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Abstract
Background: Descending facilitation, from the brainstem, promotes spinal neuronal
hyperexcitability and behavioural hypersensitivity in many chronic pain states. We have previously
demonstrated enhanced descending facilitation onto dorsal horn neurones in a neuropathic pain
model, and shown this to enable the analgesic effectiveness of gabapentin. Here we have tested if
this hypothesis applies to other pain states by using a combination of approaches in a rat model of
osteoarthritis (OA) to ascertain if 1) a role for descending 5HT mediated facilitation exists, and 2)
if pregabalin (a newer analogue of gabapentin) is an effective antinociceptive agent in this model.
Further, quantitative-PCR experiments were undertaken to analyse the α2δ-1 and 5-HT3A subunit
mRNA levels in L3–6 DRG in order to assess whether changes in these molecular substrates have
a bearing on the pharmacological effects of ondansetron and pregabalin in OA.

Results: Osteoarthritis was induced via intra-articular injection of monosodium iodoacetate (MIA)
into the knee joint. Control animals were injected with 0.9% saline. Two weeks later in vivo
electrophysiology was performed, comparing the effects of spinal ondansetron (10–100 μg/50 μl)
or systemic pregabalin (0.3 – 10 mg/kg) on evoked responses of dorsal horn neurones to electrical,
mechanical and thermal stimuli in MIA or control rats. In MIA rats, ondansetron significantly
inhibited the evoked responses to both innocuous and noxious natural evoked neuronal responses,
whereas only inhibition of noxious evoked responses was seen in controls. Pregabalin significantly
inhibited neuronal responses in the MIA rats only; this effect was blocked by a pre-administration
of spinal ondansetron. Analysis of α2δ-1 and 5-HT3A subunit mRNA levels in L3–6 DRG revealed
a significant increase in α2δ-1 levels in ipsilateral L3&4 DRG in MIA rats. 5-HT3A subunit mRNA
levels were unchanged.

Conclusion: These data suggest descending serotonergic facilitation plays a role in mediating the
brush and innocuous mechanical punctate evoked neuronal responses in MIA rats, suggesting an
adaptive change in the excitatory serotonergic drive modulating low threshold evoked neuronal
responses in MIA-induced OA pain. This alteration in excitatory serotonergic drive, alongside an
increase in α2δ-1 mRNA levels, may underlie pregabalin's state dependent effects in this model of
chronic pain.
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Background
Osteoarthritis (OA), the most common form of arthritis
[1,2], is a degenerative joint disease, usually of weight
bearing joints (knees and hips), characterized by damage
to the articular cartilage and subchondral bone, synovitis
and capsular thickening. OA can develop following the
loss of joint stability, hence its aetiology is diverse and
multifactorial, and is associated with chronic debilitating
joint pain, that can range from mild (dull aches) to severe
(sharp stabbing pain). While pain is usually the main
symptom and the first reason of complaint of OA patients,
it is only recently that research into the mechanisms of OA
pain has developed.

Current therapies do not include disease modifying drugs,
thus analgesics remain as the first line treatment for OA.
Starting with paracetomol, treatment is then followed by
NSAIDS, opioids and steroids in line with disease progres-
sion and increasing pain severity. However, the therapeu-
tic window and the level of pain relief with these therapies
is often inadequate in a large proportion of patients. Thus
it is important to identify the molecular mechanisms that
induce and maintain the pain state in order to develop
more effective therapeutic agents.

In OA patients, approximately 60–80% achieve pain relief
after local anaesthetic treatment or surgical replacement
of the affected joint, indicating peripheral mechanisms
driving the pain [3-6], although in some patients central
mechanisms are also thought to play a role and dysfunc-
tion of diffuse noxious inhibitory controls have been
described [7]. These central mechanisms may overlap
with those in other pain states such as neuropathy.

Alongside alterations in descending inhibitory controls,
descending facilitation from the brainstem has been indi-
cated to be a key mechanism underlying some forms of
chronic pain [8-18]. For instance, we have previously
demonstrated an enhanced descending facilitation, medi-
ated by brainstem serotonergic pathways acting at prono-
ciceptive spinal 5HT3 receptors, that contributes to the
pathophysiological changes following nerve injury and
cancer induced bone pain [13,19]. Therefore, in the
present study the role of descending facilitation in a rat
model of OA was assessed.

We have used a chemical model of OA pain, using mono-
sodium iodoacetate (MIA), a glycolysis inhibitor, which
has proved a reliable and consistent model of osteoarthri-
tis that mimics pain in OA patients [20-23]. Following a
single intra-articular MIA injection into the rat knee joint,
a progressive degeneration of cartilage is seen [24] and
these changes have been shown to be similar to the
human disease [25,26]. Whilst painful symptoms are
mostly associated with the area surrounding the affected
joint, referred pain and tenderness can also occur in

patients [27,28] and is apparent in the MIA rat model as
hypersensitive responses to stimulation of the ipsilateral
hindpaw [23].

