagonist • • • 0 [102]

EphB R EphrinB1-Fc agonist • • • 0 [102]

Signal
transduction
pathways

CaMKII KN-93, AIP, NK-62 inhibitor • • • • X/0 Drugs inhibit LTP when
administered at 60 min but not
at 3 h after LTP induction

[143]
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Table 3 Targets for interference with LTP consolidation and modification of established LTP (Continued)

PKA Rp-CPT- cAMPS inhibitor • • • X/0 Drugs inhibit LTP when
administered 15 min but not 30
min after LTP induction

[143]

PKC Chelerythrine, Gö
6983

inhibitor • • • X/0 [143]

MEK (ERK
phosphorylation)

PD 98059 inhibitor • • • X/0 [110]

Protein synthesis Anisomycin,
cycloheximide

inhibitor • • • X [133]

Counterirritation Prologed Aδ-
fibre burst stimulation

• • • X/0
(E-LTP/L-LTP)

[144]

• • • Potentiation [144]

Repeated Aδ-
fibre burst stimulation

• • • • • X/?
(E-LTP/L-LTP)

Cumulative depression [36]

* Experiments that fulfilled the following criteria: (1) induction of LTP by HFS or LFS or natural noxious stimulation, (2) application of the drug during established late-phase LTP depresses LTP and (3) depression of
LTP maintenance not terminated by application of an antagonistic drug (see text for explanation).

X, complete block or significant inhibition of LTP maintenance.

0, no effect on LTP maintenance.
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Glutamate receptors
Despite the prominent role of the NMDA receptor in
induction of most forms of spinal LTP, it does not seem
to be required during the maintenance phase of LTP.
Blockade of NMDA receptors with the non-competitive
NMDA receptor antagonist MK-801 30 min after LTP
induction in mice does not interfere with LTP mainte-
nance [101]. Similarly, systemic pre-treatment with S
(+)-ketamine effectively prevents LTP induction, but
does not affect established LTP when given 60 min after
conditioning stimulation [134].
VGCCs
The auxiliary VGCC subunit a2δ is a target of gaba-
pentin and pregabalin, drugs successfully used in the
therapy of neuropathic pain [59]. Their exact mechan-
isms of action remain unknown. Part of their action
may be presynaptic, possibly affecting VGCCs of the
N-type or P/Q-type on central terminals of C-fibres, as
gabapentin reduces the release of substance P and

CGRP from rat spinal cord slices after inflammation
[64]. In addition, systemic gabapentin has been shown
to activate descending noradrenergic systems, inducing
spinal noradrenaline release [63,135] that has the
potential to reduce synaptic transmission at nocicep-
tive spinal synapses both at presynaptic and postsynap-
tic sites [136]. Evidence is converging that gabapentin
has little effect on basal synaptic transmission or acute
pain but inhibits established neuropathic or inflamma-
tory pain [60-64]. Consistently, gabapentin depresses
established LTP (given 60 min after LTP induction)
but does not affect LTP induction [65]. As this study
used systemic application of gabapentin, it is not possi-
ble to decide if the observed effect was mediated by
local action the spinal cord level or by modulation of
descending pathways.
NK1 receptors
Block of NK1 receptors does not affect established LTP
[3]. Consistently, block of NK1 receptors does not affect

Figure 2 Targets for modification of established spinal LTP in rodents.
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established hyperalgesia [69]. This is in line with the
notion that substance P is released from primary affer-
ents during repetitive stimulation such as HFS, but not
at the low frequencies used for test stimulation (e.g., 0.1
Hz) [66,137].
GABAA receptors
While administration of a GABAA receptor agonist only
evokes a transient depression of LTP, benzodiazepines
applied early (30 min) or late (3 h) after LTP induction
completely or partially reverse LTP. This seems to be
due to true reversal rather than prolonged drug action,
as the depression persists after application of antagonists
at the benzodiazepine or GABA binding site of the
GABAA receptor [70]. It has been proposed that reversal
of LTP by benzodiazepines might be due to inhibition of
the cAMP/PKA and/or the NO pathways [70].
Opioid receptors
Morphine, a non-selective μ-opioid receptor agonist
with affinity to δ- and �-opioid receptors as well [138]
given intravenously leads to a strong and dose-depen-
dent reduction of C-fibre-evoked field potentials 60 min
after induction of LTP by HFS [65]. As μ-opioid recep-
tor agonists also depress baseline synaptic transmission
of C-fibre-evoked postsynaptic potentials [82], it is not
clear if LTP is reversed by morphine or if responses are
acutely depressed similarly to control responses.
Receptor systems targeted by descending pathways:
Adrenergic and dopaminergic receptors
Clonidine, applied at a dose that does not affect basal
synaptic transmission, partially depresses both develop-
ing and established L-LTP (tested 30 min and 3 h after
LTP induction, respectively). This action is mediated by
activation of a2-adrenergic receptors [90]. The depres-
sion is biphasic, with a fast phase lasting 3.5 hours and
a slow phase lasting till the end of the experiments at
up to 5 hours, and seems to be partially mediated by
activation of cholinergic interneurons and the NO-path-
way. It was not tested if depression was due to pro-
longed drug action or to long-lasting modification of
intracellular processes.
Block of dopamine receptors of the D1/D5 subtype

before spinal LTP induction selectively depresses L-LTP
development, while activation of these receptors induces
a slowly rising LTP that presumably corresponds to the
L-LTP induced by electrical stimulation [91].
Neurotrophins
BDNF is constitutively synthesized in a subpopulation of
unmyelinated primary afferents [93] and is released into
the superficial layers of the spinal dorsal horn along
with substance P and glutamate in an activity-dependent
manner [94]. Among other actions, BDNF increases pro-
tein synthesis both globally and locally [139] and is
therefore positioned to contribute to L-LTP. Indeed,
inhibition of the action of BDNF before LTP induction

selectively reduces the L-LTP (but not E-LTP) induced
by LFS [140]. In addition, upregulation of BDNF in
DRG neurons seems to be a prerequisite for the consoli-
dation of nerve injury-induced LTP, probably involving
a BDNF action on microglia [12].
Ephrins
Although intrathecal application of EphB-receptor
antagonists inhibits the maintenance of thermal and
mechanical hyperalgesia following inflammation or
nerve injury, it does not affect maintenance of spinal
LTP when applied 30 min after LTP induction [102].
NO pathway
In contrast to LTP induction, LTP maintenance is not
dependent on NO production, NO diffusion through
the extracellular space or sGC action. However, spinal
application of an inhibitor of poly-ADPRTs before
HFS stimulation interferes with LTP consolidation,
preventing L-LTP development [29]. Poly-ADPRTs are
primarily nuclear enzymes that attach multiple ADPri-
bose moieties to their substrates. They have been
associated with DNA repair but also with DNA tran-
scription [141], possibly explaining their involvement
in L-LTP.
Adenosine receptors
Recently, it has been shown [142] that block of spinal
adenosine receptor 1 (AR1) by cyclopentyladenosine
(CPA) completely depresses spinal LTP at C-fiber
synapses when applied 60 min after HFS. As CPA also
strongly depresses baseline C-fibre evoked responses, it
is not clear if LTP is reversed or if responses are acutely
depressed similarly to control responses.
The same study reports that HFS at C-fibre intensity

