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Abstract

The anterior cingulate cortex (ACC) is a forebrain structure that plays important roles in emotion,
learning, memory and persistent pain. Our previous studies have demonstrated that the
enhancement of excitatory synaptic transmission was induced by peripheral inflammation and nerve
injury in ACC synapses. However, little information is available on their presynaptic mechanisms,
since the source of the enhanced synaptic transmission could include the enhanced probability of
neurotransmitter release at existing release sites and/or increases in the number of available
vesicles. The present study aims to perform quantal analysis of excitatory synapses in the ACC with
chronic pain to examine the source of these increases. The quantal analysis revealed that both
probability of transmitter release and number of available vesicles were increased in a mouse model
of peripheral inflammation, whereas only probability of transmitter release but not number of
available vesicles was enhanced in a mouse model of neuropathic pain. In addition, we compared
the miniature excitatory postsynaptic potentials (mEPSCs) in ACC synapses with those in other
pain-related brain areas such as the amygdala and spinal cord. Interestingly, the rate and amplitude
of mEPSCs in ACC synapses were significantly lower than those in the amygdala and spinal cord.
Our studies provide strong evidences that chronic inflammatory pain increases both probability of
transmitter release and number of available vesicles, whereas neuropathic pain increases only
probability of transmitter release in the ACC synapses.

shown that excitatory synaptic transmission was

Background

The ACC is involved in major brain functions including
learning, memory, and persist pain [1-9]. Recently, a
number of studies consistently suggest that the ACC plays
important roles in processing pain-related information in
humans and in the behavioral responses to noxious stim-
uli or tissue injury in animals [3,6,10-14]. As for the
mechanisms of pain transmission and modulation, it has
been proposed that the enhancement of synaptic trans-
mission contributes to chronic pain. For example, we have

enhanced in the ACC of mice with persistent inflamma-
tory pain [15] and neuropathic pain [7]. There are at least
two main evidences supporting for presynaptic changes of
glutamate release in the ACC after the nerve injury: First,
we demonstrated that paired-pulse facilitation (PPF), a
phenomenon in which activation of a synapse at shorter
intervals results in a presynaptic facilitation of transmitter
release in response to the second stimulus [16] was appar-
ently reduced in ACC synapses with chronic pain [7,15].
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Second, we showed that the rate of MK-801 (NMDA
receptor antagonist) blocking was significantly faster in
ACC synapses with chronic pain together with the
increase of mEPSCs rate [7,15]. Therefore, it is likely that
peripheral inflammation or nerve injury produces
increases in mean quantal content in ACC synapses.

The quantal content of transmission at a synapse is deter-
mined by the number of releasable quanta (N) that corre-
sponds to the number of functional vesicles, and the
probability (p) of each quantum to be released. Although
our previous studies demonstrated that presynaptic neu-
rotransmitter release was enhanced by peripheral inflam-
mation and neuropathic pain in ACC synapses [7,15], the
exact changes in these quantal parameters remains to be
investigated. To examine the source of the enhanced pres-
ynaptic neurotransmitter release, here we performed
quantal analysis of excitatory synaptic transmission with
inflammatory pain and neuropathic pain.

mEPSCs that are observed in the absence of presynaptic
action potentials, are frequently used as a parameter to
reflect altered synaptic transmission responsible for
inflammatory pain [15], neuropathic pain [7] and dia-
betic neuropathy [17]. The amplitude and decay time con-
stant of mEPSCs are determined by various factors such as
the glutamate concentration in the synaptic cleft and the
receptor properties; the glutamate concentration in the
synaptic cleft is determined by the kinetics of glutamate
release, diffusion, binding by the receptors, uptake by the
transporters, and synaptic geometry, while the receptor
properties are determined by kinetics, density, and spatial
distribution [18]. We also compared the characteristics of
mEPSCs in pain-related brain regions such as ACC, baso-
lateral amygdala, and spinal cord of adult mice and dis-
cuss how such characteristics of mEPSCs maybe related to
pain transmission and modulation.

