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Abstract

attenuated by LPA; antagonist.

Background: It has been demonstrated that lysophosphatidic acid (LPA) released from injury tissue and transient
receptor potential vanilloid 1 (TRPV1) receptor are implicated in the induction of chronic pain. In the present study
we examined whether an interaction between LPA receptor LPA; and TRPV1 in dorsal root ganglion (DRG)
neurons contributes to the development of bone cancer pain.

Results: Bone cancer was established by injection of mammary gland carcinoma cells into the rat tibia. Following
the development of bone cancer pain, the TRPV1 expression and capsaicin-evoked currents were up-regulated in
rat DRG neurons at Ly segments. Immunohistochemistry staining revealed a high co-localization of LPA; with
TRPV1 in DRG neurons. In isolated DRG neurons, whole-cell patch recording showed that capsaicin-induced
currents were potentiated by LPA in a dose-dependent manner. The potentiation was blocked by either LPA,
antagonist, protein kinase C (PKC) inhibitor or PKCe inhibitor, but not by protein kinase A (PKA) inhibitor or Rho
inhibitor. In the behavioral tests, both mechanical allodynia and thermal hyperalgesia in bone cancer rats were

Conclusion: LPA potentiates TRPV1 current via a PKCe-dependent pathway in DRG neurons of rats with bone
cancer, which may be a novel peripheral mechanism underlying the induction of bone cancer pain.

Background
Pain is the first clinical symptom of cancer in a large
population of cancer patients, particularly in advanced
or terminal cancer patients [1], which strongly impacts
the patients’ quality of life. Tumor-derived, inflamma-
tory, and neuropathic factors may simultaneously contri-
bute to cancer pain such as bone cancer pain [2].
Lysophosphatidic acid (LPA) is a lipid metabolite
released after tissue injury, which induces diverse cellu-
lar responses including proliferation, adhesion, migra-
tion, morphogenesis, differentiation and survival [3].
Increasing evidence shows that LPA is a key mediator in
cancer development including cancer cell proliferation,
survival and migration [4-7]. There is a high concentra-
tion of LPA in ascitic fluid and plasma of cancer
patients. Released by activated blood platelets [8], LPA
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promotes progression of bone metastases by inducing
secretion of tumor-derived cytokine (IL-6 and IL-8) in
breast and ovarian cancer cells [9,10]. Additionally, lines
of study have revealed that LPA may also be a crucial
factor in the initiation of neuropathic pain mediated by
demyelination of peripheral nerves via activation of LPA
receptor [11,12]. Six subtypes of LPA receptor, LPA; ¢,
are all G protein-coupled receptors. Three endothelial
differentiation gene (EDG) family of G-protein-coupled
receptors, EDG-2, EDG-4 and EDG-7 were identified as
LPA receptors successively, and were named LPA; 3
respectively. Then p2y9 or GPR23, GPR92 and GPR87
were also identified as LPA receptors, named as LPA, ¢
respectively [3,13,14]. Among the six subtypes, LPA;
receptor is the main subtype expressed in dorsal root
ganglion (DRG) [11]. LPA; is capable of interacting with
three major G protein families, the G;, Gg, and Gy,
family, resulting in the activation of their downstream
cascades: mitogen-activated protein kinase (MAPK),
protein kinase C (PKC) and Rho (a small GTP-binding
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protein)-Rho kinase, while inhibiting protein kinase A
(PKA) pathway [3]. Several studies have demonstrated
that LPA; participates in the development of neuro-
pathic pain through the Rho pathway [11,15,16].

In patients with advanced cancers such as breast, lung,
prostate or myeloma cancer, bone pain is the most fre-
quent cancer-induced chronic pain. However, the
mechanisms underlying the development of bone pain
are not completely understood. Bone cancer induces
mechanical bone deformation and local tissue acidosis
which may activate nociceptors via multiple molecular
mechanisms, particularly by activation of the capsaicin
receptor, transient receptor potential vanilloid (TRPV1).
Compelling evidence has testified that TRPV1 is a criti-
cal signal molecule in the development of physiological
and pathological pain [17]. It has been shown that
TRPV1 is involved in the induction of bone cancer pain
[18-22] and is activated by direct phosphorylation via
PKC pathway [23-26], particularly via PKCe [27].