Following a two week OA induction period we assessed
the contribution of descending facilitation, using in vivo
electrophysiological methods to compare the effects of
spinal application of the selective 5HT3 receptor antago-
nist, ondansetron, on evoked dorsal horn neuronal
responses in MIA and control rats. Additionally, we have
previously shown that descending facilitation from the
brainstem enables the anti-hyperalgesic actions of gabap-
entin following peripheral nerve injury [29]. This led us to
assess the effects of pregabalin (a newer analogue of
gabapentin) on spinal neuronal activity in MIA rats, to test
whether descending serotonergic facilitation is an impor-
tant mechanism enabling the analgesic effectiveness of
pregabalin in this model of chronic pain. In these studies
we have concentrated on secondary hyperalgesia in that
we have examined responses evoked from the paw after
knee MIA. Gabapentin has state-dependent actions, mod-
ulating abnormal activity and has been shown to be effec-
tive in human imaging studies in the presence of central
sensitization [30].

Results
Following intra-articular injection of MIA or saline, both
groups of rats maintained good health, exhibiting normal
weight gain and general level of activity with no signs of
distress, and the final weight at time of electrophysiology
was not different between the MIA (271 ± 7 g) or sham
(275 ± 11 g) groups.

Behavioural responses
Probing the ipsilateral hind paw with von Frey hairs and
application of acetone revealed behavioural signs of
mechanical and cooling hypersensitivity, seen as a signif-
icant increase in ipsilateral hind paw withdrawal fre-
quency to stimulation with von Frey filaments 1& 6 g and
acetone application in the MIA group compared with the
same responses in the sham-operated group (Fig. 1). Stim-
uli applied to the contra-lateral hind paw of MIA or sham
rats produced little or no evoked hind paw withdrawal
responses in either group (data not shown). Similarly, the
ambulatory evoked pain score in the MIA rats was higher
compared with the vehicle treated sham rats (Fig. 1). This
behavioural hypersensitivity observed on the hind paw
after MIA injection into the knee is indicative of secondary
hyperalgesia and is likely due to central sensitization.

Spinal cord electrophysiology – cell characterization
The evoked responses of ipsilateral deep dorsal horn neu-
rones were characterised in MIA (n = 30) and saline
injected sham (n = 34) rats (Table 1). The mean neuronal
cell depth was not significantly different between experi-
mental groups and corresponded to lamina V-VI of the
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Behavioural assessment from 3 days before until 14 days after MIA (n = 17) or saline injection (n = 16)Figure 1
Behavioural assessment from 3 days before until 14 days after MIA (n = 17) or saline injection (n = 16). A. 
mechanical and B. cooling stimuli applied to the ipsilateral hind paw. C. ambulatory evoked pain score. MIA injection into the 
knee resulted in behavioural hypersensitivity as evidenced by the significantly greater number of paw withdrawal responses to 
mechanical punctate and acetone application, and the observed pain scored on ambulation compared with the saline control 
rats. *p < 0.05, ** p < 0.01 compared with shams.
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spinal dorsal horn, thus enabling direct comparison of
evoked neuronal responses. All neurones recorded in this
study had receptive fields which included at least one toe
on the hind paw and were classified as wide dynamic
range, since they all responded to both light touch and
noxious inputs (pinch and noxious heat), and responded
to natural stimuli in a graded manner with increasing
intensity.

The evoked neuronal responses to a train of electrical
stimulation were not significantly different between
groups (Table 1). In contrast, MIA injected rats exhibited
an overall enhanced neuronal response, evoked during
the 10-second application period, to mechanical stimula-
tion in a stimulus intensity dependent manner; significant
effects were seen in response to application of von Frey fil-
aments 8–60 g (p < 0.05) (Fig. 2A). Furthermore, the
mechanical evoked neuronal after-discharge, quantified
as the total number of action potentials the neurone con-
tinued to fire after the removal of the stimulus period was
greater in the MIA group (P < 0.03) (Fig. 2B). Enhanced
thermal evoked neuronal responses were also seen in the
MIA group compared with controls, although this did not
quite reach significance (Fig. 2C, D). Thus, these results
indicate a general hyperexcitable nature of spinal wide
dynamic range neurones in segments adjacent to the pri-
mary insult in this model of OA (Fig. 2) indicative of cen-
tral sensitization.

Effects of spinal ondansetron administration on the 
evoked responses of dorsal horn neurones
Spinal administration of ondansetron did not produce
any significant effects on any of the electrically evoked
neuronal responses in either the MIA or vehicle treated

rats (data not shown). However, the same doses of spinal
ondansetron administration resulted in a significant inhi-
bition of some of the natural evoked responses in both
groups (Figs. 3 &4).

In MIA injected rats, spinal ondansetron resulted in a
dose-related inhibition of a range of natural evoked
responses. The evoked neuronal response to stimulation
of the peripheral receptive field with dynamic brush was
significantly reduced at 10–100 μg (P < 0.05), and with
von Frey 2 and 8 g were significantly reduced at 50 and
100 μg (P < 0.05) in the MIA rats compared with pre-drug
control values. Strikingly, in contrast, ondansetron did
not produce any significant inhibition of these low
threshold evoked responses in the control group (Fig. 3).
With regard to the evoked responses to noxious stimuli
similar dose-related inhibitions were seen in MIA and
vehicle-treated groups for both mechanical (von Frey 26
and 60 g) (Fig. 3), and thermal (45 and 48°C) modalities
(Fig. 4). However, the inhibitory effect of ondansetron at
50 μg on the evoked response to 45°C heat was signifi-
cantly greater in the MIA group when compared with the
effect of the drug in the vehicle treated group (P < 0.05).
Ondansetron at 10 μg produced a significant inhibition of
the evoked neuronal response to 40°C in the sham con-
trol group, an effect not seen in the MIA treated group at
this dose. The evoked responses to suprathreshold 50°C
stimulation were not significantly altered by ondansetron
in either group (Fig. 4).