also induces LTP at spinal Ab-fibre synapses. Ab-fibre
LTP is depressed by CPA applied 60 min after HFS. As
basal Ab-fibre responses are only marginally depressed
by CPA, this seems to be due to a specific action of
CPA on the potentiated Ab-fibre response. Further
characterization of the origin of the Ab-fibre evoked
field potential (e.g. nociceptive or non-nociceptive spinal
neurons) will be necessary before evaluating any role of
Ab-fibre LTP as a potential mechanism underlying
hyperaesthesia or allodynia.
Intracellular signal transduction pathways
Inhibition of PKA, PKC or ERK phosphorylation induces
a slow decay of spinal LTP when administered during
the first 15 min after induction but not when adminis-
tered at 30 min [110,143]. Kinetics and time course sug-
gest that these drugs interfere with L-LTP development.
Inhibition of CaMKII still led to a slow decay of LTP
when administered at 60 min after LTP induction [143],
suggesting that L-LTP development can also be pre-
vented at this later time point. However, inhibition of
CaMKII does not reverse established L-LTP at 3 h after
LTP induction.
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Signal transduction pathways have also been investi-
gated in models of pharmacologically induced LTP that
may selectively mimic the L-LTP component of HFS-/
LFS-induced LTP. Because of their similarity to L-LTP,
results are presented here rather than in the LTP induc-
tion section. Spinal application of BDNF selectively
induces a slowly rising, protein-synthesis-dependent
LTP that shares features with L-LTP induced by electri-
cal stimulation [140]. However, the pharmacology of the
two forms of LTP only partially overlaps. Both BDNF-
induced LTP and HFS-induced LTP are prevented by
ERK inhibitors and not affected by JNK inhibitors
[111,140]. However, inhibiting p38 MAPK prevents
BDNF-induced LTP but not HFS-induced LTP, also not
at time points after LTP induction where an action on
L-LTP should be clearly evident [111,140]. Similarly,
application of TNF-a induces a slowly rising LTP in the
spinal cords of neuropathic, but not normal animals.
Development of this LTP is prevented by inhibition of
NF-�B, p38 MAPK and JNK.
Counterirritation
LTP and LTD have been suggested to partially rely on
opposite cellular mechanisms, e.g. the phosphorylation
vs. dephosphorylation of target proteins like CaMKII
[41]. Therefore, manipulations that induce LTD at
spinal nociceptive synapses may be able to reverse estab-
lished E-LTP (but not necessarily L-LTP) by reversing
LTP-related phosphorylation. Indeed, prolonged burst
stimulation of primary afferent Aδ-fibres, that induces
LTD of C-fibre evoked field potentials, partially depo-
tentiates LTP induced by HFS of primary afferent C-
fibres when applied early (≤1 h) after LTP induction
[36,144]. However, a single prolonged Aδ-fibre burst sti-
mulation does not seem to interfere with the develop-
ment of L-LTP, as the depotentiation lasts for less than
two hours [144]. A single prolonged Aδ-fibre burst sti-
mulation also does not reverse established L-LTP, but
rather induces additional potentiation when given late (3
h) after LTP induction [144]. The magnitude of depo-
tentiation cumulates over repeated sessions of Aδ-fibre
stimulation, but is it not clear if L-LTP is affected under
these conditions [36]. Stimulation of non-nociceptive
Ab-fibres induces neither LTD nor depotentiation of
LTP [36].

Translational aspects of LTP in nociceptive
pathways
Spinal LTP induced by noxious stimulation
In rodents, LTP in nociceptive spinal pathways can be
induced by noxious stimulation. This has led to the
notion that human pain following intense noxious sti-
mulation, e.g. acute postoperative pain or chronic pain
developing after an initial strongly painful event, may in
part be due to LTP in spinal nociceptive pathways.

Clinical pain manifests as a variable combination of
spontaneous pain, hyperalgesia and allodynia (Footnote:
according to the new definition of allodynia proposed by
the IASP task force in 2008, only pain induced by sti-
muli not capable of activating nociceptors is classified as
allodynia. At present, brush-induced allodynia, that has
been shown to rely on transmission via primary afferent
Ab-fibres [145], is the only established example of allo-
dynia according to this new definition). In humans,
intense noxious stimulation or tissue injury typically
evoke thermal and mechanical hyperalgesia within the
stimulated/injured region (primary hyperalgesia) and
mechanical hyperalgesia and brush-induced allodynia
within a larger surrounding region of non-injured skin
(secondary hyperalgesia). While primary hyperalgesia
reflects sensitization of nociceptive primary afferents
and also includes central mechanisms, secondary hyper-
algesia is thought to selectively rely on central (spinal
and/or supraspinal) mechanisms [2,146]. In chronic
pain, spread of hyperalgesia to sites distant from the
initial site of injury or even affecting the whole body,
manifesting as a general elevation of pain sensitivity,
may occur [26,147-150].
Before discussing the possible implications of injury-

induced LTP for human experimental and clinical pain,
it is important to determine which of the above mani-
festations of pain may be due to or enhanced by spinal
LTP. LTP at synapses between nociceptive primary
afferent C-fibres and superficial spinal dorsal horn neu-
rons amplifies nociceptive signals. Therefore, LTP can
account for hyperalgesia and possibly for small reduc-
tions in nociceptive thresholds and increases in size of
hyperalgesic area. Hyperalgesia to pinprick stimuli is a
frequent finding in human experimental or clinical
hyperalgesia. Under normal conditions, pinprick stimuli
are thought to be conducted by Aδ-fibres [151]. It is
presently not known if spinal LTP also affects Aδ-fibre
mediated synaptic transmission. However, recent work
shows that pinprick hyperalgesia after inflammatory or
nerve injury can be mediated by a subclass of C-fibres
[152], suggesting that pinprick hyperalgesia might also
relay on spinal LTP at C-fibre synapses. Brush-induced
allodynia is thought to rely on input via primary afferent
non-nociceptive Ab-fibres [145]. Whether maintenance
or modulation of allodynia outside the stimulated or
damaged area is dependent on C-fibre sensitization
remains controversial [153-155]. Therefore, the LTP at
spinal C-fibre synapses described in the present review
is unlikely to solely account for the origin of brush allo-
dynia, although it might contribute to its modulation or
maintenance. Although LTP at C-fibre synapses cannot
induce spontaneous pain, it may exacerbate spontaneous
pain in the region of an injury. Spontaneous pain
appears as the result of spontaneous activity in primary
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nociceptive afferents or central nociceptive neurons.
Spontaneous activity in primary afferents, e.g. resulting
from peripheral sensitization or from ectopic activity
[1], may be amplified in the spinal cord if LTP is pre-
sent, leading to enhanced pain intensity.
LTP has a homosynaptic component, expressed at the

same synapse that was activated by the conditioning sti-
mulation. Homosynaptic spinal LTP may contribute to
primary, but not to secondary hyperalgesia. However,
synaptic plasticity may in addition be heterosynaptic, i.e.
spread to neighboring synapses that have not been
directly affected by the conditioning stimulation
[156-158]. Studies investigating spinal LTP in rodents
typically use supramaximal stimulation of the whole
nerve trunk (sciatic nerve in vivo, dorsal root in vitro),
presumably activating all intact fibres and consequently
reaching all functional synapses between these fibres
and second order neurons. Therefore, it is currently not
possible to conclude whether this type of LTP is purely
homosynaptic or also includes heterosynaptic
components.
However, there is some direct evidence that heterosy-

naptic LTP occurs in spinal cord. When descending
inhibition is removed, conditioning stimulation of Aδ-
fibres induces LTP of C-fibre-evoked field potentials
[36]. In addition, HFS of the tibial nerve or injury of the
gastrocnemius/soleus motor nerve induces LTP of spinal
field potentials evoked by stimulation of C-fibres in the
sural nerve [12].
Heterosynaptic LTP may rely on various mechanisms.

One possibility is that increased intracellular Ca2+ and
second messengers spread intracellularly to neighboring
nociceptive synapses within the same neuron and induce
LTP at these synapses. In addition, several neuromodu-
lators, e.g. ATP and BDNF, have been shown to induce
LTP in the absence of conditioning stimulation of the
input pathway [12,122]. Intense noxious stimulation is
known to release BDNF and ATP into the spinal cord
[94,159]. Diffusion of these substances through the
extracellular space may induce heterosynaptic LTP at
synapses and neurons not directly activated by the
injury or conditioning stimulation and thus contribute
to secondary hyperalgesia. In fact, heterotopic LTP has
been shown to rely on release of BDNF in spinal cord
[12]. It is not known how far these substances can dif-
fuse through the spinal cord. At least, diffusion within
the same segment to affect synapses in the termination
territory of a neighbouring nerve is possible in rodents
[12]. In contrast, diffusion within the spinal cord tissue
to distant segments or affecting synaptic transmission in
the entire spinal cord seems improbable. On the other
hand, more widespread effects could result if sufficient
concentrations of these substances reached the cere-
brospinal fluid. Whether LTP induced by an initial

painful event can account for the spread of hyperalgesia
to distant sites of the body or for the generalized hyper-
algesia typical for chronic pain [147,149,160-163] is pre-
sently not known. Therefore, this manifestation of
clinical pain will not be discussed in the present paper.

Spinal LTP induced by opioid withdrawal
It has recently been discovered that in rodents, LTP in
nociceptive spinal pathways can also be induced by
abrupt withdrawal from opioids [21]. It has therefore
been hypothesized that LTP may also contribute to the
clinically important phenomenon of hyperalgesia follow-
ing opioid withdrawal [21,22,42]. Although this has not
been demonstrated directly, opioid-withdrawal LTP
would be expected to affect nociceptive synapses
throughout all spinal segments. Although it seems likely
that opioid-withdrawal LTP can also lead to exacerba-
tion of preexisting hyperalgesia or spontaneous pain,
this has not been directly studied so far.