In the last decade, bone cancer pain models have been
successfully established and used to explore associated
mechanisms [28-30]. Given expression of LPA; and
TRPV1 in the DRG neurons, the present study focused
on whether LPA; is involved in bone cancer pain via
cross-talking with TRPV1 and the possible signal path-
ways in the peripheral mechanism underlying bone can-
cer pain.

Results

Bone cancer-induced increase in expression of TRPV1 and
capsaicin-induced currents in rat DRGs

To elucidate the role of TRPV1 in bone cancer pain, we
examined TRPV1 levels in the DRG at the L, ¢ spinal
segments 14 days after cancer cell implantation. Wes-
tern blotting results showed that ipsilateral expression
of TRPV1 in DRGs was higher in cancer rats (n = 6)
than in sham rats (n = 6). The expression of TRPV1
was elevated by 53% + 0.07 in the ipsilateral DRGs
(DRGs from cancer rats (TRPV1/Tubulin)/from sham
rats (TRPV1/Tubulin) = 1.53 + 0.07, p < 0.01) (Figure
1A and 1B).

Capsaicin-evoked inward currents were recorded in
L4 DRG neurons of sham-operated rats and bone can-
cer rats 14-16 days after inoculation. A low concentra-
tion of capsaicin was used to minimize desensitization
of TRPV1. Given that repetitive administration of 500
nM capsaicin (3 s per minute four times) failed to
induce detectable desensitization of TRPV1 currents
[27], this concentration was used in the following tests.
The percentage of DRG neurons responsive to capsaicin
(0.5 pM) in cancer rats (97%, n = 33) was significantly
higher than that in sham-operated rats (71.3%, n = 35).
Owing to a large diversity of amplitudes of TRPV1 cur-
rents among the neurons tested, DRG neurons
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responsive to capsaicin (0.5 pM) were divided into the
low current amplitude group and the high current
amplitude group according to the amplitude of TRPV1
currents. In the former (Figure 1C), the average ampli-
tude of TRPV1 currents in cancer rats (56.3 + 9.41 pA,
n = 14) was higher than that in sham-operated rats
(29.3 + 6.14 pA, n = 15, p < 0.05). Similar results were
obtained in the high current amplitude group (Figure
1D). TRPV1 currents were higher in cancer rats (453.3
+ 79.48 pA, n = 14) than that in sham-operated rats
(253.6 + 28.45 pA, n = 15, p < 0.05). These results sug-
gested that neurons in bone cancer rats were more sen-
sitive to capsaicin.

Co-localization of TRPV1 and LPA, receptor in DRG
neurons

To investigate the possible cross-talk between TRPV1
and LPA;, double immunolabeling of the TRPV1 and
LPA; receptor (EDG-2) was detected in the DRG neu-
rons. As shown in Figure 2 a large population of DRG
neurons expressed TRPV1 (red) and EDG-2 (green).
TRPV1 and EDG-2 were widely co-expressed in DRG
neurons (orange). Co-localization of TRPV1 and EDG-2
in a same neuron provides the basis for their cross-talk.

Potentiation of TRPV1 current by LPA in isolated DRG
neurons

TRPV1 currents were found to be potentiated by LPA
perfusion (Figure 3), while totally blocked by 10 pM
capsazepine (cpz), the antagonist of TRPV1, even after
LPA perfusion (inserted figure in Figure 3A). LPA-
induced potentiation was found in a dose-dependent
manner (Figure 3D). After 1 uM, 0.1 uM or 0.01 pM
LPA was perfused, TRPV1 currents were increased by
221% + 0.37 (p < 0.001) in 8 out of 11 cells, 109% +
0.19 (p < 0.001) in 6 out of 9 cells and 58% + 0.09 (p <
0.001) in 18 out of 26 cells recorded, respectively. The
currents were maximal at 3 min after LPA perfusion
under all of the three concentrations. No obvious poten-
tiation of the current by 0.001 uM LPA (n = 15) was
observed (data not shown). To minimize the pharmaco-
logical effect of LPA, 0.01 uM LPA was used in the later
experiments.