These findings suggest that OA induces a novel contribu-
tion of 5HT3 receptor-mediated excitation of low thresh-
old mechanical (dynamic brush and innocuous
mechanical punctate) evoked neuronal responses and an

Table 1: A comparison of the baseline electrophysiological responses of deep dorsal horn neurons in saline (n = 30) and MIA (n = 34) 
injected rats.

Sham (n = 30) MIA (n = 34)

Depth (μm) 787 ± 50 730 ± 37

Electrically-evoked Responses C-fibre threshold (mA) 0.76 ± 0.08 0.71 ± 0.07

Aβ-fibre evoked response (AP) 157 ± 14 175 ± 13

Aδ-fibre evoked response (AP) 136 ± 13 137 ± 12

C-fibre evoked response (AP) 401 ± 31 475 ± 38

Post discharge (AP) 257 ± 37 265 ± 34

Input (AP) 334 ± 52 389 ± 37

Wind-up (AP) 442 ± 58 452 ± 60

The electrical evoked responses are expressed as the mean number of action potentials (AP) ± S.E.M. evoked by a train of 16 electrical stimuli given 
at three times the threshold for C-fibre evoked neuronal response.
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enhancement of noxious thermal evoked responses to
45°C in MIA treated rats compared with control animals,
since the antagonist was either without effect on these
neuronal measures (low threshold mechanical) or had a
lesser effect on noxious heat evoked responses (45°C) in
the control group.

Effects of systemic pregabalin administration on the 
evoked responses of spinal dorsal horn neurones
Since gabapentinoids have been shown to exert analgesic
effects in a variety of models of hyperalgesia and allodynia
[31,32], not simply neuropathy, and because we have pre-

viously demonstrated a link between 5HT3 receptor activ-
ity and efficacy of gabapentin [29], this led us to
investigate the consequences of pregabalin administra-
tion on neuronal responses in the MIA model.

Systemic administration of pregabalin produced a signifi-
cant inhibition of noxious electrical evoked responses in
the MIA-treated group only. The A-delta fibre evoked
response was clearly inhibited at 3 and 10 mg/kg pregab-
alin, with a maximum inhibition of 60 ± 11% of the pre-
drug control response with the top dose. The C-fibre and
post discharge evoked neuronal responses were also

Electrophysiological recordings of deep dorsal horn wide dynamic range neuronal responses in MIA (n = 30) and sham rats (n = 34)Figure 2
Electrophysiological recordings of deep dorsal horn wide dynamic range neuronal responses in MIA (n = 30) 
and sham rats (n = 34). A) Mean evoked neuronal response of peripheral mechanical stimulation during the 10 second appli-
cation period. B) Mean after-discharge response of neurons to mechanical stimulation. C) Mean evoked neuronal response of 
peripheral thermal stimulation during the 10 second application period D. Mean after-discharge response of neurons to ther-
mal stimulation. MIA injection resulted in an overall increase in neuronal excitability. * p < 0.05 compared with sham control 
data.
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Comparison of the effects of spinal administration of ondansetron on the evoked neuronal responses to dynamic brush and mechanical punctate stimulation in sham (n = 8) and MIA (n = 8) ratsFigure 3
Comparison of the effects of spinal administration of ondansetron on the evoked neuronal responses to 
dynamic brush and mechanical punctate stimulation in sham (n = 8) and MIA (n = 8) rats. The neuronal responses 
evoked by dynamic brush, von Frey 2 and 8 g stimulation were significantly reduced by 50 and 100 μg of ondansetron in the 
MIA group. Ondansetron produced no significant effects on the mechanical evoked neuronal responses in the sham group. *p 
< 0.05 compared with pre- drug baseline control data.
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inhibited by the drug but to a much lesser extent, with a
significant reduction compared to pre-drug control
responses seen only at 10 mg/kg (Fig. 5).

The mechanical and thermal evoked responses in the MIA
rats were inhibited similarly in a dose-related manner (P
< 0.05, 1-way ANOVA) (Fig. 6 &7). In comparison, prega-
balin produced no significant effects on any of the natural
stimuli evoked neuronal measures in the sham controls
when compared with pre-drug control neuronal
responses, (Fig. 5, 6, 7) illustrating state-dependency of
the drug

Antagonism of spinal 5-HT3 receptors results in the loss of 
pregabalin's inhibitory effects
To test whether the active participation of spinal 5-HT3
receptors is a requirement for the efficacy of pregabalin in

MIA rats, we assessed the effects of the top dose of prega-
balin (10 mg/kg) in a separate group of MIA rats that had
been pre-treated with spinal ondansetron. This dose of
pregabalin alone produced significant neuronal inhibi-
tions in the MIA group, but in the presence of ondanset-
ron no longer produced any significant effects, indicating
a loss of pregabalin efficacy following 5-HT3 receptor
blockade (Fig. 8A, B).

