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Abstract

Background: Cannabinoid receptor type 2 (CBR2) inhibits microglial reactivity through a
molecular mechanism yet to be elucidated. We hypothesized that CBR2 activation induces an anti-
inflammatory phenotype in microglia by inhibiting extracellular signal-regulated kinase (ERK)
pathway, via mitogen-activated protein kinase-phosphatase (MKP) induction. MKPs regulate
mitogen activated protein kinases, but their role in the modulation of microglial phenotype is not
fully understood.

Results: JWHO0I5 (a CBR2 agonist) increased MKP-1 and MKP-3 expression, which in turn
reduced p-ERKI/2 in LPS-stimulated primary microglia. These effects resulted in a significant
reduction of tumor necrosis factor-o. (TNF) expression and microglial migration. We confirmed
the causative link of these findings by using MKP inhibitors. We found that the selective inhibition
of MKP-I by Ro-31-8220 and PSI2106, did not affect p-ERK expression in LPS+JWHO| 5-treated
microglia. However, the inhibition of both MKP-1 and MKP-3 by triptolide induced an increase in
p-ERK expression and in microglial migration using LPS+JWHO | 5-treated microglia.

Conclusion: Our results uncover a cellular microglial pathway triggered by CBR2 activation.
These data suggest that the reduction of pro-inflammatory factors and microglial migration via
MKP-3 induction is part of the mechanism of action of CBR2 agonists. These findings may have
clinical implications for further drug development.

Background increased expression of surface or cytosolic markers, pro-
Microglia are the innate immune cells of the central nerv-  inflammatory factor production (e.g. cytokines, chemok-
ous system (CNS) and as such act as the first glial respond- ~ ines, nitric oxide, prostaglandins), morphological

ers after CNS or peripheral nerve injury [1-3]. The main  changes, enhanced phagocytic activity, migration and
responses of microglia to peripheral or CNS insults are  proliferation. In rodent models of pain including periph-
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eral nerve injury [4], paw incision [5], paw inflammation
[6] or spinal cord injury [7], microglia become reactive
and produce a pro-inflammatory spinal milieu, which
may contribute to neuronal sensitization and behavioral
hypersensitivity.

Cannabinoids exert most of their effects by binding to G
protein-coupled cannabinoid receptors (CBR) type 1 and
2. CBR2 are expressed in glia in normal human and rat
brain [8,9] and their glial expression increases especially
during inflammation [10,11]. Using a rat paw incision or
a peripheral nerve injury model we have previously
shown that in vivo spinal CBR2 activation reduces glial
reactivity, measured as a reduction in the expression of
CR3/CD11b or ionized calcium-binding adaptor mole-
cule 1 (Iba-1) in microglia [12,13]. Ibal is a cytosolic
microglial marker that is associated with a pro-inflamma-
tory phenotype and is involved in microglial migration
[14,15]. Accordingly, in wvitro CBR2 activation reduces
tumor necrosis factor-o. (TNF) and nitric oxide (NO) pro-
duction in primary microglia [11,16] and is protective
against neurotoxicity of human microglia [17]. Nonethe-
less, the specific intracellular mechanism of action by
which CBR2 activation alters the microglial phenotype
has not been previously reported.

Microglial p-ERK plays a central role in the mechanisms
underlying spinal cord injury-, nerve injury- and diabetes-
induced hypersensitivity [7,18-20]. Microglial p-ERK inhi-
bition reduces TNF production [21]. In addition, spinal
TNF blockade reduces peripheral nerve injury-induced
allodynia [22]. Cell migration is mediated by p-ERK
[23,24]. However, the role of p-ERK in microglial migra-
tion is not known. We hypothesized that CBR2 activation
reduces microglial p-ERK, and subsequently TNF produc-
tion and cell migration.

