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Abstract

Background: Long-term potentiation (LTP), a much studied cellular model of synaptic plasticity,
has not been demonstrated at synapses between primary afferent C-fibers and spinal dorsal horn
(DH) neurons in mice in vivo. EphrinB-EphB receptor signaling plays important roles in synaptic
connection and plasticity in the nervous system, but its role in spinal synaptic plasticity remains
unclear.

Results: This study characterizes properties of LTP at synapses of C-fibers onto neurons in the
superficial DH following high-frequency stimulation (HFS) of a peripheral nerve at an intensity that
activates C-fibers and examines associated activation of Ca2*/calmodulin-activated protein kinase Il
(p-CaMKll), extracellular signal-regulated kinase (p-ERK) and the cyclic AMP response element
binding protein (p-CREB) and expression of c-Fos, and it investigates further roles for the EphBI
receptor in LTP. HFS induced LTP within 5 min and lasts for 3-8 h during the period of recording
and resulted in upregulation of p-CaMKIl, p-ERK and p-CREB protein levels in the spinal cord and
expression of c-Fos in DH. Intrathecal pretreatment of MK-801 or EphB2-Fc prevented LTP and
significantly reduced upregulation of p-CaMKIl, p-ERK, p-CREB and c-Fos. Further, targeted
mutation of EphBl receptor prevented induction of LTP and associated increases in
phosphorylation of CaMKII, ERK, and CREB.

Conclusion: This study provides an in vivo mouse model of LTP at synapses of C-fibers onto the
superficial DH neurons that will be valuable for studying the DH neuron excitability and their
synaptic plasticity and hyperalgesia. It further takes advantage of examining functional implications
of a specific gene targeted mice and demonstrates that the EphBI receptor is essential for
development of LTP.
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Background

Long-term potentiation (LTP) is a much studied cellular
model of synaptic plasticity and it is often studied using in
vitro preparations. LTP at synapses in the hippocampus is
the predominant model for learning and memory forma-
tion [1,2]. In vivo studies using rats have shown that LTP
can also be induced in pain pathways at synapses between
primary afferent C-fibers and dorsal horn (DH) neurons
of the spinal cord (SC) [3-5]. This LTP is thought to be
associated with sensitization of the DH neurons and con-
tributes to hyperalgesia caused by inflammation, trauma
or neuropathy [3,6-9]. While gene targeted mutant mice
have been used to advantage in biomedical studies for
decades, an in vivo model for LTP in the DH of this species
has not been established. The development of such a new
model would be very valuable for studying sensitization
of the DH neurons and their synaptic plasticity and
behavioral hyperalgesia. We characterize here the LTP of
synapses between primary afferent C-fibers and superfi-
cial DH neurons in intact, anesthetized mice in vivo.

LTP can be induced and/or expressed by presynaptic [10]
and postsynaptic [11,12] mechanisms. Although LTP has
been studied extensively in various synapses, mechanisms
of LTP ay synapses between the C-fibers and the DH neu-
rons are still poorly understood. Recent studies have pro-
vided evidence for a postsynaptic, NMDA mediated, Ca2+-
dependent form of LTP induction in lamina I neurons of
rat SC [8,13]. The Ca?+-dependent pathways include pro-
tein kinase C (PKC), calcium-calmodulin-activated pro-
tein kinase II (CaMKII), protein kinase A (PKA), nitric
oxide synthase (NOS) and members of the mitogen-acti-
vated protein-kinase family (MAPK), including the extra-
cellular signal-regulated kinase (ERK) [6,8,13-15]. We
here provide our in vivo evidence in mice that high fre-
quency stimulation (HFS) at C-fiber intensity of sciatic
nerve afferents produces LTP associated with phosphor-
ylation of CaMKII (p-CaMKII), ERK (p-ERK) and CREB
(p-CREB), and increased expression of c-Fos in the SC.

We have recently reported that ephrinB-EphB receptor sig-
naling, which is important in synaptic plasticity in the
nervous system and regulates the glutamatergic synapses
and their plasticity by interaction with NMDA receptors
[16-26], contributes to LTP in intact, anesthetized rats in
vivo [9]. Because of the lack of reagents and antibodies
that selectively activate and/or block specific members of
the EphB receptor subclasses, the identity of the EphB
receptor that may be involved in LTP has not been identi-
fied. Here, using this new in vivo model of LTP in mice, we
analyzed animals that were homozygous mutant for the
EphB1 receptor (EphB1-/-) and provide evidence that this
receptor is essential to development of LTP. Our analysis
further suggests the EphB1 receptor mediates LTP by mod-
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ulating the previously characterized Ca?+-dependent path-
ways.