Results

Quantal analysis of excitatory synaptic transmission in
ACC synapses following CFA injection and nerve ligation
We performed conventional whole-cell patch-clamp
recordings from visually identified pyramidal neurons in
the layer II/III of ACC slices in mice receiving CFA and in
mice with peripheral nerve ligation. First, we compared
the unitary EPSCs (uEPSCs) among ACC neurons from
control mice, mice following CFA injection, and mice
with nerve ligation. The uEPSCs were obtained by deliver-
ing focal electrical stimulation to the layer V. As shown in
Fig. 1A, uEPSCs in control mice were obtained at the stim-
ulus intensity of 5V, and the mean amplitude of uEPSCs
was 25.7 + 8.9 pA (n = 12). Subsequently, the same inten-
sity of stimulus was used to record uEPSCs in mice follow-
ing CFA injection and mice with nerve ligation. We found
that uEPSCs were potentiated in mice after CFA injection
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or peripheral nerve ligation, and the mean amplitude of
uEPSCs in mice following CFA injection and mice with
nerve ligation were 50.7 + 8.6 (n =8) and 52.4 + 9.6 (n =
9) pA, respectively (Fig. 1B and 1C). After recording uEP-
SCs, we perfused TTX (1 uM) to obtain mEPSCs that
reflect the release of single quanta of neurotransmitter
(Fig. 1D). The rates of mEPSCs in mice following CFA
injection and mice with nerve ligation were significantly
larger (p < 0.01, respectively) than that in control mice
(control, 1.1 + 0.2 Hz, n = 12; CFA, 1.6 + 0.3 Hz, n = §;
Nerve ligation, 1.9 + 0.3 Hz, n = 9, Fig. 1E). There was no
difference in the amplitude of mEPSCs between control
mice and mice with CFA injection, while that in mice with
nerve ligation was significantly larger (p < 0.01, respec-
tively) than those in control mice and mice following CFA
injection (control, 9.4 + 1.0 pA, n = 12; CFA, 9.6 + 0.8 pA,
n = §; Nerve ligation, 12.9 + 1.4 pA, n =9, Fig. 1E). These
results indicate that enhanced excitatory synaptic trans-
mission after CFA injection is mainly attributable to an
increase in probability of presynaptic neurotransmitter
release, whereas that after nerve ligation is caused by not
only an increase in probability of presynaptic neurotrans-
mitter release but also an increase of postsynaptic respon-
siveness.

To evaluate the number of available vesicles and release
probability, quantal analysis was performed by using a
simple binomial statistics. CV (ratio of SD (o) to the mean
uEPSCs amplitude (p)) varies with quantal content and
reflects changes in presynaptic function including the
number of available vesicles (N) and release probability
(p) [19,20]. If we assume binominal statistics, CV and ¢/
p (ratio of the variance (c2) to the mean uEPSCs ampli-
tude (p)) can be expressed as follows:

CV =

S =q-p),
u

where N is the number of available vesicles, p is the release
probability and ¢ is the mean mEPSC amplitude. The
number of available vesicles in CFA-treated mice was sig-
nificantly increased (p < 0.05, respectively) in comparison
with those in control mice and mice with nerve ligation,
although there was no difference between control mice
and mice with nerve ligation (control, 4.6 + 0.5, n = 12;
CFA, 7.4 + 1.2, n = 8; Nerve ligation, 4.9 + 0.5, n = 9, Fig.
2A). The release probabilities in mice following CFA injec-
tion and mice with nerve ligation were also significantly
increased (p < 0.05 and p < 0.05, respectively) in compar-
ison with that in control mice, while there was no differ-
ence between those in mice following CFA injection and
mice with nerve ligation (control, 0.67 + 0.09, n = 12;
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uEPSCs and mEPSCs in ACC synapses after peripheral inflammation and nerve ligation. A-C, Traces indicate 20
consecutive UEPSCs recorded at the stimulus intensity of 5 V in ACC neurons from control mouse (A), mouse following CFA
injection (B), and mouse with nerve ligation (C), respectively. Representative histogram of peak amplitude of uEPSCs (100 tri-
als) in ACC neurons from control mouse (A), mouse following CFA injection (B), and mouse with nerve ligation (C), respec-
tively, with a Gaussian curve (Bottom). D, Representative mEPSCs recorded in pyramidal neurons at a holding potential of -70
mV from control mice, mice following CFA injection, and mice with nerve ligation. E, The mean rate (left) and amplitude (right)
of mEPSCs in neurons from control mice (n = 12), mice following CFA injection (n = 8), and mice with nerve ligation (n = 9).