Mitogen-activated protein kinase-phosphatases (MKP)
regulate several pro-inflammatory pathways and display
distinct substrate preferences for various mitogen-acti-
vated protein kinases (MAPKs) [25]. For example, MKP-3
is a selective ERK pathway negative regulator [26,27] and
MKP-1 mainly down-regulates p38 or JNK [28], but may
regulate ERK [29]. The role of phosphatases in microglial
inflammatory processes has yet to be clarified. Therefore,
we also hypothesized that microglial CBR2 activation
reduces p-ERK by inducing MKP-1 and MKP-3. Herein, we
study a specific signaling pathway in primary microglia to
elucidate the molecular mechanisms of action of CBR2
activation.

http://www.molecularpain.com/content/5/1/25

Results

Microglial CBR2 activation induces MKP-1/3 and reduces

p-ERK and TNF

First, we determined the effects of JWHO015 on MKP-1 and
MKP-3 expression in LPS-stimulated microglia. LPS did
not significantly change the levels of MKP-1 expression
compared to the medium control group at the tested time
points (15-60 min, Figures 1A). However, MKP-1 expres-
sion was significantly increased in LPS + JWHO15 only at
15 min incubation time point compared to the 0 time
point (the medium control group, 1.22 + 0.04 of medium
control group, p < 0.05; Figures 1A). This increased MKP-
1 expression in LPS + JWHO15 group was also signifi-
cantly different from the LPS alone group at the same time
point (15 min, 1.22 + 0.04 vs. 1.04 + 0.02 of medium con-
trol group respectively, p < 0.05, Figures 1A). LPS did not
significantly change the levels of MKP-3 expression com-
pared to the medium control group at the tested time
points (Figures 1B). MKP-3 expression was significantly
increased in LPS + JWHO15 at 15 and 60 min incubation
time points (1.45 + 0.14 and 1.42 + 18 of medium control
group respectively, p < 0.05; Figures 1B). This increased
MKP-3 expression in LPS + JWHO015 group was also signif-
icantly different from the LPS alone group at the 15 min
incubation time point (15 min, 1.45 + 0.14 vs. 1 + 0.07 of
medium control group respectively, p < 0.05, Figures 1B).

MKP-1 has been shown to be inducible (for example by
LPS) but not constitutively expressed in macrophages
[30]. To test whether MKP-1 and MKP-3 are constitutively
expressed in microglial cells we incubated primary micro-
glia in serum free medium (DMEM) or in DMEM plus
10% fetal bovine serum (S+DMEM) for 1.5 or 20 h. We
observed that primary microglial cells constitutively
expressed MKP-1 and we found no differences in the
DMEM and S+DMEM groups or 1.5 and 20 h incubation
periods (1.5 hr DMEM vs. S+DMEM = 0.97 + 0.1 vs. 0.98
+0.2; 20 hr DMEM vs. S+DMEM = 0.75 + 0.02 vs. 0.72 +
0.02). We also confirmed a constitutive expression of
MKP-3 in microglia with no differences between DMEM
and S+DMEM group or 1.5 and 20 h incubation periods
(1.5 hr DMEM vs. S+DMEM = 1.3 + 0.04 vs. 1.4 + 0.3; 20
hr DMEM vs. S+ DMEM = 1.1 £+ 0.03 vs. 1.1 + 0.02). These
results also suggest that our microglial cells are in a quies-
cent rather than a primed state prior to our treatments.

MKP-1 decreases MAPKs, such as p38, ¢-Jun N-terminal
kinase (JNK) or ERK1/2 [28,29]. MKP-3 is a specific and
major negative regulators of the ERK pathway [25,26]. We
investigated the functional implications of MKP-1 and
MKP-3 modulation by studying ERK1/2 phosphorylation.
LPS did not induce any significant change in t-ERK1/2 at
any time point studied and JWHO015 did not modify this
(Figure 2A). The expression of t-ERK1/2 was not signifi-
cantly different at any incubation time point in the LPS +
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Effects of microglial CBR2 activation on the MKP-1/3 pathway. Representative western blots and quantification of
MKP-1 (A) and MKP-3 expression (B) at different incubation time points (15-60 min, 0 = medium control group) in LPS-stimu-
lated microglia in the presence or absence of JWHOI5 (I uM). JWHOI5 produced a MKP-I and MKP-3 increase (15 min). +p <

0.05 vs. medium control group; *p < 0.05 vs. LPS alone group.
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Figure 2

Effects of microglial CBR2 activation on the ERK/TNF pathway. Representative western blots (A) and quantification
of p-ERK1 (B), p-ERK2 (C) and TNF (D, 34 kD; E, 17 kD) expression at different incubation time points (15-60 min, 0 =
medium control group) in LPS-stimulated microglia in the presence or absence of JWHOI5 (I uM). JWHOI5 produced a ERK
dephosphorylation (30 min) and TNF reduction (60 min). +p < 0.05 vs. medium control group; *p < 0.05 vs. LPS alone group.
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JWHO015 group compared to the medium control group,
except at the 120 min time point in LPS + JWH015 com-
pared to medium control group (Figure 2A). No differ-
ences were found in t-ERK1/2 expression between LPS
alone and LPS + JWHO015 groups in any of the incubation
time points (Figure 2A).