Results

Properties of C-fibers-evoked field potentials in the mouse
DH in vivo

The C-fibers-evoked field potentials characterized by
prominent negative components are a reflection of the
extracellularly-recorded excitation of DH neurons by
stimulated the primary C-fiber afferents. Changes in the
field potential indicate alterations in the synaptic activity
of the DH neurons. After supramaximal electrical stimula-
tion (0.5-1.0 mA, 0.5 ms) of the sciatic nerve, the field
potential was recorded in the mouse DH (100-500 pm
from the surface of SC). The field potential displayed a
negative peak at relatively long latency (mean + SE, 71.1 +
2.9 ms, ranged 60-95 ms, corresponding to conduction
velocities 0.52 + 0.01 m/s; the distance from the stimula-
tion site at the sciatic nerve to the recording site 3.6 + 0.1
cm, n = 15), and a high threshold during nerve stimula-
tion (= 0.2 mA, 0.5 ms). The field potential could be
recorded at depth of 100-500 pm but the maximal poten-
tials were at approximately 200-300 um (Fig. 1A, B).
Stimulation of the sciatic nerve at strength of 0.5-1.0 mA
(0.5 ms) activated approximately all the C-fibers and the
maximum field potential was recorded (Fig. 1C, D). All of
the field potentials were recorded at 1-min intervals and 5
recordings were averaged and presented as 1 datum point
(Fig. 1B, D). The depth was determined by the digital
micromanipulator and was verified histologically in some
samples (Fig. 1E-G). The field potentials recorded for 3 h
(n=5) or 6 h (n = 3) was stable in the amplitudes and
latencies (data not shown).

To exclude the possibility that long latencies of the field
potentials are due to activation of supraspinal loop or
muscle contraction, in 3 experiments the stable field
potential was recorded for 30-40 min and then 0.1 ml
lidocaine (2%) was injected into the SC at C3-4 segment
followed by surgical transaction of SC at the same site.
After spinalization, latencies of the field potentials
remained constant but their amplitudes increased to 140-
210% of control. These properties are similar to those
recorded in the rat DH [4].

Properties of LTP in the mouse DH in vivo

The C-fibers-evoked field potential was evoked in the
mouse DH by stimulation of the sciatic nerve with single
test pulses (0.5 mA, 0.5 ms, given at 1-min intervals). Sta-
ble responses for 30 min served as controls. A condition-
ing HFS was then delivered to the sciatic nerve followed
by single test pulses with stimulation parameters identical
to controls. The high-intensity HFS induced LTP of the
field potential in 8 of 9 mice tested, while failed to induce
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Primary afferent C-fibers evoked field potentials in the mouse DH in vivo. A, B: Examples and data summary of the
field potentials evoked by electrical stimulation (0.5 mA, 0.5 ms) of the sciatic nerve at different laminae of DH (100-500 um
from the surface of SC, also see F). C, D: Examples and data summary of the field potentials evoked by electrical stimulation
(0.5 ms, with different strength) of the sciatic nerve in the same site of DH (~220 pum from the surface of SC, also see G). E-G:
Histological verification of the recording site in DH. The tissues were sectioned freshly and examined under microscope. The
images F and G were copied and edited from the left side of DH in E. CC: central canal.

LTP in one of the mice. Significant enhancement of ampli-
tudes of the field potentials (range: 150-330% of base-
line) lasted until the end of the recording periods (3 h in
6 mice and 8 h in 2 mice). Mean amplitudes and time
course of the LTP in these experiments are illustrated in
Fig. 2A. These properties of the LTP in the mouse DH are
similar to those recorded in the DH of rats [4,9]. Further,

the LTP was completely prevented by spinal pre-treatment
with an NMDA receptor antagonist MK-801 (5 ug, n =5,
30 min prior to, during and up to 3 h after HES) (Fig. 2B),
but not interrupted by post-treatment of MK-801 (5 pg, n
= 5, 0.5-3 h after HFS) (Fig. 2C). These results confirm
that LTP in the mouse DH is NMDA receptor-dependent.
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Figure 2