Furthermore, potentiation of TRPV1 by LPA was
examined in the bone cancer state. 0.01 uM LPA
couldn’t potentiate the TRPV1 current induced by 0.5
UM capsaicin in all of the DRG neurons (n = 24) in
bone cancer rats. To avoid the possible ceiling effect, a
lower concentration of capsaicin (0.05 pM) was then
used. LPA (0.01 uM) could potentiate the TRPV1 cur-
rent induced by 0.05 uM capsaicin in 31.58% (n = 19)
DRG neurons of sham rats and 60% (n = 19) cells in
cancer rats. A very low concentration of capsaicin (0.5
nM) failed to evoke TRPV1 currents in all of the DRG
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Figure 1 Up-regulation of TRPV1 expression and enhancement of capsaicin-induced currents in DRG neurons of cancer rats. Compared
with sham rats, TRPV1 expression was increased in ipsilateral DRGs at L, of bone cancer rats (A and B). C: In the low current amplitude group,
TRPV1 currents of DRG neurons in bone cancer rats were higher than that in sham-operated rats. D: In the high current amplitude group, a
similar result as (C) was obtained. Inserted figures in (C and D) represent typical currents recorded in the low and high current groups,

neurons tested (n = 11) in sham-operated rats, whereas
40% of the DRG neurons tested (n = 20) were respon-
sive to capsaicin in bone cancer rats. We examined the
effect of LPA on 12 neurons which did not respond to
0.5 nM capsaicin (sub-threshold concentration) in
bone cancer rats. As shown in Figure 4A, capsaicin

could evoke a TRPV1 current (the lower trace) in 8
out of 12 neurons after perfusion of LPA (0.01 uM),
indicating LPA-induced potentiation of TRPV1 cur-
rents under bone cancer state. However, this phenom-
enon was not observed in sham-operated rats (Figure
4B, n = 11).

Figure 2 Double immunofluorescent staining of TRPV1 (green) and EDG-2 (red) in DRG neurons. Arrows indicate neurons positive for
both TRPV1 and EDG-2. Arrowheads indicate neurons positive for TRPV1 but not EDG-2.
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Figure 3 LPA potentiates TRPV1 currents time-dependently and dose-dependently. A: Representative TRPV1 current (right) potentiated by
LPA in rat DRG neurons. DRG neurons were perfused with 0.01 uM LPA for 1 min before the second application of capsaicin (0.5 uM). The effect
of LPA was wholly blocked by 10 uM capsazepine (cpz). B: 3 min after 0.01 pM LPA perfusion on DRG neurons, TRPV1 currents were highly
increased (18 out of 26 cells, p < 0.001). C: After 0.01 uM LPA was perfused, TRPV1 currents were significantly increased, with maximal currents at
3 min, and decreased slowly to control level. D: Potentiation of TRPV1 currents by LPA at different concentrations. LPA increases TRPV1 currents
dose-dependently. The currents were 3.21 + 0.37 (1 uM, 8 out of 11 cells, p < 0.001), 209 + 0.19 (0.1 uM, 6 out of 9 cells, p < 0.001), and 1.58 +
0.09 (0.01 uM, 18 out of 26 cells, p < 0.001) folds higher than control currents respectively, with no effect by 0.001 uM LPA (data not shown).
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Figure 4 Potentiation of TRPV1 current by LPA in DRG neurons
of bone cancer rats. A and B: Typical whole-cell patch recordings
of DRG neurons in bone cancer and sham rats, respectively. No
current was evoked by a low concentration of capsaicin (0.5 nM) in
DRG neurons (the upper trace of A and B). A: In a bone cancer rat,
capsaicin (0.5 nM) evoked a visible inward current (the lower trace)
3 min after LPA (0.01 puM) perfusion. B: In a sham-operated rat, no
effect of LPA on application of capsaicin was observed.

PKC, particularly PKCe, but not PKA or Rho, mediates
LPA-induced potentiation of TRPV1 currents

Among the six LPA receptors, LPA;, LPA,, LPA3, LPA,,
LPAs and LPAg, LPA; receptor is the main subtype
expressed in the DRG neurons [11]. LPA failed to
potentiate TRPV1 currents in all of the neurons tested
after incubated with LPA; antagonist VPC32183 for 30
min (n = 15) (Figure 5A, F, p > 0.05), suggesting that
activation of LPA; receptor mediates LPA-induced
potentiation of TRPV1 currents.