LPS induced a significant increase in p-ERK1 expression at
30 min (1.7 + 0.11 of medium control group, p < 0.05;
Figures 2A and 2B), and in p-ERK2 at the 30 min incuba-
tion time point compared to the medium control group
(1.85 + 0.23 of medium control group, p < 0.05; Figures
2A and 2C). The expression of p-ERK1/2 was not signifi-
cantly different in the LPS + JWHO015 group compared to
the medium control group at any of the incubation time
points. Moreover, p-ERK1/2 expression in LPS+JWHO015
was significantly reduced at the 30 min incubation time
point compared to the LPS alone group (p-ERK1 = 1.7 +
0.11vs.1.17 + 0.08 of medium control group respectively,
p-ERK2 = 1.85 + 0.23 vs. 1.11 + 0.1 of medium control
group respectively, p < 0.05; Figures 2A, B and 2C).

ERK mediates the LPS-induced microglial pro-inflamma-
tory factor, TNF [21,31,32]. We further investigated the
functional implications of p-ERK modulation by studying
TNF expression. LPS induced an increase in TNF (17 kD
[monomer] and 34 kD [dimer]) expression at the 60 min
incubation time point compared to the medium control
(34kD =1.15+0.03,and 17 kD = 1.43 + 0.03 of medium
control group, p < 0.05, Figures 2A, D and 2E). TNF
expression was not significantly different between the LPS
+JWHO015 group compared to the medium control group.
Furthermore, 34 kD TNF expression was significantly
reduced in LPS + JWHO15 group compared to the LPS
alone group at the 60 and 120 min incubation time points
(0.93 + 0.04 vs. 1.14 + 0.3 and 0.91 + 0.05 vs. 1.05 + 0.1
of medium control group 60 and 120 min respectively, p
< 0.05; Figures 2A and 2D) and 17 kD TNF expression was
significantly reduced in LPS + JWHO015 group compared
to the LPS alone group at the 60 min incubation time
point (0.90 + 0.14 vs. 1.43 + 0.03 of medium control
group 60 min, p < 0.05; Figure 2A and 2E). We confirmed
the dependence of TNF expression on ERK phosphoryla-
tion in LPS-stimulated microglia by inhibiting MAP/ERK
kinase (MEK) with UO126 (1 pM). TNF expression was
reduced in the LPS + UO126 group compared to the LPS
alone group at the 60 min incubation time point (40.6
12.1% inhibition, p < 0.05, data not shown). UO126
completely inhibited p-ERK in the LPS + UO126 group
compared to the LPS alone group at the 30 and 60 min
incubation time points (data not shown).