LTP of synapses between C-fibers and DH neurons in mice in vivo. LTP training protocol in A-C: 100 Hz, 5 x thresh-
old currents, 0.5 ms, 100 pulses, 4 trains of |-s duration at |0-s intervals. Examples of the C-fiber-evoked field potentials given
in each figure were recorded before (a) and after (b) tetanic stimulation (indicated by the arrow in each figure) alone (A) or
combined with MK-801 with pre-treatment (B) and post-treatment (C), respectively. The nonparametric Wilcoxon signed-
rank test and the Kruskal-Wallis test were used to test the field potential within and between the groups, respectively (p <
0.0l in Aand C; p > 0.05 in B; p < 0.01 between A/B and B/C; p > 0.05 between A/C).

Activation of CaMKIl, ERK and CREB proteins and
expression of c-Fos in the mouse SC following HFS
Upregulation of p-CaMKII, p-ERK, p-CREB and c-Fos
expression has been used as indicators of neural activity
and plasticity. We used phosphor-specific antibodies in
immunoblots [27] detect the activated forms of these
molecules following HFS in the SC. The results showed
that HFS significantly increased levels of p-CaMKII, p-
ERK, and p-CREB protein. As shown in Fig. 3A-D, the lev-
els of p-CaMKII and p-ERK quickly increased within 5
min, the first data point after HFS, and reached their peak
values in 5-10 min. The signal for p-ERK quickly recov-
ered to near baseline levels within 20 min. The signal for
p-CaMKII also decreased 20-30 min after HFS, but its
level remained was still significantly higher than sham
control (Fig. 3A, B). In contrast, the level of p-CREB pro-
tein increased with more delayed dynamics and reached
peak level in 2-3 h post HFS (Fig. 3C, D). Our results fur-
ther showed that treatment with the NMDA receptor
antagonist MK-801 (5 pg, 30 min prior to, during and 10
min after HES) significantly reduced the level of p-CaMKII
and p-ERK at 10 min (Fig. 3E, F) and p-CREB at 2 h (Fig.
3G, H) after the HFS.

We also used immunohistochemical and immunofluores-
cence staining to measure expression of c-Fos in the DH
following HFS in vivo. Representative photomicrographs

and the corresponding counts of Fos-like immunoreactive
neurons in the DH are shown in Fig. 4. The number of
Fos-immunoreactive neurons was significantly increased
at 2 h and 3 h by approximately 170% and 420%, respec-
tively, but not at 1 h after the HFS. Fos expression was not
significantly changed at 1 h after HFS. Increased expres-
sion of c-Fos was markedly reduced by treatment with
MK-801 (5 pg, covering from 30 min prior to, during and
3 h after HFS).

LTP in the mouse DH in vivo was prevented by either
EphB2-Fc or targeted mutation of EphBI receptor

We investigated the role of the EphB1 receptor in the LTP
by first confirming that an EphB receptor blocker that
inhibits LTP in rats [9] also does so in mice. The results
showed that LTP induced in WT mice (Fig. 5A) was suc-
cessfully prevented by pre-application of a soluble EphB
receptor blocker EphB2-Fc (2 pg, 30 min prior to, during
and up to 3 h after HES) (Fig. 3B), but not by post-treat-
ment of the EphB2-Fc (data not shown). EphB2-Fc did not
alter baselines of the C-fibers-evoked field potentials. The
IgG-Fc (Fc control) did not alter the LTP amplitude (Fig.
5C). Further, our results showed that targeted mutation of
the EphB1 receptor completely abolished the LTP in all
mice tested (n = 9) (Fig. 5D). These genetic data strongly
suggest that this EphB1 receptor is the specific Eph family
receptor critical to and required for development of LTP.
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Figure 3