#kp < 0.01.
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Figure 2

Number of available vesicles and release probability after peripheral inflammation and nerve ligation. A and B,
Number of available vesicles (A) and release probability (B) in control mice (n = 12), mice following CFA injection (n = 8), and
mice with nerve ligation (n = 9). *p < 0.05. C, A model for enhanced quantal release in ACC synapses with chronic pain. In
mice following CFA injection, both probability of transmitter release and number of available vesicles are increased in ACC
synapses. In mice with nerve ligation, only probability of neurotransmitter release but not number of available vesicles
increased in ACC synapses. Upregulated phosphorylation of GIuR| contributes to an increase of postsynaptic responsiveness
in mice with nerve ligation.
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CFA, 0.85 + 0.07, n = 8; Nerve ligation, 0.90 + 0.05, n =9,
Fig. 2B). These findings suggest that both the number of
available vesicles and the release probability could be
enhanced by inflammatory pain, whereas only the release
probability could be enhanced by nerve ligation (Fig. 2C).

Comparison of mEPSCs in ACC, basolateral amygdala,
and spinal cord

Next, we recorded mEPSCs from pyramidal cells of ACC
and basolateral amygdala and lamina II cells of spinal
cord in normal condition (Fig. 3A). In the present study,
we decided to record from basolateral amygdala and spi-
nal cord among the pain-related brain regions, since baso-
lateral amygdala is a major region that is known to
contribute to pain-related fear/anxiety [21] and superficial
lamina of the spinal dorsal horn is the first site of synaptic
integration in the pain pathway [22]. First, we compared
the rate of mEPSCs among ACC, basolateral amygdala,
and spinal cord. Interestingly, the rate of mEPSCs in ACC
was significantly lower than those in basolateral amygdala
and spinal cord (p < 0.01 and p < 0.01, respectively), and
the rate in basolateral amygdala was also significantly
lower than that in spinal cord (p < 0.05) (ACC, 1.2 + 0.2
Hz, n = 12; basolateral amygdala, 3.5 + 0.4 Hz, n = 14; spi-
nal cord, 5.4 + 0.7 Hz, n = 12, Fig. 3B).

We also compared the amplitude of mEPSCs among three
groups. The amplitude of mEPSCs in ACC was signifi-
cantly smaller than those in basolateral amygdala and spi-
nal cord (p < 0.01 and p < 0.01, respectively), although
there was no difference between basolateral amygdala and
spinal cord (ACC, 9.8 + 0.6 pA, n = 12; basolateral amy-
gdala, 12.9 + 0.4 pA, n = 14; spinal cord, 13.9 + 1.4 pA, n
=12, Fig. 3C). Next, we compared the rise time of mEPSCs
and found that there were no differences among three
groups (ACC, 1.4 + 0.1 ms, n = 12; basolateral amygdala,
1.4 + 0.1 ms, n = 14; spinal cord, 1.2 + 0.1 ms, n = 12, Fig.
3D). Finally, we compared the decay time of mEPSCs
among three groups. The decay time of mEPSCs in ACC
and basolateral amygdala were significantly larger than
that in spinal cord (p < 0.01 and p < 0.01, respectively),
although there was no difference between ACC and baso-
lateral amygdala (ACC, 8.8 + 0.8 ms, n = 12; basolateral
amygdala, 8.6 + 0.6 ms, n = 14; spinal cord, 5.7 + 0.4 ms,
n = 12, Fig. 3E). These results suggest that the rate and
amplitude of glutamatergic mEPSCs in ACC synapses are
lower than other pain-related areas at resting condition.

Discussion

In the present study, we performed quantal analysis of
excitatory synaptic transmission after CFA injection and
nerve ligation. This is the first study, to our knowledge, to
perform quantal analysis in the animal model of nerve
injury. We demonstrate that both the probability of trans-
mitter release and number of available vesicles were
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increased in mice following CFA injection, while only the
probability of transmitter release but not the number of
available vesicles was increased in mice with nerve liga-
tion. Thus, it is strongly suggested that presynaptic mech-
anisms for enhanced excitatory synaptic transmission
within the ACC may not be the same as comparing the
inflammatory pain model with neuropathic pain model,
although both models showed the enhancement of the
presynaptic neurotransmitter release [7,15].