Up-regulation of α2δ-1 subunit in L3 + L4 DRG of MIA 
treated rats
Up-regulation of α2δ-1 subunit levels has been suggested
to be correlated with the onset of allodynia and with the
analgesic efficacy of gabapentinoids in a variety of models
of chronic pain, such as spinal nerve ligation, HIV and
chemotherapy induced neuropathies [33-39], but not in a
model of radicular pain, where gabapentin still produced

Effects of spinal administration of ondansetron on the evoked neuronal responses to thermal stimulation of the peripheral receptive field area in sham (n = 8) and MIA (n = 8) ratsFigure 4
Effects of spinal administration of ondansetron on the evoked neuronal responses to thermal stimulation of the 
peripheral receptive field area in sham (n = 8) and MIA (n = 8) rats. Ondansetron at 5 μg produced a greater inhibition 
of the evoked response to 45°C in the MIA group compared with the control group; the effects of the drug on the other thermal 
stimuli tested were not different between groups. Data are expressed as the mean percentage of pre-drug control values ± S.E.M. 
*p < 0.05 **p < 0.01 compared with pre- drug baseline control data. §p < 0.05 compared with sham control group.
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antinociception [40]. Therefore we measured the levels of
mRNA for the α2δ-1 subunit in the L3 – L6 DRGs to assess
whether or not there was a comparable relationship in the
OA model. A small but significant increase was seen in the
mRNA level for the α2δ-1 subunit in the ipsilateral L3 + 4
DRG (135 ± 16%) when compared with sham controls (p
< 0.05, un-paired t-test). An increase in α2δ-1 mRNA
expression was also seen for the ipsilateral L5 + 6 DRG
(121 ± 28%) when compared with the appropriate con-
tralateral DRGs although this change did not reach signif-
icance (Fig. 8C).

5-HT3A receptor subunit mRNA levels in lumbar DRG in 
MIA rats
Expression levels of the 5HT3A subunit mRNA were
unchanged in the ipsilateral L3–L6 DRG compared with
the contralateral side (Fig. 8D), indicating that the altered
effects of 5HT3 receptor blockade are likely to be due to
greater physiological activity in the descending pathways
in the MIA animals and not receptor changes.

Discussion
OA is a disease with diverse originating factors; these
include a progressive degeneration of the articular carti-
lage, subchondral bone and weakness of joint muscles in
concert with inflammatory episodes within the joint. In
OA patients the pain experience is largely use-dependent
and relates to the area surrounding the affected joint,
however areas of referred pain also exist, for instance mus-
cle hyperalgesia and expansion of peripheral receptive
field area for pain has been demonstrated in OA patients,
indicative of central sensitisation [28]. Thus pain in OA
bears similarities with other chronic pain conditions, in
that a variety of abnormal cellular mechanisms, both
peripheral and central, underpin the pathology.

Intra-articular injection of MIA into the knee joint features
pathophysiological and behavioural indices aligned with
the human pain experience of OA [20-26].

Our findings corroborate earlier reports, with MIA rats
displaying behavioural hypersensitive responses seen as

A comparison of the effects of systemic adminsitration of pregabalin on the electrical evoked responses of spinal dorsal horn neurones in sham (n = 8) and MIA (n = 9) ratsFigure 5
A comparison of the effects of systemic adminsitration of pregabalin on the electrical evoked responses of spi-
nal dorsal horn neurones in sham (n = 8) and MIA (n = 9) rats. Pregabalin significantly attenuated the evoked A-delta, 
C-fibre and post discharge neuronal responses in the MIA group only. Data are expressed as the mean percentage of pre-drug 
control values ± S.E.M. * p < 0.05 significant difference compared with pre- drug baseline control data.
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Effects of systemic injection of pregabalin on the evoked neuronal responses to mechanical stimulation of the peripheral recep-tive fieldFigure 6
Effects of systemic injection of pregabalin on the evoked neuronal responses to mechanical stimulation of the 
peripheral receptive field. Pregabalin produced significant inhibition of dynamic brush and mechanical punctate evoked neu-
ronal responses in the MIA treated group (n = 9) compared with pre-drug baseline responses. The drug produced little or no 
effect in the sham control group (n = 8). Data are expressed as the mean percentage of pre-drug control values ± S.E.M. * p < 
0.05 significant difference compared with pre- drug baseline control data.
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high scores for ambulatory evoked pain and increased
hind paw withdrawals to stimulation of the hind paw
with von Frey filaments/acetone that had no effect on the
contralateral side or in sham controls. This behavioural
hypersensitivity to stimulation of the referred receptive
field area is indicative of secondary hyperalgesia, which
has also been reported in OA patients [23,27,28]. Further-
more, an overall increase in the baseline neuronal
responses, in terms of the total number of action poten-
tials evoked during the mechanical and thermal stimula-
tion application period and the after-discharge response
(total number of action potentials occurring after the 10-
second mechanical or thermal stimulation period) is evi-
dent in the MIA group, providing evidence for central sen-
sitization in these animals, which in turn may underlie

the observed behavioural hypersensitivity. This type of
hyper-responsiveness of neuronal activity has been dem-
onstrated in a mouse model of MIA-induced OA pain [41]
and in another rat model of monoarthritis [42,43].

Many studies have demonstrated a critical contribution of
descending facilitation, arising from brainstem areas such
as the rostral ventromedial medulla (RVM), in the devel-
opment and maintenance of central sensitisation in other
models of persistent pain, since pharmacological or ana-
tomical disruption of this pathway attenuates the behav-
ioural hypersensitivity associated with inflammatory,
nerve injury and visceral models of pain, and reduces the
excitability of wide dynamic range dorsal horn neurones
in both acute and chronic pain states [8-18,29,44,45].