Immunoblot analysis of phosphorylation of CaMKII, ERK and CREB proteins in the mouse SC following HFS in
vivo. A-D: Representative immunoblots illustrating time courses of changes in CaMKIl (A), pERK (A) and pCREB (C) and quan-
tification of CaMKIl (B), pERK (B) and pCREB (D) protein levels following HFS. E-H: Representative immunoblots illustrating
changes of expression of the CaMKII (E), pERK (E) and pCREB (G) and quantification of CaMKIl (F), pERK (F) and pCREB (H)
protein levels with or without MK-801 treatment. Fold changes are standardized by protein level in the corresponding group of
"sham" (surgery without HFS, mean value set as ). *p < 0.05, **p < 0.0l indicates significant differences compared with that in
the corresponding sham group; #p < 0.05, ##p < 0.0l indicates significant differences compared with that in the corresponding

group of peak value 5 or 10 min after HFS (in B) and of "control" (surgery plus HFS) in F and H.
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Time course of c-Fos expression in the mouse DH after HFS in vivo. Examples of Fos-immunoreactive neurons are
shown in A and data summarized in B. Five groups of mice (n = 5 each group) were tested and examined, the sham group
received no HFS and the others received HFS without or with MK-801 treatment. ** p < 0.0l indicates significant differences
compared with the sham. ## p < 0.01 indicate significant difference compared with the time point at 3 h after HFS.

Activation of CaMKIl, ERK and CREB proteins and
expression of c-Fos following HFS were prevented by either
EphB2-Fc or targeted mutation of the EphBI receptor
We further examined the effects of EphB2-Fc application
and targeted mutation of the EphB1 receptor on HFS-
induced phosphorylation of CaMKII, ERK and CREB pro-
teins and c-Fos expression. The results showed that HFS-
induced increases of p-CaMKII (10 min), p-ERK (10 min)
and p-CREB (2 h) protein levels were partly, but signifi-
cantly reduced by pretreatment of EphB2-Fc (2 pg, cover-
ing from 30 min prior to, during and up to 10 min to 2 h
after HFS). As shown in Fig. 6A-D, approximately 40% of
the increased p-CaMKII (Fig. 6A, B) and 70-80% of the
increased p-ERK (Fig. 6A, B) and p-CREB (Fig. 6C, D) were
inhibited, respectively. Further, targeted mutation of the
EphB1 receptor completely blocked HFS-induced
increases of p-CaMKII, p-ERK (Fig. 6E, F) and p-CREB
(Fig. 6G, H). Similarly, HFS-induced c-Fos expression was

significantly reduced by EphB2-Fc (2 pg, from 30 min
prior to 3 h after HFS) in WT mice, or prevented by tar-
geted mutation of the EphB1 receptor in the EphB1-/-mice.
Representative photomicrographs and the corresponding
counts of Fos-like immunoreactive neurons in DH are
shown in Fig. 7.

Discussion

An in vivo mouse model of LTP and its functional role in
pain pathways

The primary field potentials recorded in this study have
long latencies, high thresholds, long chronaxie, and a neg-
ative focus in the superficial laminae of DH. Such field
potentials observed in the mouse DH is similar to that
recorded in the rat [4,9] and in agreement with the con-
clusion by Schouenborg [28] that the late field potentials
are generated primarily by synapses between C-afferent
fibers and second-order neurons. The high-frequency,
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Figure 5

Effects of EphB2-Fc and targeted mutation of EphBI receptor on the LTP of synapses between C-fibers and
DH neurons in mice in vivo. LTP training protocol in A-D was the same as that in Fig. 2A-C: 100 Hz, 5 x threshold cur-
rents, 0.5 ms, 100 pulses, 4 trains of |-s duration at 10-s intervals. Examples of the C-fiber-evoked field potentials given in each
figure were recorded before (a) and after (b) tetanic stimulation (indicated by the arrow in each figure) alone (A, the same fig-
ures and data used as control as those in Fig. 2A) or combined with pre-treatment of EphB2-Fc (B) and IgG-Fc (C), respec-
tively. The nonparametric Wilcoxon signed-rank test and the Kruskal-Wallis test were used to test thefield potentials within
and between the groups, respectively (b < 0.0l in Aand C; p > 0.05 in B and D; p < 0.01 between A/B, B/C, A/D and C/D; p >
0.05 between A/C and B/D).
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Figure 6