Our current study provided the evidences for enhanced
transmitter release by quantal analysis. However, we have
to keep in mind that synaptic failures observed in this
study would be smaller than expected, since we used the
stimulus intensity just above the level that gave mostly
failures. In general, when focal extracellular stimulation is
used to obtain uEPSCs, the stimulus intensity is adjusted
to value that demonstrates an all or none behavior of the
EPSCs. Therefore, future studies would be necessary to
precisely evaluate the probability of transmitter release
and number of available vesicles.

Quantal analysis in the ACC of mice with inflammatory
pain and nerve ligation

In mice following CFA injection, the amplitude of eEPSCs
and the rate of mEPSCs were potentiated, whereas that of
mEPSCs remained unchanged, compared with the results
obtained from control mice. As demonstrated by quantal
analysis, these observations can be explained by the
enhancement of the number of available vesicles together
with the increase in the probability of transmitter release.
On the other hand, the enhancement of the amplitude of
eEPSCs and mEPSCs together with the increase in mEPSC
rate were observed in mice with nerve ligation, in compar-
ison with the results obtained from control mice. These
observations would be explained by the enhancement of
the probability of transmitter release without changing
the number of available vesicles and an increase in posts-
ynaptic responsiveness. Taken together, these results indi-
cate that the mechanisms of the enhanced synaptic
transmission vary depending on the nerve injury models.
Furthermore, these results would partly reflect the locus of
synaptic alterations after peripheral nerve injury. For
instance, in mice with inflammatory pain, we have previ-
ously shown that the enhanced synaptic transmission
results from the increased probability of presynaptic neu-
rotransmitter release rather than a possible postsynaptic
modification of functional AMPA receptors [15],
although we cannot completely rule out the possible
involvement of postsynaptic mechanisms due to the
enhancement of NR2B-containing receptors [14]. In mice
with nerve ligation, the enhanced synaptic transmission
was mediated by presynaptic enhancement of glutamate
release probability as well as postsynaptic enhancement
of AMPA receptor-mediated responses because of the
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Figure 3

Characteristics of mMEPSCs in ACC, basolateral amygdala, and spinal cord. A, Representative mEPSCs recorded ata
holding potential of -70 mV from ACC, basolateral amygdala, and spinal cord neurons, respectively (left). Individual mEPSCs
obtained from respective recordings (right). B-E, Bar graphs showing the averaged rate (B), amplitude (C), rise time (D), and
decay time (E) in ACC (n = 12), basolateral amygdala (n = 14), and spinal cord neurons (n = 12), respectively. Note that the
rate and amplitude of mMEPSCs from ACC neurons are significantly lower than those from amygdala and spinal cord neurons.
Also note that the decay time of mEPSCs from spinal cord neurons is significantly smaller than those from ACC and amygdala
neurons. *p < 0.05, ¥p < 0.01.
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phosphorylation of GluR1 subunit [7]. Increases in
mEPSC amplitude after nerve ligation could also reflect
the increase in the transmitter content of individual vesi-
cles, provided that the postsynaptic sites were not satu-
rated. Since it has previously been shown that the infusion
of a high concentration of L-glutamate into mature calyc-
eal terminals did not cause saturation of AMPA receptors
[23], enhancement of the transmitter content of individ-
ual vesicles may have been caused by nerve ligation.
Taken together, our results thus provide the evidence that
excitatory synaptic transmission is subject to divergent
plasticity in different peripheral nerve injury models.

The strength of a synaptic connection between two neu-
rons reflects three quantal parameters of neurotransmis-
sion: the number of a pool of available quanta (N); the
probability of transmitter release (p); and the amplitude
of the response attributable to quantal release (gq) [20].
Although we defined N as the number of available vesi-
cles, it is generally believed that N corresponds to the
number of release sites or active zones that contain clus-
ters of vesicles, some of which are docked near the presy-
naptic membrane [24]. Thus, it is likely that the enhanced
quantal content with inflammatory pain reflects an
increase in the probability of release of available quanta,
with perhaps also increases in the number of release sites.
In other words, two types of changes can be conceivable
in ACC synapses with peripheral inflammation: (1)
increase in the probability of activating exocytosis of a
docked vesicle or (2) increase in the probability that a
release site is occupied by a docked vesicle ready for
release [20]. It has been suggested that 'kiss-and-run' vesi-
cle fusion exists at endocrine cells, pituitary nerve termi-
nals, cultured hippocampal neurons, and calyx of Held
synapses [25]. The kiss-and-run can rapidly recycle vesi-
cles and affect the size and the kinetics of the synaptic cur-
rent. Although little is known whether kiss-and-run plays
a major mode of fusion in ACC synapses, such mode of
fusion may also be altered with inflammatory pain and
nerve ligation. Future studies are necessary to understand
the relationship between the enhanced quantal content
and 'kiss-and-run' vesicle fusion at ACC synapses with
chronic pain.