It has been demonstrated that Rho, PKC and PKA are
downstream molecules of LPA; [3,31]. Their possible
roles in LPA-induced potentiation of TRPV1 currents
were determined. In 13 neurons tested, incubation of
PKC inhibitor bisindolylmaleimide (BIM, 1 uM, 30 min)
blocked potentiation of TRPV1 currents by LPA (Figure
5B, F, p > 0.05). However, LPA still enhanced TRPV1
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Figure 5 PKC, particularly PKCg, but not PKA or Rho, involves in LPA-induced potentiation of TRPV1 currents. Both LPA; antagonist
VPC32183 (1 uM, n = 15, p > 0.05) and PKC inhibitor BIM (1 uM, n = 13, p > 0.05) inhibit potentiation of TRPV1 currents induced by LPA in all
of the neurons recorded (A and B). C: After PKA inhibitor H89 (1 uM) was delivered, no effect on LPA-induced potentiation of TRPV1 currents

(n =8, p <0.001) was observed. D: LPA could still enhance TRPV1 currents in 14 out of 23 neurons tested (p < 0.001) after intracellular delivery
of Rho inhibitor BoTXC3 (5 pg/ul). E: Intracellular delivery of PKCe inhibitor €V;, (200 uM) completely blocked LPA-induced potentiation of TRPV1

currents (n = 15, p > 0.05). F: Histogram showing summary.
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currents in 8 out of 12 neurons after incubation of PKA
inhibitor H89 (1 puM, 30 min, Figure 5C, F, p < 0.001).

Among the different PKC isoforms, PKCeg is co-
expressed with TRPV1 in DRG neurons and phosphory-
lated after inflammation [32]. Translocation of PKCg to
the cell membrane triggers TRPV1 phosphorylation and
sensitization [24]. Therefore, the present study further
determined the role of PKCg in LPA-induced potentia-
tion of TRPV1 current. PKCg inhibitor €V;_, (200 pM)
was delivered intracellularly via a recording electrode
5 min before recording. The potentiation of TRPV1 cur-
rents by LPA was completely blocked by €V, in all of
the 15 neurons tested (Figure 5E, F, p > 0.05), which is
consistent with our previous study that PKCeg inhibitor
blocked substance P-induced potentiation of TRPV1
currents [27].

It is reported that Clostridium botulinum C3 exoen-
zyme (BoTXC3, a Rho inhibitor by ADP-riboslation)
attenuated neuropathic pain at the dose of 10 pg/2 pl
[33]. After BoTXC3 (5 pg/pul) was delivered intracellu-
larly, LPA still increased TRPV1 currents in 14 out of
23 neurons (Figure 5D, F, p < 0.001), suggesting that
Rho may not be an important signal molecule in modu-
lation of TRPV1 by LPA. Similar results were obtained
with several different concentrations, from 5 pg/ul to 5
ng/pl (data not shown).

LPA-induced pain behaviors in bone cancer rats

To investigate the functional significance of activation of
LPA; in the bone cancer state, LPA; antagonist
VPC32183 was used to examine roles of LPA in bone
cancer pain. Bone cancer rats received a lumber punc-
ture of VPC32183 (intrathecal (i.t.), 0.6 mM, 30 pl,
n = 8) or saline (30 pl, n = 8) before cancer cell injec-
tion (Dy), and Dy, Dy, D;, Dy after cancer cell injection.
Ipsilateral paw withdrawal threshold (PWT) to stimuli
of von Frey filaments and paw withdrawal latency
(PWL) to radiant heating were measured as nociceptive
indexes. As shown in Figure 6A, PWTs gradually
decreased after injection of cancer cells, exhibiting the
development of mechanical allodynia. Administration of
VPC32183 significantly attenuated mechanical allodynia
for about 5 days. Similarly, VPC32183 significantly atte-
nuated thermal hyperalgesia in bone cancer rats. At Dy
(p < 0.01) and D;; (p < 0.01) post-operation, PWLs of
the cancer rats that received VPC32183 injection were
longer than that of the cancer rats that received saline
injection (Figure 6B).