Effects of systemic injection of pregabalin on the evoked neuronal responses to thermal stimulation of the peripheral receptive fieldFigure 7
Effects of systemic injection of pregabalin on the evoked neuronal responses to thermal stimulation of the 
peripheral receptive field. Pregabalin significantly inhibited the thermal evoked neuronal responses in the MIA group (n = 9) 
compared with pre-drug baseline responses. The drug produced little or no effect in the sham control group (n = 8). Data are 
expressed as the mean percentage of pre-drug control values ± S.E.M. * p < 0.05 significant difference compared with pre- drug 
baseline control data.
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Descending pain facilitation arising from the RVM
requires the activation of pronociceptive ON cells [15,46],
and sensitization of RVM ON cells, which was correlated
with behavioural hypersensitivity, has been demonstrated
in neuropathic rats [47]. Furthermore, electrophysiologi-
cal evidence from spinal cord recordings suggests activity
in descending excitatory pathways is enhanced after
peripheral nerve injury as demonstrated by a greater sen-

sitivity of dorsal horn neurones to inhibition by spinal
administration of ondansetron or intra-RVM administra-
tion of lignocaine [16,19]. We show here that topical spi-
nal application of ondansetron produced marked
inhibition of the evoked neuronal responses to dynamic
brush and mechanical punctate stimulation in the MIA
group, an effect not observed in the control group. These
electrophysiological findings correlate with a recent

A and B. Comparison of the effects of pregabalin alone or in the presence of ondansetron on the evoked neuronal responses to mechanical punctate (A) and thermal stimulation (B)of the peripheral receptive field in MIA rats (n = 7)Figure 8
A and B. Comparison of the effects of pregabalin alone or in the presence of ondansetron on the evoked neu-
ronal responses to mechanical punctate (A) and thermal stimulation (B)of the peripheral receptive field in 
MIA rats (n = 7). Pregablin alone significantly inhibits the natural evoked neuronal responses. This inhibitory effect of the drug 
is lost when spinal 5-HT3 receptors are blocked. Data are expressed as the mean percentage of pre-drug control values ± 
S.E.M. * p < 0.05 significant difference compared with pre-drug baseline controls. C. Quantification of α2δ-1 and 5-HT3A 
subunit mRNA levels in ipsilateral relative to contralateral DRGs following MIA or saline injection. (C). Mean 
data for Q-PCR of α2δ-1 in pooled ipsilateral L3/L4 DRGs (ipsi 3+4) or pooled ipsilateral L5/L6DRGs (ipsi 5+6) from either 
sham (n = 10 and n = 9 respectively) or MIA animals (n = 15 or n = 7 respectively) 14 days after injection. (D). Mean data for 
Q-PCR of 5-HT3A in pooled ipsilateral L3/L4 DRGs (ipsi 3+4) or pooled ipsilateral L5/L6DRGs (ipsi 5+6) from either sham (n 
= 7 and n = 7 respectively) or MIA animals (n = 11 or n = 7 respectively). Data are normalized to the respective contralateral 
side and expressed as the mean percentage of control values ± S.E.M. * p < 0.05 significant difference compared with sham 
controls.
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behavioural study where the antinociceptive effectiveness
of ondansetron (10 μg) was demonstrated [48].

There are a number of reports demonstrating a serotoner-
gic facilitatory effect onto the spinal cord [44,49] through
engagement of pronociceptive spinal 5-HT3 receptors in
models of acute and chronic pain, with most studies using
neuropathic models [12,15,17,29,50-52]. Pharmacologi-
cal antagonism of physiological responses reveals the role
of released transmitter acting on a particular receptor,
which will depend on activity in related neuronal path-
ways. Thus the novel inhibitory effects of ondansetron on
low threshold mechanical responses in the MIA treated
group suggests adaptive changes in the activity in seroton-
ergic pathways.

Functional 5-HT3Rs require the presence of the 5HT3A
subunit [53,54], and as we did not observe any significant
changes in 5HT3A receptor mRNA levels in the ipsilateral
DRG of MIA rats it is unlikely that alterations in 5HT3R
expression is responsible for the greater inhibitory effect
of ondansetron in MIA-injected rats. Thus the data pre-
sented here suggests that increased functionality, likely
augmented 5HT release, at pronociceptive spinal 5-HT3Rs
is one molecular mechanism for central sensitisation
underpinning the behavioural hypersensitivity seen in
this model of OA pain.

The spinal source of 5-HT arises largely from the RVM (see
[55]), and it is well documented that descending seroton-
ergic influences from this brainstem area elicits bi-direc-
tional effects on spinal neurones. The facilitatory and
inhibitory effects from the RVM are mediated through
recruitment of RVM ON or OFF cells respectively, and
there is evidence suggesting that some descending RVM
ON cells use 5-HT as a neurotransmitter [12,56,57]. In
addition, sensitization of pronociceptive RVM ON cells
has been demonstrated in a model of peripheral nerve
injury [47]. However it should be noted that pain modu-
lation from the RVM can also be non-serotonergic, indeed
immunohistological evidence suggests that pronocicep-
tive ON cells do not contain 5-HT [58]. Another possibil-
ity then is that non-serotonergic RVM neurones may
contact 5-HT containing interneurones. Nonetheless, it is
possible that neuroplastic changes within the RVM may
result in enhanced/altered excitatory drive mediated by 5-
HT (either from direct pro-nociceptive RVM projections or
via contact with 5-HT interneurones) acting on spinal 5-
HT3 receptors, resulting in hyperexcitability of spinal dor-
sal horn neurones. Further experiments are needed to
assess whether changes similar to those observed in neu-
ropathic rats also occur in the MIA model of OA pain.