Effects of EphB2-Fc and targeted mutation of EphB1 receptor on phosphorylation of CaMKIl, ERK and CREB
proteins in the mouse SC following HFS. A-D: Representative immunoblots illustrating changes in HFS-induced phospho-
rylation of CaMKIl (A), pERK (A) and pCREB (C) and quantification of CaMKIlI (B), pERK (B) and pCREB (D) proteins after
pretreatment of EphB2-Fc. E-H: Representative immunoblots illustrating changes in HFS-induced phosphorylation of CaMKII
(E), pERK (E) and pCREB (G) and quantification of CaMKII (F), pERK (F) and pCREB (H) proteins in wild type (WT) and EphBI
receptor protein-null (EphB[--) mice. Fold changes are standardized by protein level in the corresponding group of "sham"
(surgery without HFS, mean value set as |). *p < 0.05, **p < 0.01 indicates significant differences compared with that in the cor-
responding sham group; #p < 0.05, ##p < 0.0l indicates significant differences compared with that in the corresponding group
of IgG-Fc (as control) in B and D.
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high-intensity tetanic stimulation to the ipsilateral sciatic
nerve can induce a stable, long-lasting potentiation of the
field potential in the mouse superficial DH, the LTP. The
LTP can be suppressed by pre-treatment of MK-801, indi-
cating that this LTP is an NMDA receptor-dependent syn-
aptic potentiation. In addition, Ca2*-dependent pathways
such as CaMKII and ERK are activated and phosphoryla-
tion of the transcription factor CREB is potentiated by HFS
in the mouse SC. Therefore, the LTP we have recorded in
the mouse DH in vivo has properties that are similar to LTP
in the rat DH [3,4,9,14,15]. A recent study has demon-
strated that the primary afferent C-fibers induce LTP of C-
fiber-evoked excitatory postsynaptic currents (EPSCs) in
projection neurons, but not in unidentified neurons in
laminae I of SC slice of young rats [8], supporting the
hypothesis that the potentiation of synapses between
afferent C-fibers and projection neurons in the DH con-
tributes to LTP.

LTP of synapses between primary afferent C-fibers and

DH neurons has important functional roles in pain path-
ways [3]. Modulation of synaptic strength is a powerful

A 3 h after HFS

Sham (3h)

lgG-Fc EphB2-Fc¢

WT Mice

B Sham (3h) 3 h after HFS

EphB1™ Mice

Figure 7
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mechanism to control signal flow through selected path-
ways. A typical consequence of LTP at excitatory synapses
would be an increase in action potential firing of the same
and perhaps also of downstream neurons in response to a
given stimulus. The signal transduction pathways
involved in LTP, including PKC, CaMKII, PKA, PLC, IP,
receptors, NOS and ERK [6,8,13-15,29] are also required
for full expression of hyperalgesia in animal models of
inflammatory and neuropathic pain [30-33]. In addition,
high-frequency stimulation of the sciatic nerve fibers
which induces LTP at synapses of C-fibers in the SC has
behavioral consequences in rats and causes thermal
hyperalgesia at the ipsilateral hind paw for approximately
one week [6]. Thus, LTP at C-fiber synapses has a direct
impact on nociceptive behavior.

Genetically modified mice, but not rats, have been widely
used in investigations in many areas including pain for
decades. This study provides an in vivo mouse model of
LTP that should be very valuable for genetic approaches to
the study of synaptic plasticity of the DH neurons.
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Effects of EphB2-Fc and targeted mutation of EphB| receptor on expression of c-Fos in the mouse DH follow-
ing HFS in vivo. Examples of Fos-immunoreactive neurons are given in A (wild type mice, WT) and B (EphB| receptor pro-

tein-null mice, EphB--) and data summarized in C. Five groups of mice (n = 5 each group) were tested and examined, the sham
groups received no HFS (A and B) and the other groups received HFS with pretreatment of IgG-Fc or EphB2-Fc (A) HFS alone
(B). * p < 0.05, ** p < 0.0l indicates significant differences compared with the WT-Sham. ## p < 0.01 indicate significant differ-
ence compared with WT-HFS-IgG-Fc (as control). &p < 0.05 indicate significant difference compared with EphB|---Sham.
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Potential mechanisms of the LTP