http://www.molecularpain.com/content/5/1/25

MKP-3 inhibition induces microglial p-ERK in
LPS+JWHO0|5-treated cells

In these studies we challenged JWHO015's effects on MKP-
1 and MKP-3 using three different compounds claimed to
be MKP-1 inhibitors. Cells were pre-incubated with or
without PSI2106, Ro-31-8220 or triptolide (1 and 10 uM)
for 30 min, then LPS with or without JWHO015 (1 uM) was
added for 15 min. The expression of both MKP-1 and
MKP-3 were significantly enhanced in LPS+JWHO015
group (p < 0.05) as shown previously. MKP-1 expression
induced by JWHO15 in LPS-stimulated microglia was not
modified by 1 uM PSI2106 or Ro-31-8220 (2 + 0.13 vs.
1.95 + 0.02 and 2.02 + 0.3 of medium control,
LPS+JWHO015 vs. LPS+JWHO015+PSI2106 or Ro-31-8220
respectively), but it was inhibited following treatment
with the dose of 10 uM (2 + 0.13 vs. 1.6 + 0.02 and 1.5 *
0.05 of medium control, LPS+JWHO015 vs.
LPS+JWHO015+PS12106 or Ro-31-8220 respectively, p <
0.05, Figures 3A and 3C). PSI2106 or Ro-31-8220 did not
modify JWHO015's effects on MKP-3 at 1 uM (1.43 + 0.13
vs 1.58 + 0.09 and 1.64 + 0.16 of medium control,
LPS+JWHO15 vs. LPS+JWHO015+PSI2106 or Ro-31-8220
respectively) or 10 uM concentration (Figures 3D and 3F).
However, triptolide (only at 10 pM) completely inhibited
the JWHO15-induced MKP-1 (Figures 3A and 3B) and
MKP-3 (Figures 3D and 3E) expression in LPS-stimulated
microglia. Triptolide at 1 uM did not inhibit JWHO015-
induced MKP-1 (2 + 0.13 vs. 1.93 + 0.04 of medium con-
trol, LPS+JWHO015 vs. LPS+JWHO15+triptolide respec-
tively) or MKP-3 (1.43 + 0.13 vs 1.55 + 0.17 of medium
control, LPS+JWHO015 vs. LPS+JWHO015+triptolide respec-
tively) in LPS-treated microglia.

We evaluated the expression of p-ERK1/2 in the above
mentioned groups to confirm the functional implications
of the inhibition of MKP-1 and/or MKP-3. Triptolide (10
uM), which completely inhibited the induction of both
MKP-1 and MKP-3 by JWHO015, induced a significant
increase in p-ERK1 (1.14 + 0.02 of LPS + JWHO015 control
group, p < 0.05; Figures 4A and 4B) and p-ERK2 (1.12 +
0.02 of LPS + JWHO15 control group, p < 0.05; Figures 4A
and 4B). Triptolide at 1 uM concentration did not signifi-
cantly modify the expression of p-ERK1 (1.11 + 0.06 of
LPS + JWHO15 control group) or p-ERK2 (1.09 + 0.08 of
LPS + JWHO15 control group) in LPS plus JWHO15-
treated cells. Unexpectedly, neither PSI2106 nor Ro-31-
8220 (which effectively blocked only the JWHO015-
induced MKP-1 but not MKP-3 expression) modified p-
ERK1 (1 uM: 1.04 + 0.05 and 0.99 + 0.06 of LPS +
JWHO015 control group, LPS+JWHO015+PSI2106 or Ro-31-
8220 respectively; Figure 4A and 4C) or p-ERK2 (1.03 =
0.06 and 0.99 + 0.02 of LPS + JWHO015 control group,
LPS+JWHO015+PSI2106 or Ro-31-8220 respectively; Fig-
ure 4A and 4C). These data together suggest that the
induction of MKP-3 rather than MKP-1 is the mechanism
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Figure 3