Section conclusions
In conclusion, spinal LTP induced by an initial injury or
noxious input may contribute to both primary and sec-
ondary hyperalgesia. LTP may also contribute to exacer-
bation of spontaneous pain. However, LTP induced by
an initial painful event cannot explain brush allodynia.
LTP induced by abrupt opioid withdrawal is proposed
to lead to generalized hyperalgesia, possibly also includ-
ing exacerbation of preexisting hyperalgesia.
It must be emphasized that although the above

described sensory phenomena are compatible with
spinal LTP, they may also be explained by other
mechanisms. This is especially the case in primary
hyperalgesia, where a substantial part of the hyperalgesia
has been demonstrated to rely on sensitization of pri-
mary afferents [146]. The presence of secondary hyper-
algesia is not in itself proof of the existence of LTP (i.e.
altered synaptic strength), as secondary hyperalgesia can
- and has - also been explained by changes in neuronal
excitability (e.g. changes in neuronal membrane excit-
ability) as well as changes in segmental or descendng
inhibitory control [1,2,27,88,112,164-167]. Definitive
proof of the existence of LTP depends on the direct
measurement of synaptic strength, which is currently
not feasible in humans. Therefore, we will, for the time
being, have to accept that evidence for the existence of
LTP in human pain pathways will remain indirect and
circumstantial.
The following sections contain a more detailed descrip-

tion of those manifestations of human clinical and
experimental pain that may principally be due to or exa-
cerbated by spinal LTP, and compares their pharmacol-
ogy to the known pharmacology of LTP in rodents. As
primary hyperalgesia is in most cases accompanied by
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sensitization of nociceptive nerve endings, we will focus
on secondary hyperalgesia (i.e. mechanical hyperalgesia
in unstimulated or undamaged tissues) because this, at
least, can safely be assumed to be due to central mechan-
isms [146,168]. In order to provide relevance to the clini-
cal situation, we will also mention the impact of
secondary hyperalgesia induction - or its modulation - on
clinical pain measures. Typical measures of clinical pain
outcome are pain scores, particularly on movement, and
analgesia consumption, particularly in the acute or post-
operative context. However, it must be emphasized that
such clinical measures reflecting subjective pain experi-
ence are regularly found to be only weakly correlated to
alterations in pain processing as quantified by various
forms of formal sensory testing [161,162,169,170].

Human volunteer and clinical models of
hyperalgesia and LTP in nociceptive pathways
Human volunteer models (Table 4)
Electrical HFS, a specific human volunteer model of
stimulus-induced LTP
Based on the observation that HFS of C-fibres is able to
induce spinal LTP in in vitro and in vivo animal models
[3,171], Klein et al. applied similar patterns of electrical
C-fibre HFS transcutaneously via a special punctuate
ring electrode in human volunteers [19]. Using psycho-
physical testing, they were able to demonstrate primary
and secondary hyperalgesia. The homotopic perceptual
correlate was hyperalgesia to electrical stimulation of C-
fibres in the conditioned area up to at least three hours

after the end of conditioning stimulation, while the het-
erotopic perceptual correlates consisted of hyperalgesia
to pin-prick stimulation (presumably mediated by Aδ-
and/or C-fibres [151,152]) and allodynia to brushing
(presumably mediated by Ab-fibres [145]), both in the
area adjacent to conditioning stimulation, and again
lasting at least three hours.
These results have been confirmed and expanded in

subsequent psychophysical studies by this group
[25,172-174] which are summarised in Table 5. These
studies further demonstrated that HFS produces a left-
ward shift in the stimulus-response curve for heterotopic
pinprick stimulation, that higher HFS intensities result in
greater mechanical pinprick hyperalgesia, and that the
duration of heterosynaptic pinprick hyperalgesia has a
mean half-life of 3.3 hours and disappears after a mean of
25.4 hours. A study by another group has recently con-
firmed these results, further demonstrating that HFS-
induced changes in heterotopic processing are also
reflected in altered evoked somatosensory potentials,
including N1-P2 peak-to-peak and P300 amplitudes
[175].
Thermal hyperalgesia at the stimulation/injury site is a

typical feature of primary hyperalgesia and has been
demonstrated to be largely due to sensitization of pri-
mary afferents [146]. The complete absence of thermal
hyperalgesia within the conditioned area in the human
HFS model therefore suggests that the HFS paradigm
does not produce appreciable peripheral sensitisation.
The quantitative sensory testing profiles showed

Table 4 Methods of experimentally inducing secondary hyperalgesia possibly involving LTP in human volunteers

Type of
stimulation

Protocol Comments References

Electrical nerve
stimulation: C-
fibres

HFS 100 Hz for 1 sec (pulse
width, 2 ms), repeated five
times at 10 sec intervals

Stimulation protocol and stimulated fibre type
equivalent to rodent HFS paradigms inducing
LTP

[19,25,173-175]

Ongoing
IFS

intracutaneous continuous
electrical skin stimulation
at 5 HZ (pulse width, 0.5
ms)

[176,188,189,227,231,232,254,259,261,262]

Natural noxious
stimulation

Skin incision without local anaesthetic [178]

Chemical injury e.g. capsaicin, formalin; with or without thermal
rekindling

For review[146,168]

Thermal injury e.g. heat burn, sunburn/UV For review [179,180]

Pharmacological
stimulation

Opioid withdrawal
(remifentanil) during
ongoing IFS or after
capsaicin injection

increase in hyperalgesia and allodynia induced
by transdermal electrical stimulation or
intradermal capsaicin injection on stopping
opioid infusion

[188-190]

Opioid withdrawal
(morphine and
hydromorphone)

acute opioid withdrawal (naloxone) in
volunteers made tolerant to opioids

[187]

HFS, high frequency stimulation.

IFS, intermediate frequency stimulation.
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hyperalgesia to the same types of stimuli inside and out-
side the HFS-conditioned areas, with the magnitude of
hyperalgesia being 30% less in the surrounding area than
in the stimulated area, but with highly correlated magni-
tudes between both areas. These results suggest that
homo- as well as heterotopic amplification of central (e.g.
spinal) nociceptive responses results from the HFS stimu-
lation paradigm in intact human subjects, compatible
with spinal LTP induction [174]. The time course of the
sensory phenomena demonstrated in the human HFS
model corresponds to that of early LTP in animal models
involving mainly post-translational mechanisms [25].
Other human volunteer models of stimulus-induced
secondary hyperalgesia
Ongoing transdermal electrical stimulation at a high
current density (5 Hz, 50 mA) to recruit “sleeping”
mechano-insensitive class C-nociceptors has also been
used to induce large and stable areas of pinprick sec-
ondary hyperalgesia and ongoing pain in human volun-
teers [176]. These “sleeping” nociceptors are considered
to be the same ones involved in capsaicin-induced pain
and secondary hyperalgesia [177]. The ongoing pain and
secondary hyperalgesia caused by their recruitment has
been shown to be stable for at least two hours, making
this model particularly suited to the study of secondary
hyperalgesia and its therapeutic manipulation.
Using a model of skin incision in human volunteers

and pre/post-traumatic local anaesthetic injections,
Kawamata et al. showed that the peri-incisional hyperal-
gesia to punctuate mechanical stimuli, once developed,
is more or less independent of peripheral nociceptive
input from the incision, demonstrating the central (e.g.
spinal) origin of this form of hyperalgesia [178]. The
time course of the secondary hyperalgesia in this model
is comparable to that resulting from cutaneous HFS,
reaching its maximum 30-60 min after incision and last-
ing at least 6 hours before returning to baseline
[25,178]. Similar findings have been reported for thermal
and for chemical injury (e.g. by capsaicin or formalin)
(for review see [146,168,179,180]). In all these cases,
areas of secondary punctuate mechanical hyperalgesia

are present surrounding stimulated/damaged tissue, with
characteristics consistent with spinal sensitisation, e.g.
due to LTP induction.
Opioid-induced hyperalgesia in human volunteers
Abrupt withdrawal of opioids has recently been shown to
induce spinal LTP in an in vivo rat model [21]. Such LTP
could be expected to manifest as generalised hyperalgesia
or possibly also as increases in pre-existing secondary
hyperalgesia. That opioids can paradoxically induce
hyperalgesia under a variety of circumstances, including
precipitate withdrawal, has been increasingly recognised
in animal studies over the last decade [181-186]. This
phenomenon has now also been documented in human
volunteer models, either by demonstrating generalised
hyperalgesia (e.g. using the cold pressor task) after acute
opioid withdrawal (via naloxone) in subjects previously
made opioid-tolerant [187], or by demonstrating that
acute withdrawal of an opioid (remifentanil) infusion
increases the area of cutaneous secondary pinprick
hyperalgesia previously induced by either electrical trans-
dermal stimulation [188,189] or capsaicin injection [190].