Although mechanisms of LTP at C-fibers synapses remain
unclear, there is evidence for a postsynaptic, Ca2+-depend-
ent form of LTP induction in lamina I neurons of the SC.
Induction of LTP requires co-activation of neurokinin 1
(NK1) and neurokinin 2 (NK2) receptors [4], opening of
T-type voltage-gated calcium channels [8,13], and activa-
tion of group I metabotropic glutamate receptors [34].
Activation of NK1 receptor by substance P (SP) may
directly enhance single NMDA channel opening [35] and
NMDA receptor mediated currents in lamina I neurons
[13]. All of these may lead to substantial rise in postsyn-
aptic [Ca2*];, which is essential for LTP induction. In addi-
tion, Ca?+ influx through Ca2+-permeable a-amino-3-
ydroxy-5-methyl-4-isoxazolepropionic  acid (AMPA)
receptors may also be required for LTP induction in pain
pathways [36,37]. Signal transduction of LTP involves
CaZ+-dependent pathways including PKC, CaMKII, PKA,
NOS and members of MAPK including ERK [6,8,13-
15,29]. The potential mechanisms of LTP at synapses
between C-fibers and SC projection neurons were recently
reviewed by Sandkiihler [3]. According to this model, LTP
can be prevented if release of glutamate and/or SP is
inhibited, or if opening of voltage sensitive and Ca2* per-
meable ion channels is blocked. LTP deficits or de-poten-
tiation could result from de-phosphorylation of synaptic
proteins, changes in receptor trafficking or degradation of
synaptic proteins [3]. Studies have shown that in the rat
DH this synaptic plasticity is sensitive to inhibitors of
iNOS, glial cell metabolism [38], group I mGluR [34],
glial glutamate transporters [39,40] and protein synthesis
[41].

This study presents the first description of the time course
of HFS-induced phosphorylation of CaMKII, ERK and
CREB and altered expression of c-Fos in the SC of mice
and rats. Note that the transient, peak phosphorylation of
both CaMKII and ERK occured within 5-10 min of HES,
while phosphorylation of CREB reached its peak approxi-
mately 2-3 h after HFS. Increased expression of c-Fos was
first increased at 2 h and reached peak at 3 h after HFS.
Our results also showed obvious differences in the HFS-
induced c-Fos expression in mice and rats, 1) the peak
expression of c-Fos in the mouse DH was detected at 3 h,
whereas it was markedly increased in the DH of rats at 2 h
[40]; and 2) the Fos-immunoreactive neurons were seen
distributed across all of the mouse DH, while it distrib-
uted mainly in the superficial layers of rats DH [40] (and
the present analysis, data not shown).

EphBI receptor, a mechanism underlying LTP

The Eph receptors, constituting the largest group of RTKs
in mammals, with 13 members divided into an A subclass
(EphA1-EphA8) and a B subclass (EphB1-EphB4,
EphB6) [42,43], have been indicated to play important
roles in synaptic plasticity in the nervous system [16-
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24,26,44,45]. We have recently found evidence that the
EphB receptors play an important role in development of
LTP in the DH of rats [9]. Using our new in vivo mouse
model of LTP described here and taking advantage of
EphB1 receptor protein-null mice, this study demon-
strates that the EphB1 receptor is essential to the develop-
ment of LTP. Targeted mutation of the EphB1 gene
successfully prevented development of LTP and sup-
pressed the associated activation (phosphorylation) of
CaMKII, ERK, and CREB as well as increased c-Fos expres-
sion.

The ephrinB-EphB interaction is well known to mediate
bidirectional signals that propagate into EphB-expressing
cells (forward signaling) and ephrinB-expression cells
(reverse signaling). Both forward signaling and reverse
signaling can play important roles in synaptic plasticity,
acting either pre- or postsynaptically. Recent studies have
proposed mechanisms for potential interactions between
ephrinB-EphB receptors and AMPA, NMDA and mGlu
receptors [46-49]. EphB receptors interact with numerous
PSD-95, Discs-large Zoe-1 (PDZ) domain that can regu-
late the membrane trafficking of AMPA receptor subunits,
such as PSD-95 itself, the glutamate receptor-interacting
protein (GRIP) and protein interacting with C kinase-1
(PICK-1). Furthermore, phosphorylation of synaptojanin
by EphB2 receptors modulates clathrin-mediated endocy-
tosis of the GluR1 subunit of AMPA receptors [49]. Inter-
action between EphB receptors and GRIP or PICK-1 may
instead affect membrane trafficking of the GluR2 subunit
of AMPA receptors [48]. Both ephrins and EphB receptors
have been found to be co-localized with NMDA receptors
post-synaptically and to positively modulate NMDA
receptors through a physical interaction between the N-
terminal domains, or through the intervention of signal-
ing molecules such as Src or other intracellular proteins.
The activation of ephrinBs amplifies group-1 mGlu recep-
tor signaling through mechanisms that involve NMDA
receptors and/or PDZ/regulator of G-protein signaling
(RGS) [46,47]. The interaction with ionotropic or metab-
otropic glutamate receptors provides a substrate for the
emerging role of ephrins and Eph receptors in the regula-
tion of activity-dependent forms of synaptic plasticity.