Discussion

The transient receptor potential vanilloid subtype 1
(TPRV1) is predominantly expressed in C-fiber nocicep-
tors and responds to capsaicin, noxious heat, protons,
and various endogenous ligands [34,35]. Recent studies
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have revealed that TRPV1 is involved in the develop-
ment of cancer-induced pain [18-22]. The present study
provided further evidence that capsaicin-induced cur-
rents and expression of TRPV1 in DRG neurons were
up-regulated in bone cancer rats. A line of studies have
testified that capsaicin-induced TRPV1 currents in DRG
nociceptive neurons are enhanced by different inflam-
matory mediators such as bradykinin, chemokine and
substance P etc. [27,36-39]. LPA was released from
diverse sources such as blood platelets, cancer cells and
the surrounding tissues. This inflammatory mediator
contributed to the initiation of neuropathic pain asso-
ciated with demyelination in the dorsal root [11]. Our
recent studies exhibited that following the development
of bone cancer by injection of cancer cells into the tibia,
the posterior articular nerve directly innervating the
region of bone cancer was severely degraded and the
activating transcription factor 3 (ATF3, a marker of
nerve injury and stress) expression was up-regulated in
DRG neurons at spinal L4-5 segments [40]. Moreover,
there was almost no spontaneous firing in the ipsilateral
posterior articular nerve of bone cancer (unpublished).
Noticeably, the sural nerve innervating the adjacent
region of the bone cancer was intensely sensitized [40].
Therefore, capsaicin-induced responses in this study
were more likely recorded from uninjured, but not
injured, DRG neurons. Considerable evidence has shown
that the injured nerve fibers could increase excitability
of adjacent uninjured fibers which contributes to the
induction of neuropathic pain [41-43]. Given that bone
cancer pain characterizes neuropathic pain, it is concei-
vable that LPA-induced potentiation of TRPV1 current
reflects an increase in excitability of uninjured fibers
innervating the adjacent region of osteocarcinoma. The
facilitation of adjacent uninjured fibers may play a cru-
cial role in the induction of bone cancer pain.

Amongst six subtypes LPA; 4, LPA; receptors is the
main subtype expressed in DRG neurons and activated
under the neuropathic pain state [11,15,44]. Consistent
with alleviation of neuropathic pain [11], VPC32183, a
LPA; and LPA; receptors antagonist, blocked LPA-
induced potentiation of TRPV1 currents in DRG neu-
rons, mechanical allodynia and thermal hyperalgesia in
bone cancer rats, suggesting that activation of LPA;
receptors mediates bone cancer-induced sensitization of
DRG nociceptive neurons and pain hypersensitization. A
study reported that LPAj receptors were expressed in
some DRG neurons and knockout of LPA; could relieve
pain [45]. Therefore, in addition to LPA;, LPA3 may
also contribute to bone cancer pain. The finding that
LPA increases intracellular calcium concentration in
DRG neurons supports the idea that LPA directly acti-
vates DRG neurons via LPA receptors by cross-talking
with TRPV1 [46]. The findings that co-localization of
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Figure 6 LPA, receptor antagonist VPC32183 attenuates mechanical allodynia and thermal hyperalgesia in bone cancer rats. Injections
of VPC32183 (i.t, 0.6 mM, 30 pl) or saline (30 ul) were made before cancer cell injection (Do), and D5, Ds4, D, D after cancer cells injection. A:
Alleviation of bone cancer-induced mechanical allodynia by LPA; antagonist. Ipsilateral PWTs to stimuli of von Frey filaments were standardized
with baseline. PWTs of Saline + Cancer rats decreased gradually 5 days after operation, significantly lower than that of Saline + Saline rats at Ds
(p < 0.01), D; (p < 0.01), Dg (p < 0.001), Dy; (p < 0.001), D13 (p < 0.001) and Dsg (p < 0.05). Compared with saline injection, administration of
LPA; antagonist VPC32183 increased PWTs at D, (p < 0.05), Dg (p < 0.01) and Dy, (p < 0.05) after cancer cell injection. B: Ipsilateral PWLs to
radiant heating were increased by VPC32183 at Dg (p < 0.01) and Dy (p < 0.01) after cancer cell injection. #: (Saline + Cancer) vs. (Saline +

Saline); *: (VPC32183 + Cancer) vs. (Saline + Cancer).

B
O Salinet+Cancer

- 20 O VPC32183+Cancer
>
© 16 dk
5 | ph x
@©
= 12 1 t
=
E 1
T 8 E 3
=
=
2 4
(0]
o

0

0 9 11
Post-operative day

TRPV1 and LPA; receptor EDG-2 and bone cancer
induced an increase in LPA; receptor expression in
DRG [40] provide further support for these phenomena.