Human patient models
Stimulus-induced secondary hyperalgesia after surgery in
patients
General anaesthesia without additional analgesia is not
sufficient to protect the spinal cord intraoperatively
from the strong noxious input accompanying surgery
[6,7]. Thus such general anaesthesia will not prevent the
induction of LTP in the spinal nociceptive pathways, a
process likely to increase acute postoperative pain. Con-
sistently, secondary hyperalgesia has been demonstrated
to be present peri-incisionally in human patients after
surgery using a variety of psychophysical testing techni-
ques. Thus punctuate secondary hyperalgesia has been
demonstrated after a variety of surgical procedures by a
number of groups [160,161,191,192], who have demon-
strated this hyperalgesia to persist at least 7 days after
surgery. Other groups have confirmed the presence of
such secondary peri-incisional hyperalgesia using either
electrical stimulation or pressure algometry with a simi-
lar time course [163,169,193,194].
Stimulus-induced secondary hyperalgesia in chronic pain
patients
The development of chronic pain after human surgery is
associated with the persistence and spread of secondary
hyperalgesia, as now demonstrated by a number of
human clinical studies [160,161,163,192]. While LTP
can be postulated to at least partially explain the persis-
tent secondary hyperalgesia in this context, it presently
does not explain the delayed spreading, generalizing
hyperalgesia, as discussed above.
Hyperalgesia to mechanical and electrical psychophysi-

cal testing is also a feature of a wide variety of

Table 5 Effects of C-fibre HFS on pain perception inside
and outside the conditioned skin area

Conditioned area
(primary hyperalgesia)

Unconditioned area
(secondary hyperalgesia)

Thermal
hyperalgesia

no no

Electrical
hyperalgesia

yes yes

Pinprick
hyperalgesia

yes yes

Blunt pressure
hyperalgesia

yes yes

Brush allodynia yes yes
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established chronic pain conditions, including low back
pain [150,195], fibromyalgia [196-199], rheumatoid
arthritis [200], osteoarthritis [201], chronic widespread
pain [202], irritable bowel syndrome [203-205], pancrea-
titis [148,206,207], gallstones [208] and headache [209].
Again, both secondary and spreading hyperalgesia are
found in this context, with LTP being a possible under-
lying mechanism for secondary hyperalgesia, but with a
presently unknown role in spreading hyperalgesia. It
should be emphasized that differentiating secondary
hyperalgesia from spreading hyperalgesia is frequently
difficult in chronic pain patients.
Many chronic pain patients have an element of neuro-

pathic pain due to peripheral nerve damage [210]. Nerve
damage will amplify nociceptive input as well as provid-
ing spontaneous nociceptive input, with the resultant
intense and ongoing nociceptive barrage to the spinal
cord being similar to LTP-inducing conditioning stimu-
lation [211]. Thus the hyperalgesia associated with nerve
damage in chronic pain patients may partially reflect
LTP in spinal nociceptive pathways.
Opioid-induced hyperalgesia in patients
The phenomenon of opioid-induced hyperalgesia is
increasingly recognised in patients (for review see [22]).
Thus Joly et al. demonstrated larger postoperative areas
of secondary peri-incisional hyperalgesia in patients
undergoing major abdominal surgery receiving high-dose
remifentanil infusion intraoperatively as compared to
low-dose remifentanil [212]. It should be noted that these
patients all received a loading dose of morphine before
end of surgery (and thus before end of remifentanil infu-
sion), followed by further postoperative morphine titra-
tion for pain, making the situation not exactly
comparable with the opioid withdrawal model for LTP in
rodents [21]. The described increases in hyperalgesia
were accompanied by poorer postoperative analgesic
response to opioids, a finding supported in other studies
of intraoperative opioid supplementation [22]. General-
ised reductions in pain thresholds and tolerance have
further been documented in drug addicts on methadone
maintenance [213] and even in chronic low back pain
patients after one month on opioid treatment [214]. In
rodents, spinal LTP has been demonstrated upon opioid
withdrawal [21]. It is presently not known if prolonged
exposition to opioids also induces LTP in spinal nocicep-
tive pathways. In addition, other mechanisms such as
reduced descending inhibition or enhanced descending
facilitation also likely play a role for opioid-associated
hyperalgesia [215-217].

Pharmacology of human hyperalgesia: Prevention
of human hyperalgesia induction
In animal models, a variety of interventions have been
found to prevent LTP induction. These can be divided

into four basic categories, discussed in detail above,
namely interventions: 1) reducing basal synaptic trans-
mission at the first nociceptive synapse; 2) directly inter-
fering with NMDA receptor activation; 3) interfering
with additional sources of activity-dependent intracellu-
lar Ca2+ rise, and 4) interfering with intracellular path-
ways downstream from Ca2+ influx. Predominantly
interventions in the first three categories have been
investigated in humans, this restriction is mainly due to
the limited availability of appropriate substances
approved for human use.
Conclusions about possible interference with LTP

induction can most convincingly be drawn from studies
of secondary hyperalgesia in the context of human
volunteer studies, e.g. cutaneous electrical high fre-
quency stimulation. Some information may also be
obtained from effects on early postoperative hyperalgesia
in patients. However, it should be noted that in most
cases the duration of the surgical intervention means
that the period under investigation will also include the
early phase of LTP - and may even include the later
consolidation phase of LTP. Thus for the purposes of
this review, discussion of prevention of LTP induction
in the clinical human context will of necessity include
the consolidation phase of LTP. A summary of interven-
tions interfering with LTP induction (and possibly early
consolidation phase) is provided in Table 6.

Human volunteer models
Prevention of stimulus-induced secondary hyperalgesia
Opioid receptor agonists Application of systemic
opioids is one of the classic approaches to achieve
reduced synaptic transmission at the first nociceptive
synapse, and has been demonstrated to prevent or
reduce LTP induction in animal models (Table 2). Using
a tailored infusion of alfentanil to produce plasma con-
centrations of 75 ng ml-1 before capsaicin injection in a
human volunteer model, Wallace et al. demonstrated
reductions in capsaicin-induced stroking hyperalgesia
(or allodynia) and in ongoing pain [218], with similar
results being obtained for alfentanil by other researchers
[219]. Similarly, Wang et al. showed that, in comparison
to placebo, the area of secondary hyperalgesia is reduced
by about 24% at 240 min post capsaicin by 10 mg of
intravenous morphine applied 25 min prior to capsaicin
[220]. Other authors have achieved comparable results
for morphine [221], hydromorphone and remifentanil
[222,223] using the heat/capsaicin sensitization model.
Using the burn injury model, Warncke et al. also
demonstrated significant reductions in secondary hyper-
algesia using a morphine infusion started pre-lesionally
[224]. It must, however, be said that it is difficult to dis-
tinguish between antihyperalgesia and analgesia in these
circumstances.

Ruscheweyh et al. Molecular Pain 2011, 7:20
http://www.molecularpain.com/content/7/1/20

Page 21 of 37



Local anaesthesia and block of fast Na+ channels
Another way of reducing nociceptive input is by local
anaesthesia to the damaged tissues involved. In an inci-
sional model in human volunteers, Kawamata et al.
demonstrated that local anaesthesia administered before
skin incision inhibited the development of secondary

hyperalgesia, while post-incisional block did not [178].
Similar results have been found regarding the secondary
hyperalgesia surrounding intradermal capsaicin injection
[168]. However, systemic application of lamotrigine or
4030W92, thought to provide a use-dependent block of
fast Na+ channels, including those on peripheral nerve

Table 6 Targets for prevention of secondary hyperalgesia induction in humans

Target Substance Action at
target

Volunteer
model
effect

Volunteer
model
used

Clinical
effect

Clinical context References
volunteers

References
clinical

Stimulus-induced hyperalgesia

Opioid
receptors

alfentanil agonist X capsaicin n/a n/a [218,219]

fentanyl agonist n/a n/a X tested 5 days after back surgery – [169,193]

remifentanil agonist X heat/
capsaicin

n/a n/a [222]

morphine agonist X capsaicin
heat/
capsaicin
burn

X tested 24 h after hysterectomy [220,221,224] [233]

hydromorphone agonist X heat/
capsaicin

n/a n/a [223]