Thus our findings with spinal ondansetron in the MIA
model of OA pain support previous reports and highlight
the crucial link between descending serotonergic facilita-

tion and chronic pain. Interestingly, in the MIA model the
induction of 5HT3 receptor mediated facilitatory events
exerted on low-threshold mechanical responses was
observed suggestive of a facilitatory drive contributing to
secondary hyperalgesia, which is characterized by static
mechanical responses.

Systemic administration of pregabalin resulted in inhibi-
tion of the noxious evoked electrical evoked responses
and also the innocuous and noxious natural evoked
responses in the MIA treated rats only. A recent behav-
ioural study by our group using the alpha2delta ligand
gabapentin showed modalities of hyperalgesia being
altered by gabapentin in the MIA induced model of OA
pain [23]. Thus, these findings add to the growing body of
evidence demonstrating the state-dependent effects of lig-
ands at the α2δ-1 subunit of voltage gated calcium chan-
nels (VGCCs), actions which include unique alterations in
the trafficking of the α2δ-1 subunit [39].

The mechanism by which gabapentinoids are able to tar-
get a ubiquitous subunit present in all VGCCs in patho-
physiological states to provide analgesia yet be without
antinociceptive effect under normal physiological condi-
tions remains unclear. Alterations in VGCC function are
likely to play a role, for instance N-type calcium channels
acquire greater functional roles after nerve injury [59,60]
and evidence exists for an upregulation of the α2δ-1 subu-
nit and the N-type pore-forming α1B subunit in this pain
state, which is proposed to correlate with the develop-
ment of tactile allodynia and relate to the injury-specific
action of gabapentin [33,35-39,61,62]. In line with this
hypothesis, transgenic mice that constitutively but glo-
bally over-express the α2δ-1 subunit in neuronal tissues
resulted in enhanced currents, altered kinetics and volt-
age-dependence of VGCC activation in sensory neurons;
exaggerated and prolonged dorsal horn neuronal
responses to peripheral mechanical and thermal stimula-
tions; and pain behaviours [63,64].

In the present study, we observed an increase in α2δ-1 sub-
unit mRNA expression in the DRG receiving afferents
from the knee of the MIA group, which was comparable to
findings in models of chemotherapy and varicella zoster
virus induced neuropathies (approx. 46% and 38%
increase respectively), and gabapentin alleviated the
behavioural measures of hypersensitivity in these neuro-
pathic animals. [34,36]. After peripheral nerve injury the
upregulation is much greater in magnitude [38,39] and
restricted to the denervated DRG segment which suggests
that the effects of gabapentin and pregabalin on evoked
responses may involve additional factors.

Indeed, upregulation of the α2δ subunit, is not the only
determinant of the selective antinociceptive effects of
gabapentinoids as the converse has also been shown, i.e.
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reversal of allodynic behaviour with gabapentin occurs in
the absence of α2δ-1 subunit upregulation [40] and
behavioural hyperalgesia can be observed as early as 1 day
after peripheral nerve injury [65], whilst α2δ-1 upregula-
tion is only evident after 7 days [37]. Another mechanism
proposed to be permissive for the antinociceptive effec-
tiveness of α2δ-1 ligands and their ability to differentiate
pathological states is the increased active participation of
descending serotonergic facilitation of spinal neuronal
activity via activation of spinal 5-HT3 receptors [19,29].
Interruption of descending facilitation resulted in a loss of
antinociceptive effectiveness of gabapentin/pregabalin in
neuropathic rats [17,29], whilst activating spinal 5-HT3
receptors in naïve control animals enabled gabapentin to
produce marked inhibitions of evoked neuronal activity
where previously, in the absence of 5-HT3 activation, the
drug had little or no effect [29]. In healthy humans, cap-
saicin induced hyperalgesia is sensitive to gabapentin in
terms of both psychophysics and fMRI activation in brain-
stem and other brain areas, conditions where no time for
upregulation of the α2δ-1 subunit could occur [30,66].
The findings of the present study parallel those seen in the
spinal nerve ligation model and lend support for the con-
cept that serotonergic circuits play a role in regulating the
state dependent antinociceptive effects of gabapentinoids,
since we observed an increased sensitivity of spinal neu-
rons to the inhibitory actions of spinal 5-HT3 antago-
nism, indicating enhanced descending facilitation in the
OA group, and critically, the state dependent inhibition of
neuronal responses with pregabalin were lost when 5-
HT3 facilitation was blocked.