Compelling evidence demonstrates that PKC regulates
sensitivity of nociceptors through phosphorylation of
many protein substrates [35,37]. Potentiation of TRPV1
currents in DRG neurons by different inflammatory
mediators are mediated, at least in part, by PKC [47-51].
It has been known that five isoforms of PKC are
expressed in DRG neurons, but only PKCe isoform is
translocated to the cell membrane after bradykinin
stimulation [52]. Our previous studies showed
co-expression of TRPV1 and PKCeg and inflammation-
induced up-regulation of PKCe in DRG nociceptive
neurons [53], and potentiation of TRPV1 currents by
activation of Neurokinin 1 (NK-1) receptor via PKCe
[27]. As with other G-protein-coupled receptors (GPCR)
such as NK-1, LPA; receptor activation-induced poten-
tiation of TRPV1 in DRG neurons was also blocked by
PKC inhibitor or PKCe inhibitor. In addition to PKC,
previous studies demonstrated that PKA inhibitor
blocked the potentiation of TRPV1 currents by pro-
inflammatory factors such as: NGF, prostaglandins, ana-
ndamide, 5-HT, and glutamate [39,46,54-58]. However,
the present study revealed that LPA-induced potentia-
tion of TRPV1 failed to be blocked by the PKA inhibi-
tor. Taken together, the interaction of LPA; and TRPV1
is mediated by PKC, particularly by PKCg, but not by
PKA. The identical process occurs in modulation of

TRPV1 by activation of NK-1 in DRG neurons [27].
Therefore, it seems that PKCg, but not PKA, phosphory-
lation may be a common mechanism in which activation
of LPA; and NK-1 potentiates TRPV1 in DRG nocicep-
tive neurons contributing to bone cancer pain and neu-
ropathic pain. Interestingly, LPA can increase
tetrodotoxin-resistant (TTX-R) sodium current [59] and
induce substance P release from nociceptor endings
[60]. Our recent finding showed that activation of NK-1
receptor potentiated TTX-R sodium channel Nav1.8
currents, mediated by PKCe in DRG neurons [61]. Col-
lectively, two most important pain-related signal mole-
cules, TRPV1 and Navl.8, in nociceptors can be
modulated by activation of LPA; mainly via PKCe
phosphorylation.

LPA, receptors are reported to interact with members
of three major G protein families, G;, Gg, and Gy,
family, to regulate the activity of intracellular messenger
molecules [3,62-64]. LPA; couples through Gi,/13 to
Rho activation, and inhibition of Rho-associated kinase,
a downstream effector of LPA;, abolished LPA-induced
action in osteoblasts [65]. An elegant study from Inoue
et al., (2004) reported that Rho-Rho kinase signal path-
way is implicated in the induction of neuropathic pain
by activation of LPA; receptor in DRG neurons. How-
ever, the present study showed that inhibition of Rho
failed to block LPA-induced potentiation of TRPV1 cur-
rents in whole-cell recording of DRG neurons. The dif-
ferent results between the behavioural test and single
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cell recording suggest that LPA might be associated with
multiple intracellular signals to modulate different tar-
gets in DRG neurons. LPA-induced potentiation of
TRPV1 currents in DRG neurons is mediated by PKCe
rather than Rho pathway. In addition to TRPV1, LPA
could modulate other targets in the induction of bone
cancer pain, which might be mediated by Rho pathway.

Conclusion

Released by cancer cells and blood platelets, LPA not
only promotes cancer cell proliferation but also contri-
butes to the induction of bone cancer pain by enhancing
TRPV1 activity in nociceptors. Understanding how can-
cer cells secrete and recruit cells to release LPA is sig-
nificant for treatment of cancer pain. Inhibition of the
LPA; receptor or synthesis of LPA may be a novel ther-
apy for cancer pain.

Methods

Animals

Animals used for bone cancer model and all experi-
ments were female Sprague-Dawley (SD) rats weighting
160-200 g. Animals for subculture were female SD rats
weighting 80 g. All of them were purchased from the
Fudan experimental animal center. All experiments con-
formed to local and international guidelines on ethical
use of animals and all efforts were made to minimize
the number of animals used and their sufferings.

Cancer cell inoculation surgery

Walker 256 rat mammary gland carcinoma cells were
provided by Fudan University, School of medicine,
department of integrative medicine and neurobiology,
and were injected into the abdominal cavity of rats
weighting 80 g to obtain ascitic fluid for cancer cell cul-
ture, continuously cultured from generation to genera-
tion weekly for the establishment of a bone cancer
model.