Calcium-stimulated adenylyl cyclase and possible
presynaptic action

We have previously shown that adenylyl cyclase [5] 1 and
8 are essential for chronic pain. For example, in AC1/8
double knockout mice, chronic pain sensitization was sig-
nificantly reduced in inflammatory [15] and neuropathic
pain model [7,21]. In ACC synapses with inflammatory
pain, inhibition of AC1 and/or AC8 were sufficient to
inhibit the long-lasting enhanced presynaptic transmitter
release [15]. Thus, the molecular mechanisms responsible
for the enhancement of probability of transmitter release
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and number of available vesicles in inflammatory pain
could be mediated by presynaptic AC1 and/or AC8 pro-
teins such as cAMP response element binding protein
(CREB) [21]. In addition, we have found that AC1 is crit-
ical for both long-term presynaptic and postsynaptic
changes in ACC synapses after nerve ligation [7]. AC1 thus
may contribute both presynaptically and postsynaptically
to nerve ligation-induced plastic changes in the ACC.
Therefore, AC1 may serve as a potential therapeutic target
for treating chronic pain.

Characteristics of mEPSCs in pain related brain regions
Results obtained from the analysis of mEPSCs reveal that
the rate and the amplitude of mEPSCs in spinal cord are
significantly lower than those in ACC and basolateral
amygdala. Nociceptive transmission starts from the
peripheral terminals of dorsal root ganglion (DRG) to
DRG soma, then to spinal cord dorsal horn and finally
reaches to supraspinal structures such as brainstem, thala-
mus and pain-related cortex including ACC and insular
cortex. Considering the nociceptive transmission path-
way, spinal cord plays essential roles as not only the first
site of synaptic integration for pain transmission but also
the site to convey pain transmission to the supraspinal
structure. Therefore, the excitability of the spinal dorsal
horn neurons may be maintained at a higher level than
other pain-related brain areas even at resting condition.
Why are the rate and amplitude of mEPSCs in ACC syn-
apses significantly lower than those in basolateral amy-
gdala and spinal cord? Although it remains unclear why
ACC synapses display low-rate low-amplitude mEPSCs
compared to basolateral amygdala and spinal cord, it is
strongly suggested that glutamatergic input to ACC syn-
apses is low at resting condition. Probably, the excitability
of ACC synapses may be maintained at a lower level under
the resting condition, because ACC has to be activated in
case of placebo analgesia/opioid analgesia as well as pain
perception, two opposite physiological processes [9].
Thus, a systemic analysis of mEPSCs can provide us
detailed information on synaptic transmission under
physiological and pathological pain conditions. Future
studies on quantal analysis in other pain-related brain
regions with inflammatory and neuropathic pain will
expand our knowledge to understand the synaptic mech-
anisms underlying chronic pain.

In summary, we demonstrate the strong evidences that the
enhancement of both the probability of transmitter
release and number of available vesicles contributes to the
enhanced synaptic efficacy in ACC synapses with inflam-
matory pain, whereas only the enhancement of the prob-
ability of transmitter release underlies the enhanced
excitatory synaptic transmission in ACC synapses with
nerve ligation. Thus, peripheral nerve injury models are
not all equivalent with respect to the excitatory synaptic
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transmission in ACC synapses. The mechanisms underly-
ing these differences provide critical synaptic insights into
physiological and pathological response to chronic pain
and need to be clarified to alleviate chronic pain.

Materials and methods

Animals

All mice were maintained on a 12 h light/dark cycle with
food and water provided ad libitum. The Animal Care and
Use Committee of the University of Toronto approved all
experimental procedures. Adult (6-8 weeks) male mice
were used in this study.