Conclusion
Overall, the data presented here demonstrate an altered
physiology of deep dorsal horn wide dynamic range neu-
rons in the MIA group, indicating a link between
increased neuronal activity and behavioural hypersensi-
tive responses in these animals. The novel and increased
sensitivity of mechanical and thermal evoked neuronal
responses to the inhibitory effects of spinal ondansetron
suggests an enhanced functionality at pronociceptive spi-
nal 5-HT3 receptors. Thus our findings would implicate
these changes as contributory molecular substrates under-
lying central sensitisation, a feature of many chronic pain
states, in osteoarthritis. Finally, spinal ondansetron pre-
vented the antinociceptive actions of pregabalin, suggest-
ing that descending facilitation, alongside the
upregulation in the expression of α2δ-1 subunit of
VGCCs, is an important mechanism which enables the
inhibitory actions of pregabalin in this model of OA pain.

OA represents one of the largest clinical costs to health-
care in the western world [67]. The associated pain is the
main symptom of complaint in patients with a pan-Euro-
pean survey showing that nearly a third of patients suffer-

ing from chronic pain presented with OA as the primary
cause [68]. Therefore unraveling the cellular and molecu-
lar mechanisms underlying the pain state is of major clin-
ical importance in the development of more clinically
effective drugs.

Methods
Induction of Osteoarthritis
Osteoarthritis was induced by injecting 2 mg monoso-
dium iodoacetate in 25 μl of 0.9% saline through the
infrapatellar ligament of the knee in anesthetised Sprague
Dawley rats (130–150 g). Sham animals were injected
with sterile 0.9% saline only. Following injection animals
were allowed to recover and then re-housed in cages
under a 12-h alternating light/dark cycle with ad libitum
access to food and water.

Behavioural assessment
Behavioural responses to mechanical and cooling stimu-
lation of the ipsi- and contralateral hind paws were
recorded over a two-week period, as was performance on
a rotarod. Briefly, animals were left to acclimatize to the
testing area for 30 min before testing, sensitivity to
mechanical puncatate stimulation was then assessed
through measurement of the number of foot withdrawal
responses to a trial of 10 applications of calibrated von
Frey filaments with increasing bending force of 1 and 6 g
to the plantar surface of each hind paw. Cold sensitivity
was similarly assessed as the number of withdrawals out
of a trial of 5 applications of a drop of acetone to the
plantar surface of ipsilataeral and contralateral hind paws.
Withdrawal frequency was quantified as = (number of
foot withdrawals/10 or 5 trials as appropriate).

Behavioral signs of ambulatory-evoked pain were assessed
preoperatively and on postoperative days -3, 2, 4, 7, 9 11
and day 14 using the Ugo Basile model 7750 Rotarod
(Linton Instruments, Diss, Norfolk, UK). The apparatus
was set to accelerate from 0–20 revolutions per minute
(rpm) over 60 s and the time maintained on the beam
before falling was recorded (with a maximum cut-off of
180 s). The general ambulation of the animal was also
observed and scored as follows: 0 = no limp, 1 = slight
limp, 2 = marked limp and decreased use of ipsilateral
limb and 3 = avoidance of use of ipsilateral limb. Previous
studies from our laboratory have validated the use of the
rotarod test as a reliable means for assessing ambulatory
evoked pain [23,69-71]. Only rats scoring between 60 and
120 s in training sessions before surgery were used for
experimentation.

Electrophysiology
Two weeks after MIA injection in vivo electrophysiological
studies were performed (post-operative days 15 – 19) as
previously described. Briefly, animals were anesthetised
Page 13 of 17
(page number not for citation purposes)



Molecular Pain 2009, 5:45 http://www.molecularpain.com/content/5/1/45
and maintained for the duration of the experiment with
isofluroane (1.5–1.7%) delivered in a gaseous mix of N2O
(66%) and O2 (33%). A laminectomy was performed to
expose the L4–5 segments of the spinal cord. Extracellular
recordings were made from ipsilateral deep dorsal horn
neurones (lamina V-VI) using parylene coated tungsten
electrodes (A-M Systems, USA). All the neurones recorded
in this study were WDR since they all responded to both
light touch and noxious inputs (pinch and noxious heat);
further all neurones responded to natural stimuli in a
graded manner with coding of increasing intensity.

The evoked response to a train of 16 transcutaneous elec-
trical stimuli (2 ms wide pulses, 0.5 Hz) applied at 3 times
the threshold current for C-fibre activation of the dorsal
horn cell. The train of electrical stimuli was delivered via
stimulating needles inserted into the peripheral receptive
field, following which a post-stimulus histogram was con-
structed. Responses evoked by Aβ – (0–20 ms), Aδ – (20–
90 ms) and C-fibres (90–350 ms) were separated and
quantified on the basis of latency. Responses occurring
after the C-fibre latency band were taken to be the post-
discharge of the cell (350–800 ms).

The centre of the peripheral receptive field was also stim-
ulated using mechanical punctate and thermal stimuli
(von Frey filaments, 2, 8, 26 and 60 g and heat, applied
with a constant water jet, 35, 40, 45, 48 and 50°C) Appli-
cation of each von Frey hair was separated by a minimum
interval period of 5 10 seconds, and longer for very
responsive neurons at the higher intensity range. Applica-
tion of each subsequent heat stimulus was separated by a
minimum period of 1 minute. All natural stimuli were
applied for a period of 10 seconds per stimulus. Data was
captured and analysed by a CED 1401 interface coupled
to a Pentium computer with Spike 2 software (Cambridge
Electronic Design; PSTH and rate functions).