Animals were anesthetized with Chloral hydrate
(intra-peritoneal (i.p.) 400 mg/kg). The left tibia was
chosen as the operated side. 10" carcinoma cells in 4 pl
phosphate buffered saline (PBS) or 4 pl PBS alone
(shame group) were injected into the tibia cavity
through the knee joint. The inject site was closed by 1
ul absorbable gelatin sponge. Each animal was injected
with 100,000 units of penicillin and had a two days
recovery before any experiment. The detailed procedure
for cancer cell culture and inoculation has been pre-
sented in previous reports [28].

Intrathecal Injection

Rats received intrathecal injection of drugs by lumber
puncture as described previously [66]. Briefly, rats were
anaesthetized with isofluorane in a transparent plastic
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box and then placed on a roller so that the L, ¢ verteb-
rae were curved. A lumbar puncture needle was intro-
duced into the intrathecal space. The needle had been
introduced intrathecally when a short flicking of the tail
was observed. Then drugs were slowly injected into the
intrathecal space. The needle was immediately pulled
out after the injection.

Mechanical allodynia

After 30 min acclimation in an individual testing cage,
the rat’s paw withdrawal threshold (PWT) was measured
as the hind paw withdrawal response to von Frey hair
(Stoelting, IL, USA) stimulation. In detail, an ascending
series of von Frey hairs stimuli (2.0, 4.0, 6.0, 8.0, 15.0
and 26.0 g) was applied for 3 s where positive response
was defined as a withdrawal of hind paw upon the sti-
mulus, each stimulus was repeated for 5 times with a 10
min interval, and the lowest force to induce at least
3 positive responses was defined as PWT. The tester
was blinded to the condition of the animals.

Thermal hyperalgesia

As previously described [67], thermal hyperalgesia was
assessed by measuring rat’s paw withdrawal latency
(PWL) to a radiant heat (model 336 combination unit,
IITC/life Science Instruments, Woodland Hill, CA,
USA). Rats were placed individually in plastic cages on
an elevated glass platform and allowed for 30 min accli-
mation. Each hind paw received three stimuli with a 10
min interval, and the mean of the three withdrawal
latencies was defined as PWL. The heat was maintained
at a constant intensity. To prevent tissue damage, the
cut-off latency was set at 20 s. The tester was blinded to
the condition of the animals.

Western-blotting

Animals were anesthetized with Chloral hydrate (i.p. 400
mg/kg). Ly.¢ DRGs were collected from sham and can-
cer animals at the 14th day after inoculation surgery,
homogenized in a lysis buffer containing protease inhibi-
tor (Sigma, St. Louis, MO, USA). The protein concen-
trations of each group were measured using a BCA
assay (Pierce Biotechnology Inc., Rockford, IL, USA).
The extracts were separated using SDS-PAGEs (10%)
with 3 mg protein in each lane and transferred to PVDF
membranes. The membranes were blocked in 10% non-
fat dry milk for 2 h at room temperature (RT). After
having been incubated overnight with goat anti-TRPV1
primary antibody (R-18, C-terminal, 1:1,000, Santa Cruz
Biotechnology Inc., CA, USA) or mouse anti-Tubulin
primary antibody (1:5,000, Sigma), the membranes were
incubated with horseradish peroxidase (HRP)-conjugated
donkey anti-goat or goat anti-mouse secondary antibody
(1:3000, Santa Cruz Biotechnology) for 2 h at RT.
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Secondary antibody reactive bands were visualized in
ECL solution (Pierce) for 1 min and exposed onto
X-films for 1-5 min.