Locoregional
anaesthesia

epidural
anaesthesia

multiple n/a n/a X tested 3 days after colon
surgery

– [161]

lidocaine Na+-channel
antagonist

X skin incision
capsaicin

n/a n/a [168,178]

Na+

channels,
systemic

lamotrigine antagonist 0 capsaicin n/a n/a [225]

4030W92 antagonist 0 capsaicin n/a n/a [225]

NK1R
Descending
inhibition

aprepitant antagonist 0 transdermal
electric

n/a n/a [227]

desipramine noradrenaline/
5-HT reuptake
inhibitor

0 capsaicin n/a n/a [226]

NMDAR ketamine antagonist X HFS/LTP
capsaicin
burn

X tested 7 days after renal
surgery, 3 days after colon
surgery

[20,224,252] [160,191]

VGCC pregabalin modulation at
a2δ-subunit

X transdermal
electric

n/a n/a [227]

gabapentin modulation at
a2δ-subunit

X/0 transdermal
electric,
capsaicin

n/a n/a [228-230]

Opioid-induced hyperalgesia

General
anaesthesia

propofol 0 transdermal
electric/RW

n/a n/a [232]

a2-
adrenergic
receptors

clonidine agonist 0 transdermal
electric/RW

n/a n/a [189]

COX-2 parecoxib antagonist 0 transdermal
electric/RW

n/a n/a [231]

NMDAR ketamine antagonist X transdermal
electric/RW

X tested 48 hours after major
abdominal surgery with high-
dose remifentanil infusion

[189] [212]

X, complete block or significant inhibition of secondary hyperalgesia induction.

0, no effect on secondary hyperalgesia induction.

RW = remifentanil withdrawal.

n/a = not available.
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fibres, has not been shown to inhibit secondary hyperal-
gesia development when given prior to intradermal cap-
saicin [225].
NMDA receptor antagonists LTP induction has been
demonstrated to be dependent on NMDA receptor acti-
vation in animal models. The effects of ketamine, a non-
specific NMDA receptor antagonist, have been studied
in the previously presented specific human volunteer
model of LTP induction via electrical cutaneous HFS
[20]. The study demonstrated that low doses of keta-
mine (0.25 mg kg-1) given prior to HFS were able to
prevent development of hyperalgesia to electrical stimu-
lation within the HFS area, but not pinprick hyperalgesia
or tactile allodynia in the area adjacent to HFS. The
authors concluded that homotopic hyperalgesia due to
HFS is sensitive to NMDA receptor blockade, and
represents the human equivalent of the “classic” form of
LTP seen in animal models. However, the heterotopic
secondary hyperalgesia is not NMDA receptor sensitive,
and may thus be the correlate of NMDA receptor inde-
pendent forms of LTP and/or other central mechanisms
of pain amplification. In this context, it should be noted
that ketamine is a “dirty” drug, with additional interac-
tions with non-NMDA, acetylcholine (nicotinic and
muscarinic), serotonin and opioid-receptors, as well as
Na+- and Ca2+-channels. However, at the low concentra-
tions used by Klein et al. ketamine may be considered
relatively selective for the NMDA receptor.
In contrast, ketamine has been shown to reduce sec-

ondary hyperalgesia in other human volunteer models.
Ketamine has been shown to reduce the area of second-
ary mechanical hyperalgesia compared to placebo using
both intradermal capsaicin and burn injury models
[218,224,226]. Ongoing pain from the capsaicin injection
was reduced, without effect on area of primary heat
hyperalgesia [218].
Voltage-gated calcium channel (VGCC) modulators
(gabapentinoids) The gabapentinoids pregabalin and
gabapentin bind to the a2δ-subunit of VGCCs, possibly
interfering with presynaptic transmitter release and/or
postsynaptic Ca2+ rise. The effect of chronic oral admin-
istration of pregabalin has been tested in the already-
mentioned model of secondary hyperalgesia induced by
electrical transdermal stimulation [227]. Pregabalin,
titrated to 2 × 150 mg per day and given orally for 6 days
prior to induction of hyperalgesia, was demonstrated to
significantly reduce area of hyperalgesia in comparison to
placebo. Using the same model, Segerdahl found that
gabapentin applied for 24 hours significantly reduced the
area of hyperalgesia compared to placebo, without any
reduction in spontaneous or evoked pain intensity [228].
In a study using intradermal capsaicin after 15 days’
application of gabapentin, Gottrup et al. demonstrated
reduction of allodynia areas - but only a trend for

pinprick hyperalgesia areas -compared to placebo, with-
out any reduction in ongoing or evoked pain intensity
[229]. Applying gabapentin for 10 days prior to intrader-
mal capsaicin, Wallace and Schultheis showed no effect
on secondary hyperalgesia as compared to placebo [230].
Antidepressants Tricyclic antidepressants may modulate
nociceptive inputs to the spinal cord by enhancing the
action of descending monaminergic inhibitory mechan-
isms. In a study involving desipramine, a tricyclic anti-
depressant agent, its chronic application was unable to
reduce the induction of secondary hyperalgesia by intra-
dermal capsaicin [226].
NK1 receptor antagonists NK1 receptor antagonists
have been shown to be effective inhibitors of LTP
induction in animal models (Table 2). However, in
human volunteers, oral application of aprepitant, an
NK1 receptor antagonist, titrated to 320 mg per day for
6 days, proved unable to significantly reduce secondary
hyperalgesia induced by electrical transdermal stimula-
tion [227].
Prevention of opioid-induced hyperalgesia The phar-
macological modulation of hyperalgesia induced by
opioid withdrawal, demonstrated to be associated with
LTP induction in rodents [21], has been extensively stu-
died in a human volunteer model involving secondary
hyperalgesia induced by electrical transdermal stimula-
tion in combination with remifentanil infusion withdra-
wal [188]. It must be emphasized that this human
model is not fully comparable to the rodent LTP induc-
tion model. The human model uses an increase in pre-
existent stimulus-induced secondary hyperalgesia as
endpoint for the opioid effect, while in the rodent
model, hyperalgesia is induced by opioid withdrawal
alone.
NMDA receptor antagonists Animal models have
shown that NMDA receptor block prevents LTP induc-
tion by opioid withdrawal [21]. Congruently, a human
volunteer study using electrical transdermal stimulation
to produce secondary hyperalgesia has demonstrated
that the addition of S-ketamine to remifentanil infusion
prevents the expansion of stimulus-induced hyperalgesia
on acute opioid withdrawal [189].
Others In the human model under discussion, neither
the co-infusion of the anaesthetic agent propofol, the
central a2-adrenergic receptor agonist clonidine, or of
the selective COX-2 inhibitor parecoxib, could be
shown to significantly reduce the increased area of sti-
mulus-induced hyperalgesia following abrupt remifenta-
nil infusion withdrawal [189,231,232]. Although it did
not reduce this hyperalgesia, co-administration of cloni-
dine did reduce rebound of the ongoing pain scores due
to conditioning electrical transdermal stimulation after
cessation of remifentanil infusion [189]. Currently, no
data are available in rodents for these pharmacological
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targets regarding opioid-withdrawal induction of
hyperalgesia.

Human patient models
Perioperative sensory testing of the secondary hyperalge-
sia surrounding surgical incision is an attractive way of
studying the time course of central pain amplification -
and hence potentially LTP - in the clinical context.
However, as already mentioned, it should be realised
that due to the length of surgery, the effects of perio-
perative therapeutic intervention will not only influence
LTP induction, but also its consolidation.
Prevention of stimulus-induced hyperalgesia
Opioid receptor agonists Opioids, shown to be effective
in inhibiting LTP induction in animal models, and in
reducing secondary hyperalgesia in human volunteer
models, are also effective in reducing peri-incisional sec-
ondary hyperalgesia in clinical surgical patients. Thus
fentanyl applied before surgical incision has been shown
to reduce the degree of secondary hyperalgesia five days
after back surgery vs. placebo [169,193], and morphine
given before incision has been demonstrated to reduce
peri-incisional hyperalgesia vs. morphine given at the
end of abdominal surgery [233]. In contrast, in these
and other pre-emptive analgesia studies involving
opioids, clinically significant effects on postoperative
pain scores and analgesia consumption have proven dif-
ficult to demonstrate and remain controversial [162]. In
this context, it is also worth noting the differences in
the use of opioids between these studies and those
investigating opioid-induced hyperalgesia. The studies
investigating opioid-induced hyperalgesia generally
involve the use of a short-acting opioid (typically remi-
fentanil), given as an infusion producing relatively high
and constant plasma levels, which is then abruptly dis-
continued at the end of surgery. In contrast, the pre-
emptive analgesia studies quoted [169,193,233] entail
the application of a bolus of a long-acting opioid in
moderate dosages, producing peak plasma concentration
with surgical incision, and then gradually tapering off as
surgery progresses to its completion.
Locoregional anaesthesia/analgesia The better block-
ade of neuraxial sensory input provided by epidural
anaesthesia as compared to systemic application would
be expected to further reduce basal synaptic transmis-
sion at the first nociceptive synapse and thus to more
effectively depress spinal mechanisms of central pain
amplification, including LTP. Lavand’homme et al.
demonstrated that for colon surgery, the groups receiv-
ing perioperative epidural anaesthesia (local anaesthetic
+ opioid + clonidine) vs. purely intravenous periopera-
tive analgesia showed considerably less incisional sec-
ondary hyperalgesia up to three days post-operatively
[161]. Interestingly, the epidural groups with less early