On average, between 1 to 3 neurones were recorded from
each animal in order for their baseline responses to
peripheral stimuli (detailed above) to be characterized.
Pharmacological assessment was carried out on the final
neuron recorded in each animal, i.e. a drug study was car-
ried out on one neuron only per animal. The testing pro-
cedure was carried out every twenty minutes and
consisted of a train of electrical stimuli followed by natu-
ral stimuli as described above. Following three consecu-
tive stable control trials (< 10% variation for the C-fibre
evoked response, and < 20% variation for all other param-
eters) neuronal responses were averaged to give the pre-
drug control values.

Drug administration
Ondansetron (Zofran TM Glaxo-Wellcome) was diluted
with 0.9% saline solution to give doses of 10, 50 and 100

μg/50 μl, and was administered via topical spinal applica-
tion with a Hamilton syringe. Pregabalin (a gift from
Pfizer, Sandwich, UK) was dissolved in 0.9% saline solu-
tion to give doses of 0.3, 3 and 10 mg/kg, which were
administered via subcutaneous injection in the scruff of
the back of the neck.

The effect of each dose (ondansetron or pregabalin) was
followed for over an hour, with tests carried out at 20, 40
and 60 minutes before subsequent drug applications were
made and effects again followed for an hour.

Quantitative PCR – α2δ-1 and 5-HT3 receptor subunit 
mRNA levels
Pain associated with peripheral nerve injury and also the
analgesic efficacy of gabapentinoids has been correlated
with a marked upregulation of the α2δ-1 subunit of volt-
age gated calcium channels in rats [33,35,37-39]. Further-
more there is evidence for neuropathic pain associated
with osteoarthritis [72]. Therefore we analysed the α2δ-1
subunit mRNA levels in DRG for the primary afferents
innervating the knee joint and hindpaw (L3–L6) in MIA
rats. Additionally, the 5-HT3A subunit mRNA was simi-
larly quantified. We verified that the knee afferents arise
from L3 (5.2% of total cells) and L4 (2.9%) as compared
to L5 (0.5%) by counting labelled cells after intra-articular
injection of Fast Blue (10 μl 1%).

Following the last behavioural testing day (post injection
day 14), MIA-treated animals were decapitated and L3–6
DRGs ipsilateral and contralateral to injection were har-
vested and kept at -80°C. The methods for quantitative
PCR (Q-PCR) were essentially as described previously
(Donato et al., 2006). Briefly, RNA was extracted from
ipsi- or contralateral L3 – L6 pulverized frozen DRGs, 14
d after injection of MIA or saline into the knee joint. RNA
was isolated using RNeasy columns (Qiagen), including
an on-column DNase step. Reverse transcription was car-
ried out on 1 μg RNA using the iScript kit with random
primers (BioRad, Hercules, CA). Q-PCR was performed
with an iCycler (BioRad) using the iQ SYBR supermix
(Biorad). For each set of primers and for every experiment
a standard curve was generated using a serial dilution of
reverse-transcribed RNA from the combined samples. The
following Q-PCR primers were used: rat GAPDH
(AF106860) 5'-ATGACTCTACCCACGGCAAG-3' (for-
ward), 5'-CATACTCTGCACCAGCATCTC-3' (reverse); rat
α2δ-1 (NM012919) 5'-AGCCTATGTGCCATCAATTAC-3',
5'-AGTCATCCTCTTCCATTTCAAC-3'; rat 5HT3A
(NM024394) 5'-AGCCTTGACATCTATAACTTCC-3', 5'-
TCCGACCTCACTTCTTCTG-3'.

Data analysis
All data are presented as mean ± standard error of mean
(S.E.M.). Behavioural data were analysed using the non-
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parametric Mann-Whitney U-test. Analysis of electrophys-
iological was as follows: Differences between groups with
respect to pre-drug baseline responses were analysed
using unpaired Student's t-test to compare the cell depth
and electrically evoked responses; a two-way ANOVA fol-
lowed by Bonferroni post-hoc test was used to compare
the baseline mechanical and thermal evoked neuronal
responses. Drug effects were expressed as the mean maxi-
mal evoked neuronal response for each dose. A one-way
analysis of variance with repeated measures (RM-
ANOVA) was used to evaluate drug effects (ondansetron
or pregabalin) on the evoked responses to each stimulus
(electrical, mechanical and heat) in MIA or vehicle treated
rats. Where a significant effect was seen with increasing
dose, Dunnett's post hoc tests where then used to assess
individual dose effects compared with pre-drug baseline
controls. An unpaired t-test on normalised data was used
to compare drug effects between experimental groups.
Analysis of Q-PCR data was as follows: For each set of
primers and for every experiment a standard curve was
generated using a serial dilution of reverse-transcribed
RNA from the combined samples. Data were normalized
for expression of glyceraldehyde-3-phosphate dehydroge-
nase (GAPDH) mRNA. Data from the ipsilateral DRG
were then normalized to their respective contralateral
DRG and given as the mean ± SEM. The cell bodies of the
primary afferents supplying the knee joint predominate in
L3 & L4 DRG and the L5 & 6 DRG are representative pre-
dominantly of afferent cell bodies of the referred receptive
field area, therefore the q-PCR data was pooled into two
groups (L3+L4 and L5+L6). Statistical significance
between OA and sham animals was determined by a Stu-
dent's un-paired t-test. All statistical testing was performed
by using Prism 4.0 software (Graphpad/Prism, San Diego,
Calif). Level of significance was set at * P < 0.05.
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