Immunohistochemistry

Sensory neurons in Ly ¢ DRGs of normal rats were
labelled by antibodies against TRPV1 and EDG-2
(endothelial differentiation gene-2, LPA; receptor). Rats
were given an overdose of urethane (i.p. 1.5 g/kg) and
perfused intracardially with saline, followed by perfusion
of 4% paraformaldehyde in 0.1 M phosphate buffer (PB,
pH 7.4). L,.¢ DRGs were then removed, post-fixed in
the same fixative for 4 h at 4°c, and immersed from 10%
to 30% gradient sucrose in PB for 24-48 h at 4°c for
cryoprotection. Frozen 14 um DRG sections were cut
using a cryostat microtome and thaw-mounted onto
gelatin-coated slides for processing. The sections were
blocked with 10% donkey serum in 0.01 M PBS (pH
7.4) with 0.3% Triton X-100 for 2 h at RT and incu-
bated for 48 h at 4°c with goat anti-TRPV1 (1:200, Santa
Cruz Biotechnology) and rabbit anti-EDG-2 (1:50,
Novus Biologicals Inc., CO, USA) primary antibodies in
PBS with 1% normal donkey serum and 0.3% Triton
X-100. Following three 10 min rinses in 0.01 M PBS,
the sections were incubated in rhodamine red-X (RRX)-
conjugated donkey anti-goat IgG (1:200, Jackson Immu-
nolab Inc., West Grove, PA, US) and fluorescein isothio-
cyanate (FITC)-conjugated donkey anti-rabbit IgG
(1:200, Jackson Immunolab) for 90 min at 4°c, and then
washed in PBS. All sections were coverslipped with a
mixture of 50% glycerin in 0.01 M PBS, and then
observed under a Leica fluorescence microscope, and
images were captured with a CCD spot camera.

DRG neurons preparation

Acutely dissociated DRG neurons were prepared from
180 g rats as described previously [53]. Ly ¢ DRGs were
removed and incubated in Dulbecco’s Modified Eagle
Media (DMEM), which was added with 3 mg/ml col-
lagenase (type IA, Sigma) and 1 mg/ml trypsin (type I,
Sigma), for 25 min at 36.8°C. After enzyme treatment,
ganglia were rinsed three times with standard external
solution, and then single cells were dissociated by tri-
turation using fine fire-polished Pasteur pipettes. DRG
neurons were placed onto coverslips (10 mm diameter)
in the 3.5 cm culture dishes and incubated in Standard
external solution for recordings at RT.

Electrophysiological recordings

Whole-cell voltage-clamp recordings were made at RT
(20-22°C) with an EPC-9 amplifier (HEKA Elektronik,
Lambrecht/Pfalz, Germany). All recordings were per-
formed within 2-8 h after plating. Neurons were pre-
pared as above. Only small-diameter (15-25 um) DRG
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neurons were recorded in all of the experiments. Micro-
electrodes were pulled by a P97 puller (Sutter Instru-
ments, Novato, CA, USA) and those with the resistance
of 2-6 MQ) were used. Standard external solution con-
tained (in mM): 150 NaCl, 5 KCIl, 2 CaCl,, 1 MgCl,, 10
HEPES, and 10 glucose, pH 7.4. The pipette solution
contained (in mM): 140 KCI, 5 NaCl, 1 MgCl,, 0.5
CaCl,, 5 EGTA, 3 Na,-ATP, and 10 HEPES, pH 7.2.
The whole cell capacitance was cancelled and series
resistance was compensated (> 80%) after gigaohm seal
formation and membrane disruption, and data were
sampled at 5 kHz and low-passed at 1 kHz. Data acqui-
sition was controlled by the software Pulse and Pulsefit
8.5 (HEKA Elektronik).

Drugs

All the drugs for patch-clamp recording and intrathecal
injection were purchased from Sigma, except that the
LPA; inhibitor VPC32183 was from Avanti Polar Lipids
and PKCe inhibitor €V;_, was from Biomol (Plymouth
Meeting, PA). All the drugs were stocked at -20°C at a
concentration at least 1000-fold the working concentra-
tion and prepared on the day of the experiment. LPA
and capsaicin were applied close to the neurons by an
ALA-VMS perfusion system (ALA Scientific Instru-
ments, Westbury, NY, USA). Capsaicin was applied
once every minute and LPA was applied for 1 min.
After cells were washed by standard external solution
for 10 seconds, capsaicin was applied for 3 seconds, fol-
lowed by standard external solution washing for 47 sec-
onds. The control current was averaged from three
continuous recordings. In the fourth minute, standard
external solution was changed by LPA. Inhibitors were
applied (where appropriate) to the chamber 30 min
before LPA perfusion, except that BoTXC3 and €V, _,
were delivered intracellularly via a recording electrode.
Inhibitors existed during the whole recording course.

Statistical analysis

The western bolt and electrophysiology data were ana-
lyzed using student’s t test. Two Way Repeated Mea-
sures ANOVA were used to testing differences of PWT
and PWL values between groups. The criterion of signif-
icance was set at *, # p < 0.05, **, ## p < 0.01, ***, ### p
< 0.001, all results are expressed as means + standard
error of the mean (SEM).
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