postoperative secondary hyperalgesia also showed less
persistent and chronic pain up to one year postopera-
tively [161]. Similarly, intrathecal clonidine administered
before incision reduced secondary hyperalgesia vs. saline
placebo up to three days after colon surgery, with
reduced secondary hyperalgesia again being associated
with less persistence of pain (chronic pain) up to six
months postoperatively [192].
NMDA receptor antagonists In animal and human
volunteer models, NMDA receptor blockade prevents
LTP induction. Application of the non-competitive
NMDA receptor antagonist ketamine before surgical
incision has been shown to reduce postoperative peri-
incisional hyperalgesia after renal and colon surgery
[160,191], thus supporting the hypothesis that also in
the clinical context, NMDA receptor blockade inhibits
LTP induction. One of these studies again demonstrated
that the associated reduction of postoperative secondary
hyperalgesia was linked to lower incidences of chronic
pain later on [160]. The efficacy of ketamine in improv-
ing perioperative pain outcomes is supported by exten-
sive literature [234-239].
There are few data on the effects of other NMDA

receptor antagonists used perioperatively. Ilkjaer et al.
studied the use of preoperative oral dextromethorphan,
also a non-competitive NMDA receptor antagonist, on
early and late postoperative hyperalgesia and pain [240].
They were unable to demonstrate differences vs. placebo
regarding either hyperalgesia or pain posteroperatively,
probably due to inadequate dosage.
VGCC modulators (gabapentinoids) In rodents, acute
application of gabapentin interferes with LTP mainte-
nance but not LTP induction [65]. To date we have
been unable to find studies directly documenting effects
of these drugs on postoperative secondary hyperalgesia.
There is however, a considerable literature available
documenting the positive effects of perioperative admin-
istration of gabapentinoids on postoperative pain out-
comes, particularly acute, but also more long-term
[241-245].
Prevention of opioid-induced hyperalgesia
Opioid receptor agonists The effect of pre-emptive
opioids in preventing opioid-induced hyperalgesia has
not been studied so far using formal sensory testing
methods. However, the application of a long-acting
opioid before the start of a remifentanil infusion has not
been shown to improve postoperative pain outcomes
[246,247]. It has not been determined whether adminis-
tration of a long-acting opioid before abrupt withdrawal
prevents opioid-withdrawal LTP in rodents, but this
seems likely as tapered opioid withdrawal does not
induce LTP [21].
NMDA receptor antagonists Regarding opioid-induced
hyperalgesia, Joly et al. demonstrated in a clinical study
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in patients undergoing major abdominal surgery that the
large postoperative areas of secondary peri-incisional
hyperalgesia associated with high-dose intraoperative
remifentanil infusion could be significantly reduced by
the concomitant use of small-dose ketamine [212].
These data are supported by studies documenting effects
of ketamine on opioid-induced hyperalgesia using acute
clinical postoperative pain outcomes [248,249].

Section summary and conclusions
Prevention of stimulus-induced secondary hyperalgesia
In the human literature just reviewed, we present data
that hyperalgesia induction in human volunteer models
and patients and LTP induction in rodents share a simi-
lar pharmacology, supporting the hypothesis that LTP in
spinal nociceptive pathways is a cellular mechanism of
hyperalgesia.
More specifically, there is good evidence that opioid

μ-receptor agonists and nerve blockade by local anaes-
thesia (both reducers of first nociceptive synapse trans-
mission) and NMDA receptor blockade by ketamine
effectively inhibit secondary hyperalgesia induction in
both volunteers and patients, congruent with animal
model results. Similarly, modulation of descending inhi-
bition by spinal application of the a-adrenergic agent
clonidine has been demonstrated to inhibit both hyper-
algesia induction in patients and LTP induction in
rodents.
The evidence for the ability of gabapentinoids (titrated

over several days) to inhibit induction of secondary
hyperalgesia in humans is inconclusive with both posi-
tive and negative effects reported in the literature. In
rodents, no effect of acute application of gabapentin was
found on LTP induction. Titration over several days has
been used in human studies to enhance tolerability. It
cannot be excluded that this protocol also enhances the
antihyperalgesic effects of gabapentinoids. Similar titra-
tion protocols have not been tested in rodents so far.
NK1 receptor antagonists prevent LTP induction in

rodents but have no effect on induction of secondary
hyperalgesia in humans. However, these studies may be
difficult to compare because of different drug applica-
tion schedules (titration for several days in humans vs.
acute spinal application in rodents).
The comparison of pharmacology between human

hyperalgesia induction and rodent LTP induction is
summarised in Table 8.
Prevention of opioid-induced hyperalgesia
In agreement with the animal literature, both human
volunteer and patient models of opioid-induced hyperal-
gesia show prevention of hyperalgesia induction by
effects of NMDA receptor blockade using ketamine. In
the human volunteer model, neither general anaesthetics
(propofol), a-adrenergic agonists (clonidine) nor COX

inhibitors (parecoxib) are effective in preventing the
induction of opioid-induced hyperalgesia.

Pharmacology of human hyperalgesia:
Modulation of established human hyperalgesia
As mentioned in the section on animal models, LTP
induction occurs in two phases. The early phase, invol-
ving modification of pre-existing proteins, sets in imme-
diately after induction and then dies away over the first
few hours. LTP consolidation occurs in the late phase,
based on de novo protein synthesis and gene transcrip-
tion, and is complete 3 - 6 hours after LTP induction in
animal models.
Both causal and symptomatic approaches to modifi-

cation of established LTP are principally possible. Cau-
sal approaches reverse intracellular events maintaining
LTP, while symptomatic approaches temporarily inhi-
bit synaptic transmission at the potentiated synapse
without affecting intracellular processes maintaining
LTP. A major difference between the two approaches
would thus be whether hyperalgesia reappears after
drug wash-out. A summary of interventions modifying
established hyperalgesia in humans is provided in
Table 7.

Human volunteer models
Interference with stimulus-induced secondary hyperalgesia
Opioid receptor agonists Koppert et al. have investi-
gated the effect of a number of clinically available com-
pounds on pre-existent secondary hyperalgesia in the
context of their model of ongoing transdermal high cur-
rent density electrical stimulation. As hyperalgesia was
induced only 30 min before drug application, this model
might be comparable to drug application during early
but not late phase LTP. Using this model, Koppert et al.
demonstrated that pure μ-opioid receptor agonists such
as alfentanil and remifentanil reduced hyperalgesia dur-
ing the period of application [176,189]. The fact that
hyperalgesia reappeared after opioid washout strongly
suggests a purely symptomatic effect on hyperalgesia
and possibly underlying LTP. Conflicting results have
been obtained after intradermal capsaicin, with one
group reporting transient antihyperalgesic effects with
intravenous alfentanil infusion [250], and others no
effects for bolus or infusion application of alfentanil
[251,252]. Using an infusion of morphine at 10 μg kg-1

min-1 started 30 min after burn injury, Schulte et al.
were unable to detect antihyperalgesic effects 45 and 75
min after start of infusion [253]. Interestingly, the use of
buprenorphine, a partial μ-receptor agonist and �- and
δ-receptor antagonist, in the transdermal high current
density electrical stimulation model leads to a long-last-
ing reversal of hyperalgesia outlasting the end of drug
application by almost 150 min [254]. Whether this is
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due to causal effects or a long duration of action of
buprenorphine cannot be ascertained from the study.
Local anaesthesia Regarding local anaesthesia to the
damaged tissue, Kawamata et al. demonstrated that local
anaesthesia administered after skin incision in volun-
teers did not inhibit secondary hyperalgesia, in contrast
to pre-incisional block, which did [178].
NMDA receptor antagonists Using a skin burn model
in human volunteers, Ilkjaer et al. studied ketamine
(intravenous bolus of 0.15 or 0.3 mg kg-1 followed by a
135 min infusion at 0.15 or 0.3 mg kg-1 h-1), compared

to placebo infusion, and applied 15 min after lesioning
[255]. Ketamine reduced the area of established primary
and secondary hyperalgesia in a dose-dependent manner
during the period of infusion - but not thereafter. Keta-
mine further reduced heat-evoked pain responses within
the area of primary hyperalgesia, but had no effect on
heat-evoked pain responses in skin at sites distant from
the burn. Analogous positive results for ketamine have
been found based on intradermal capsaicin [250,256],
with other such studies failing to demonstrate antihy-
peralgesic effects with bolus application (0.07 or 0.29