It has been reported that a selective impairment of long-
lasting LTP induced by beta-burst stimulation of Schaffer
collaterals [18] and both early and late phases of LTP
induced by HFS were attenuated [19] in EphB2 receptor
protein-null mice. Our results here show that targeted
mutation of EphB1 receptor can prevent development of
LTP and the associated phosphorylation of CaMKII and
ERK and CREB and expression of c-Fos in the mouse SC.
We hypothesize that this mechanism of ephrinB-EphB
receptor signaling, particularly the EphB1 receptor, may
apply to LTP at synapses between the primary afferent C-
fibers and DH neurons of mice and rats. In addition,

Page 10 of 13

(page number not for citation purposes)



Molecular Pain 2009, 5:29

taken together with the present and our earlier findings
that nerve injury fails to produce neuropathic thermal
hyperalgesia in EphB1-/- mice [50], we have growing evi-
dence supporting the hypothesis that the LTP in the DH
may contribute to hyperalgesia.

Conclusion

The present study describes an in vivo mouse model of LTP
at synapses between primary afferent C-fibers and superfi-
cial DH neurons that is useful for probing pain mecha-
nisms, including the DH neuron excitability and their
synaptic plasticity and hyperalgesia in genetically altered
mice. Further we have shown that the EphB1 receptor is
critical to development of LTP and activation of CaMKII
and ERK pathways, and the subsequent activation of
CREB and induction of c-Fos expression.

Methods

Animals

The generation of EphB1 receptor protein-null mutant
mice has been previously described [51,52]. For the
present study EphB1+/- heterozygous males and females in
the CD1 background were bred to obtain a cohort of
homozygous knockout (EphB1/-) and wild-type (WT)
(EphB1+/+) control littermate adult mice (25-30 g-wt). All
breeding was done by the Henkemeyer group and adult
mice were provided to the Song group, who were blinded
to the genotypes. Additional WT male CD1 mice (25-30
g-wt) were obtained from Charles River Laboratories
(Wilmington, MA). All experimental procedures were
conducted in accordance with the regulations of the ethics
committee of the International Association for the Study
of Pain and approved by the University of Texas South-
western Medical Center and Parker Research Institute Ani-
mal Care and Use Committee, respectively.

In vivo Extracellular recordings of LTP in mice DH

Protocols for mice preparation and for in vivo extracellular
recordings of the C-fiber-induced field potential and LTP
were modified from those we have recently described in
rats [9]. Urethane (1.5 g/kg, given intraperitoneally, i.p.)
was used to induce and maintain anesthesia. All surgeries
and the in vivo electrophysiological recordings were per-
formed under anesthesia. The trachea was cannulated to
allow mechanical ventilation with room temperature air,
if necessary. Colorectal temperature was monitored and
kept at ~37-38°C via a feedback-controlled heating pad
under the ventral surface of the abdomen. In each experi-
ment phosphate-buffered saline was injected (i.p., 2 ml
prior to surgery and 1 ml every 2 h) to provide fluid and
maintain electrolyte balance. A laminectomy was per-
formed to expose the lumbar enlargement of the SC at L;-
L, for electrophysiological recording and the left sciatic
nerve was prepared for stimulation. The mouse was stabi-
lized on the stereotaxic frame, the exposed cord was cov-
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ered with warm agar (2% in saline) and the sciatic nerve
covered with paraffin oil. After the agar hardened, a small
hole was made above the recording site for application of
drug or vehicle.