Inflammatory pain and neuropathic pain models

To induce inflammatory pain, 10 pl of 50% CFA (Sigma,
St. Louis, MO) was injected subcutaneously into the dor-
sal surface of one hindpaw [14,15]. As a sham group,
saline was injected. A model of neuropathic pain was
induced by the ligation of the common peroneal nerve
(CPN) as described previously [26]. Briefly, mice were
anesthetized by intraperitoneal injection of a mixture
saline of ketamine and xylazine. The left CPN was ligated
with chromic gut suture 5-0 (Ethicon) slowly until con-
traction of the dorsiflexors of the foot was visible as
twitching of the digits. The mechanical allodynia was
tested on postsurgical day 7, and the mice were used for
electrophysiological studies on postsurgical days 7-14.
Sham surgery was done on the left leg by incising the skin,
subcutaneous fascia, and the intercompartmental fascia.
The muscle was then pulled laterally and posteriorly to
expose the nerve. Thereafter, the skin was sutured with 5-
0 silk suture.

For the measurement of behavioral responses, mice were
placed in a round container and allowed to acclimate for
30 min before testing. Mechanical allodynia was assessed
based on the responsiveness of the hindpaw to the appli-
cation of von Frey filaments (Stoelting) to the point of
bending. Positive responses include licking, biting, and
sudden withdrawal of the hindpaw. Experiments were
performed to characterize the threshold stimulus.
Mechanical pressure from a 1.65 filament (force, 0.008 g)
was found to be innocuous in normal mice. This filament
was then used to test the mechanical allodynia after CFA
injection and nerve ligation. Mechanical allodynia was
tested five times with an intertrial interval of 10 min. Ani-
mals were then permitted a rest period for 20 min, after
which mechanical allodynia was again tested. After
obtaining the positive responses, the mice were used for
electrophysiological recordings.

Slice preparation

Coronal brain slices (300 pm) containing the ACC, baso-
lateral amygdala, and spinal cord were prepared as
described previously [15,27,28]. Slices were transferred to
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submerged recovery chamber with oxygenated (95% O,
and 5% CO,) artificial CSF containing the following (in
mM): 124 NaCl, 2.5 KCl, 2 CaCl,, 2 MgSO,, 25 NaHCO,,
1 NaH,PO,, and 10 glucose at room temperature for at
least 1 h.

Whole-cell patch-clamp recordings

Whole-cell patch-clamp recordings were performed in a
recording chamber on the stage of an Axioskop 2FS micro-
scope (Zeiss, Oberkochen, Germany) with infrared differ-
ential interference contrast optics for visualization of
whole-cell patch-clamp recording. Evoked EPSCs (eEP-
SCs) were recorded from layer II/III neurons with an Axo-
patch 200 B amplifier (Molecular Devices, CA), and the
stimulations were delivered by a bipolar tungsten stimu-
lating electrode placed in layer V of the ACC. Unitary
EPSCs (uEPSCs) were obtained by repetitive stimulations
for 100 trials at 0.1 Hz, and neurons were voltage clamped
at -70 mV. The stimulus threshold was determined by
applying a series of stimuli with increasing intensities
until detectable currents were obtained, and the stimulus
intensity (5 V) just above the level that gave mostly fail-
ures was used in the present study. Average amplitude and
coefficient of variation (CV) of uEPSCs were calculated
from 100 consecutive sweeps. The recording pipettes (3—
5 MQ) were filled with solution containing the following
(in mM): 145 K-gluconate, 5 NaCl, 1 MgCl,, 0.2 EGTA, 10
HEPES, 2 Mg-ATP, and 0.1 Na;-GTP, adjusted to pH 7.2
with KOH. For mEPSC recording in the ACC, 1 uM TTX
was added in the perfusion solution following eEPSCs
recordings. For mEPSC recording in the ACC, basolateral
amygdala, and spinal cord, 1 pM TTX was added in the
perfusion solution. Picrotoxin (100 uM) was always
present to block GABA, receptor-mediated inhibitory syn-
aptic currents in all experiments. Access resistance was
15-30 MQ and monitored throughout the experiment.
Data were discarded if access resistance changed >15%
during an experiment. Results were expressed as mean +
SE except the amplitude of uEPSCs (mean + SD). Rise
time and decay time were defined as reported previously
[15]. Statistical comparisons were performed using t-test
or ANOVA followed by Fisher's PLSD (protected least sig-
nificant difference) post-hoc test. In all cases, p < 0.05 was
considered statistically significant. Since no differences
were found between saline-injected and sham operated
groups, these data were pooled in a single control group.
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