Table 7 Targets for modulation of established secondary hyperalgesia in humans

Target Substance Action at target Volunteer
model
effect

Volunteer
model
used

Clinical effect
(neurop athic
pain)

Comment re.
hyperalgesia

References
volunteers

References
clinical

Stimulus-induced hyperalgesia

Opioid
receptors

alfentanil agonist X transdermal
electric

X only ongoing
and evoked
pain

[176] [263]

alfentanil agonist X/0 capsaicin n/a n/a [250-252] n/a

remifentanil agonist X transdermal
electric

n/a n/a [189] n/a

morphine agonist 0 burn n/a n/a [253] n/a

buprenorphine Partial agonist-
antagonist

XX transdermal
electric

n/a n/a [254] n/a

COX paracetamol,
parecoxib

COX/COX2
inhibition

XX transdermal
electric

n/a n/a [259] n/a

ibuprofen COX inhibition 0 burn n/a n/a [260] n/a

Na+

channels,
systemic

lidocaine antagonist XX transdermal
electric

n/a n/a [176] n/a

lidocaine antagonist X capsaicin X only evoked
pain

[256] [263]

lamotrigine antagonist 0 heat/
capsaicin

n/a n/a [223] n/a

General
anaesthesia

propofol X transdermal
electric

n/a [262] n/a

Adenosine
receptors

adenosine agonist X transdermal
electric

n/a n/a [261] n/a

Descending
inhibition

venlafaxine noradrenaline/5-
HT reuptake
inhibitor

n/a n/a X evoked pain +
area

n/a [267]

NMDAR ketamine antagonist X burn X ongoing and
evoked pain +
area

[250,253,255,256] [263,265]

ketamine antagonist X/0 capsaicin n/a n/a [250-252,256] n/a

S-ketamine antagonist XX transdermal
electric

n/a n/a [176] n/a

dextro-
methorphan

antagonist X burn n/a n/a [257] n/a

VGCC gabapentin modulation at
a2δ-subunit

X heat/
capsaicin

X n/a [258] n./a

X, complete block or significant inhibition of established secondary hyperalgesia during drug effect.

XX, complete block or significant inhibition of established secondary hyperalgesia outlasting drug effect.

0, no effect on established secondary hyperalgesia.

n/a = not available.
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mg kg-1) or targeted infusion (150 ng ml-1) [251,252]. A
further study based on burn injury to the skin again
found reductions in hyperalgesia with ketamine infusion
(0.9 μg kg-1 min-1 for 45 min) [253]. The use of S-keta-
mine infusion (increasing concentrations; slope = 30 ng
ml-1 min-1 over 10 min + 10 min plateau) in the context
of the transdermal electrical hyperalgesia model also
demonstrated significant antihyperalgesic and analgesic
properties [176]. However, in this study, the antihyperal-
gesic effects of S-ketamine outlasted infusion end for at
least one hour. These differences in results may be due
to the higher doses of ketamine used, differences
between ketamine and S-ketamine, or differences in the
nature of hyperalgesia produced by the different models.
As hyperalgesia was generally induced less than one
hour prior to ketamine infusion, all these models again
only can be compared to actions on early LTP.
Dextromethorphan, a non-competitive NMDA recep-

tor antagonist too, has also been shown to reduce the
area of secondary hyperalgesia induced by a burn injury
[257].
VGCC modulators (gabapentinoids) A single dose of
gabapentin given 90 min after induction of secondary
hyperalgesia using the heat/capsaicin model significantly
attenuated the area of hyperalgesia compared to placebo,
and also significantly reduced the area of hyperalgesia
when given directly after rekindling some 90 min after
initial induction [258]. As hyperalgesia was induced
approx. 90 min prior to gabapentin application, this
model is again comparable only to the action on early
LTP.
Cyclooxygenase (COX) antagonists The use of the cen-
tral COX isozyme inhibitors paracetamol and parecoxib
also resulted in long-lasting inhibition (at least 150 min
after drug infusion) of transdermal electrically induced
hyperalgesia [259]. Again, the study design makes it
impossible to decide whether this is due to long dura-
tion of drug action or causal effects, i.e. permanent
reversal of the mechanisms underlying hyperalgesia. The
non-selective COX inhibitor ibuprofen applied after
burn injury did not, however, reduce secondary hyperal-
gesia [260].
Others Other substances which may affect primary noci-
ceptive synaptic transmission studied by the Koppert
group include systemic application of adenosine [261],
propofol [262] and the Na+ channel blocker lidocaine
[176]. For both adenosine and propofol, the significant
antihyperalgesic and analgesic effect did not outlast
infusion, suggesting symptomatic effects. Lidocaine infu-
sion, however, resulted in significant antihyperalgesic
effects which outlasted the infusion by about 50 min.
Gottrup et al. found similar effects for lidocaine infusion
on pre-existing hyperalgesia induced by intradermal cap-
saicin [256]. Oral lamotrigine, a use-dependent Na+

channel antagonist, has, however not been shown to
have antihyperalgesic effects following heat/capsaicin
sensitisation [223].

Human patient models
If LTP is involved in the maintenance of some forms of
chronic pain, then therapeutic manoeuvres modifying
established LTP in animal models could be expected to
impact the hyperalgesia associated with established
chronic pain in patients. As already discussed above, we
will restrict this discussion to secondary hyperalgesia (i.
e. surrounding the initial lesion). Not many human clin-
ical studies using formal sensory testing have been per-
formed in this context; most are small and have been
carried out in the context of patients suffering from
chronic pain associated with peripheral nerve injury.
This is a relevant model as LTP has also been shown to
play a role in nerve-injury related pain in rodent models
[13].
Interference with stimulus-induced secondary hyperalgesia
Opioid receptor agonists A small number of studies
have looked at the effect of the opioid agonist alfentanil,
applied as a short intravenous infusion in patients exhi-
biting chronic pain linked to peripheral nerve injury. In
all of these studies, allodynia as well as mechanical sec-
ondary hyperalgesia were studied. It is worth noting
here that while secondary mechanical hyperalgesia is
compatible with LTP-like mechanisms, Ab-fibre
mediated allodynia is unlikely to involve LTP at C-fibre
synapses as a mechanism. Leung et al. applied alfentanil
as a target-controlled infusion (target: 25, 50 and 75 ng
ml-1) to patients with chronic neuropathic pain and
demonstrated dose-dependent decreases in ongoing and
von Frey-hair evoked pain without a decrease in area of
secondary hyperalgesia, concomitantly with reductions
in brush-evoked pain and area of mechanical allodynia
[263]. Using a similar design (alfentanil target plasma
concentration approx. 44 ng ml-1), Jørum et al. found
similar results for mechanical allodynia, but did not
study effects on mechanical hyperalgesia [264]. Neither
of these studies investigated whether antihyperalgesic
effects outlasted the end of drug infusion.
NMDA receptor antagonists To date, the only NMDA
receptor antagonist studied for its effects on secondary
hyperalgesia in the context of neuropathic pain is keta-
mine. Gottrup et al. also investigated ketamine (0.24 mg
kg-1 over 30 min), finding that it reduced ongoing pain
as well as magnitude of secondary pinprick hyperalgesia
and brush allodynia [265]. Using target-controlled infu-
sions of ketamine (50-150 ng ml-1), Leung et al. demon-
strated reductions in area of secondary pinprick
hyperalgesia together with reduction in allodynic area
and allodynia (i.e. brush-evoked pain) [263]. Two studies
found comparable results for ketamine regarding
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mechanical allodynia, but did not study effects on
mechanical hyperalgesia [264,266]. None of these studies
reported effects outlasting the period of drug infusion.
Antidepressants As already mentioned, antidepressants
may also modulate spinal nociceptive input via descend-
ing monoaminergic mechanisms. In quite a large study
(n = 55) Yucel et al. studied the effects of chronic venla-
faxine administration (8 weeks) on secondary mechani-
cal hyperalgesia in chronic neuropathic pain patients
[267]. Compared to placebo, venlafaxine significantly
decreased pin-prick hyperalgesia and its area; the same
was the case for brush allodynia. The fact that both
hyperalgesia and Ab-fibre mediated allodynia were
affected suggest that a significant proportion of the ven-
lafaxine effects must be the results of mechanisms other
than LTP at C-fibre synapses in this context.
Na+ channel blockers Gottrup et al. studied the effects of
intravenous lidocaine (5 mg kg-1 over 30 min) in neuro-
pathic pain patients [265]. They were able to demonstrate
that the Na+ channel blocker lidocaine reduced evoked
pain to repetitive pinprick stimuli, without effects on
ongoing pain or brush-evoked pain (allodynia). The study
did not investigate areas of hyperalgesia or allodynia.