Field potentials evoked by peripheral stimulation of C fib-
ers were recorded at a depth of 100-500 um (Fig. 1A and
1B) and 150-300 um (Fig. 1C and D and all of the other
recordings) from dorsal surface of the SC with glass capil-
lary microelectrodes (DC resistances 3-5 MQ filled with 2
M NaCl), which were driven by an electronically control-
led microstepping motor (MHW-3, Narishinge, Japan).
The depth of the electrode within the DH was judged by
the microdrive readings. In order to locate the recording
site, some electrodes were filled with fast blue and the dye
was ejected at the end of experiments. The SC segment was
then removed, sectioned and examined under microscope
(Fig. 1E-G). Axoclamp 2B and DigiData 1200 amplifiers
and PCLAMP-8 (Axon Instruments, Foster City, CA) were
used for data acquisition and analysis. The signals were fil-
tered (bandwidth: 0.1-500 Hz) and recorded at a sam-
pling rate of 10 kHz. The field potentials were recorded at
1-min intervals and then 5 recordings were averaged and
presented as 1 datum point in the results. The sciatic nerve
was stimulated by a bipolar platinum hook electrode. Sin-
gle square pulses (0.5 ms duration) were delivered once a
minute to the sciatic nerve and used as test stimuli. The
strength of stimulation was adjusted to 2.5 times the
threshold for a C-fiber response. The LTP was induced by
HES consisting of 100 electrical pulses, each 0.5 ms, 100
Hz, at 5x the threshold current of C-fibers, given in 4
trains of 1-s duration at 10-s intervals to the sciatic nerve.
At the end of each experiment, the animals were sacrificed
by an overdose of urethane (6 g/kg, i.p.).

Immunoblot analysis

Immunoblot analysis was used to detect p-CaMKII, p-ERK
and p-CREB protein levels in the SC. Lumbar segment of
the SC from one mouse were pooled for each sample and
each group consisted of four samples. The procedure used
to quantify temporal changes in protein levels was similar
to that previously described [27,53]. Whole cell protein
extracts lysates were used. After transfer to nitrocellulose
filters, the filters were blocked with 2% bovine serum
albumin (BSA) and then incubated overnight at 4°C with
the primary antibodies [p-CaMKII (Thr286) 1:1000; p-
ERK1/2 (Thr202/Tyr204) 1:500 from Cell Signaling Tech-
nology, Danvers, MA; p-CREB (Ser133) from the Santa
Cruz; CA; GAPDH 1:1000 from Sigma, St Louis, MO]. The
filters were developed using ECL reagents (Perkinelmer,
MA) with secondary antibodies from R&D (Minneapolis,
MN). Data were analyzed with the Molecular Imager
(ChemiDoc XRS) and the associated software Quantity
One-4.6.5 (Bio-Rad Laboratories, Hercules, CA).
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Immunohistochemical and immunofluorescence staining
of c-Fos

The immunofluorescence staining was performed as we
have recently described [27,54]. Briefly, the lumbar seg-
ment of the SC was dissected out of mice, post-fixed, and
then the embedded blocks were sectioned (10 pm thick).
Sections from each group (4-5 mice in each group) were
incubated with rabbit anti-c-Fos polyclonal antibody
(1:100), (Santa Cruz Biotechnology Inc. Santa Cruz, Cali-
fornia, USA). Rabbit IgG (1:200, Vector Laboratories, Inc.,
Burlingame, California, USA) was used as an isotype con-
trol. The morphologic details of the immunofluorescence
staining on the SC were studied under a fluorescence
microscope (Olympus BX51WI; Olympus America Inc.,
Melville, New York, USA). Images were randomly coded
and transferred to a computer for further analysis. Fos-
immunoreactive neurons were counted in blind fashion.
The number of Fos-like immunoreactive neurons in DH
was determined by averaging the counts made in 20 sec-
tions (L,-Ls) for each group.

Drug application

Contributions of EphB receptor signaling to the LTP was
examined partly by applying an EphB receptor blocking
reagent onto the SC in addition to using the EphB1-/-mice.
The EphB receptor blocking reagent EphB2-Fc chimera (2
pg, Sigma, St Luis, Missouri, USA), the human IgG-Fc frag-
ment (Fc control, 2 pg) (Jackson Laboratory, Bar Harbor,
Maine, USA), and an NMDA receptor antagonist MK-801
(5 pg) (RBI, Natick, MA) were administrated topically to
the small hole previously made in the agar above the
recording site of the SC.

Statistical tests

SPSS Rel 15 (SPSS Inc., Chicago, Illinois, USA) was used
to conduct all the statistical analyses. The nonparametric
Wilcoxon signed-rank test and the Kruskal-Wallis test
were used to test the field potential and LTP of DH neu-
rons within and between the groups, respectively. Altera-
tion of phosphorylation of the protein levels and
expression of the c-Fos detected were tested with one-way
ANOVA, with repeated measures followed by Bonferroni
post hoc tests. All data are presented as mean + SE. Statis-
tical results are considered significant if p < 0.05.
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