Section summary and conclusions
Comparison of the human and animal literature pre-
sented above shows that established rodent LTP and
established human hyperalgesia share a similar pharma-
cology with one major exception.
μ-opioid agonists decrease established secondary

hyperalgesia in human volunteer and patient models.
Gabapentinoids, too, have been shown to be effective
against established hyperalgesia in human volunteer
models. This is consistent with the results from animal
models where μ-opioids and gabapentinoids suppress
LTP during LTP maintenance phase.
Antidepressants have been shown to be effective

against established hyperalgesia in pain patients. As anti-
depressants and central a2-adrenergic-agonists such as
clonidine share central monoaminergic mechanisms, the
antihyperalgesic effectiveness of antidepressants in
humans might find its animal equivalent in the effective-
ness of clonidine in inhibiting established LTP.
However, in animal models, NMDA receptor blockade

has no effects on established LTP, which contrasts with
the evidence presented that NMDA receptor blockade
by ketamine interferes with established secondary hyper-
algesia in both human volunteer and patient models.
One possible hypothesis explaining this difference would
be that in the context of the human models presented,
ongoing nociceptive input - albeit at a low level - leads
to continuing induction of LTP, contributing to the
maintenance of LTP, and thus explaining the sensitivity
of apparently established secondary hyperalgesia to

NMDA receptor blockade. Alternatively, LTP may be
only one of various central mechanisms contributing to
established human hyperalgesia and chronic pain, with
alternative, NMDA receptor sensitive mechanisms parti-
cipating in the maintenance phase.
COX inhibition, general anaesthetics, intravenous lido-

caine or adenosine, have all been shown to be effective
against established hyperalgesia in human volunteer or
patient models but have not been tested in animal mod-
els of LTP.
Both in human and animal studies, it has often not

been tested whether inhibition of established LTP/
hyperalgesia outlasts drug effects, precluding differentia-
tion between symptomatic (acute antinociceptive or
antihyperalgesic) and causal (reversal of LTP/hyperalge-
sia) effects. In humans, there is some evidence that for
ketamine, lidocaine, paracetamol/parecoxib and the aty-
pical opioid buprenorphine, antihyperalgesia may outlast
drug effects, suggesting that causal actions might be
operating. However, all of these studies have been per-
formed only in the ongoing transdermal electrical stimu-
lation model, and their applicability to other models and
the clinical context remains to be proved.
Our conclusions regarding LTP in rodents vs. humans

and its pharmacological modulation are contrasted and
summarised in Table 8.

Conclusions
In rodents, LTP of spinal nociceptive pathways is a cel-
lular model of long-lasting (but not necessarily irreversi-
ble) hyperalgesia induced by noxious stimulation or
opioid withdrawal. Both noxious stimulation and opioid
withdrawal also induce prolonged pain amplification in
the human experimental and clinical context. Noxious
stimulation of a pattern that is LTP-inducing in rodents
induces hyperalgesia in humans. Of the various manifes-
tations of human experimental and clinical pain, some
may be related to LTP while others cannot be explained
by this mechanism. For prolonged pain after noxious sti-
mulation, LTP may explain hyperalgesia and possibly
exacerbation of spontaneous pain at or surrounding the
initial lesion site, but not Ab-fibre mediated allodynia (e.
g. brush allodynia). For prolonged pain after opioid
withdrawal, LTP may explain generalized hyperalgesia,
possibly including exacerbation of preexisting hyperalge-
sia. Direct proof of the involvement of spinal LTP in
pain conditions is at present not feasible in humans.
However, the current review shows that rodent spinal
LTP and human hyperalgesia share a similar pharmacol-
ogy, further supporting the role of rodent spinal LTP as
a model for prolonged pain and hyperalgesia in humans.
One major issue with respect to the role of spinal LTP

as a model of persisting pain in humans is its unknown
duration. In principle, LTP may last for hours, days,
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months or throughout the lifespan of an animal. So far,
behavioural correlates of spinal LTP in rodents or
human volunteers seem to be in the range of several
days, compatible with, e.g., acute postoperative pain but
not with chronic pain. One hypothesis would be that in
chronic pain, LTP is prolonged by various factors that
might “boost” the maintenance of LTP, counteracting its
natural decline. Examples might include decreased activ-
ity of endogenous antinociceptive systems or the pre-
sence of ongoing intermittent low-level nociceptive
input from the periphery. Investigating these possibilities
in spinal LTP in rodents or LTP of pain perception in
humans might be a fruitful approach for future studies.
Inhibition of the induction of hyperalgesia by noxious

stimulation is important for prevention of both acute
and chronic postoperative pain. Standard general anaes-
thesia alone is not sufficient to protect the spinal cord
from the strong noxious input during surgery. Only
locoregional anaesthesia techniques appear to offer

some protection in this context. Several drugs have been
identified that inhibit induction of rodent LTP and
human hyperalgesia, e.g. NMDA receptor antagonists,
μ-opioid receptor agonists and clonidine. From the
rodent LTP literature, novel promising approaches may
include antagonists at T-type VGCCs and (possibly sub-
type-selective) antagonists at GABAA receptors.
Identification of drugs that reverse the central processes

contributing to chronic pain maintenance would be a
major advance in chronic pain treatment. Assuming that
spinal LTP contributes to chronic pain, animal experi-
ments will likely contribute to the identification of such
drugs by investigating their action on established LTP. Dif-
ferentiating acute antihyperalgesia ("symptomatic” drug
action) from long-lasting reversal of the mechanisms
maintaining hyperalgesia ("causal” drug action) requires
extending the observation period beyond the time of drug
action termination by washout or application of an
antagonist. In addition, investigation of drug actions on

Table 8 Comparison of the pharmacology of stimulus-induced rodent LTP and human secondary hyperalgesia or
clinical pain

Target, action Rodent
LTP

Human models of
secondary

hyperalgesia

Human clinical pain Comments

QST: secondary
hyperalgesia

Clinical
response: pain

report

Induction (Human
postoperative pain)

μ-opioid receptor agonist X X n.t. (area)
X (thr/rating)

controversial

NMDA receptor antagonist X X1 X (area)
X (thr/rating)

X Ketamine also blocks OIH induction in
rodents and humans

a-adrenergic receptor antagonist X X X (area)
n.t. (thr/rating)

X Acute spinal application of clonidine in
humans

NK1 receptor antagonist X 0 n.t. n.t. Acute spinal application in rodents vs.
chronic oral application in humans

Modulation of a2δ VGCC subunit 0 X/0 n.t. X Acute spinal application in rodents vs.
chronic oral application in humans

Maintenance (Human chronic
neuropathic pain)

μ-opioid receptor agonist X X 0 (area)
X (thr/rating)

X

NMDA receptor antagonist 0 X X (area) X (thr/
rating)

X

Modulation of a2δ VGCC Subunit X X n.t. n.t.

a-adrenergic receptor agonist/
noradrenaline reuptake inhibitor

X n.t. X (area)
X (thr/rating)

X Clonidine (rodents) vs. venlafaxine
(humans)

X, induction/established state blocked by action at target.

0, induction/established state not blocked action at target.

n.t., not tested.

QST, quantitative sensory testing.

area, area of secondary hyperalgesia mapped using QST.

thr/rating, threshold or rating of evoked pain as determined by QST.

OIH, opioid-induced hyperalgesia.
1, including action on LTP of human pain perception.
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late phase LTP (> 3 h after LTP induction) is likely of
greater clinical relevance than on early phase LTP. Up to
now, among the compounds that are also in clinical use,
rodent studies have identified two drugs which suppress
late-phase LTP (clonidine and diazepam). For diazepam,
there is evidence that it may not only temporarily sup-
press, but also reverse established late-phase LTP.
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