Blockade of JWHO0I15's effects on MKP-1 and MKP-3. (A) Representative western blots of MKP-| and beta-actin in pri-
mary microglia treated with LPS in the absence or presence of JWHOI5 (15 min incubation, JWH). Cells were pre-incubated
with or without 10 uM PSI2106 (PS), Ro-31-8220 (Ro) or triptolide (Trip) for 30 min. (B) Triptolide (10 uM) completely
blocked the MKP-| expression induced by JWHOI15 (I pM). (C) PSI2106 or Ro-31-8220 partially inhibited the MKP-I expres-
sion induced by JWHOI5. (D) Representative western blots of MKP-3 and beta-actin in primary microglia treated with LPS in
the absence of presence of JWHOI5 (I5 min incubation). Cells were pre-incubated with or without PSI2106, Ro-31-8220 or
triptolide (10 uM) for 30 min. (E) Triptolide (10 pM) completely blocked the MKP-3 expression induced by JWHOI15 (I pM).
(F) PSI2106 or Ro-31-8220 did not modify the MKP-3 expression induced by JWHOI5. *p < 0.05 vs. LPS + medium (MED) or
LPS + JWHOI5 + PSI2106, Ro-31-8220 or triptolide group (indicated by the connecting lines).
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Effects of MKP-1 and/or MKP-3 inhibition on p-ERK1/2. (A) Representative western blots of p-ERK1/2 and beta-actin in
primary microglia treated with LPS and JWHOI5 (15 min incubation, JWH). Cells were pre-incubated with or without 10 uM
PSI2106 (PS), Ro-31-8220 (Ro) or triptolide (Trip) for 30 min. (B) Triptolide increased the expression of p-ERK1/2 in parallel
with the inhibition of both MKP-1 and MKP-3. C. PSI2106 or Ro-31-8220 did not modify p-ERK /2 expression. *p < 0.05 vs.
LPS + JWHOI5.
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by which JWHO015 reduces p-ERK1/2 expression. LPS plus
triptolide (10 uM) in the absence of JWHO015, did not
modify the expression of MKP-1, MKP-3, t-ERK and p-ERK
when compared to the LPS alone group (data not shown).
Since our results suggest that MKP-3 rather than MKP-1 is
responsible for the p-ERK1/2 reduction induced by
JWHO15, we challenged the effects of WH015 on MKP-3
expression with specific cannabinoid antagonists. The
selective CBR2 antagonist, AM630, but not the CBR1
antagonist, AM281, significantly blocked the JWHO015-
induced MKP-3 in LPS stimulated microglia (1.12 + 0.02
vs. 1.05 + 0.02 of LPS alone group, LPS + JWH015 1 uM
in absence or presence of AM630 1 uM respectively, p <
0.05; Figure 5).

CBR2 activation and p-ERK inhibition reduce microglial
migration

We observed that JWHO015 (1 uM) does not induce micro-
glial chemotaxis (compared to medium as chemoattract-
ant) in LPS-stimulated microglia (data not shown). To
determine the effects of JWHO015 on microglial migration,
we performed a JWHO15 dose-response pre-treatment
experiments using LPS-stimulated microglia and ADP 10
uM as chemoattractant. JWHO15 reduced the ADP-
induced microglial migration in a significant and dose
related fashion. The numbers of migrated LPS-stimulated
cells in JWHO15 0.1 and 1 uM groups were significantly
lower compared to the LPS alone group (79 + 10 cells in
LPS alone group vs. 42 + 7 and 40 + 6 cells in
LPS+JWHO015 0.1 and 1 uM respectively, p < 0.05; Figure
6A). The effect observed in LPS+JWHO015 1 uM group was
blocked by the CBR2 selective antagonist AM630, but not
by the CBR1 selective antagonist AM281 (45 + 3 vs. 73 +
4 or 54 £ 3 cells in LPS+JWHO015+AM630 or AM281
respectively; Figure 6B). We have previously shown that
minocycline (60 uM) reduced cell migration towards ADP
(10 uM) using non-stimulated primary microglia [33].
Herein, we used minocycline as a positive control for our
cell migration experiments using LPS-stimulated primary
microglia. We observed that minocycline (60 uM) signifi-
cantly reduced the migration of LPS-stimulated microglia
towards ADP (85 + 4 vs. 24 + 4 cells LPS alone and LPS
plus minocycline groups respectively, p < 0.05, data not
shown).

Cell migration is a p-ERK dependent phenomenon
[23,24] that to our knowledge, has not yet been studied in
LPS-activated primary microglia. We studied the effects of
a selective MEK inhibitor, UO126, on LPS-stimulated
microglial migration. The inhibition of MEK and subse-
quently inhibition of ERK phosphorylation with UO126
reduced in a significant manner the number of LPS-stim-
ulated microglial cells that migrated towards ADP (77 +
11 vs. 23 + 7 cells, LPS alone and LPS + UO126 groups
respectively, p < 0.05; Figure 6C). Together these data con-

http://www.molecularpain.com/content/5/1/25

firm that p-ERK1/2 regulates LPS-stimulated microglial
migration and suggest that JWHO015's effects on LPS-stim-
ulated microglial cells are due to MKP-1/3 induction, and
subsequent ERK dephosphorylation.

MKP-1/3 inhibition reverses CBR2-induced microglial
migration inhibition

The following experiments were designed to test the func-
tional implications of JWHO15 effects on MKP-1/3 expres-
sion (which results in ERK dephosphorylation) and LPS-
stimulated microglial migration. JWHO015-reduced micro-
glial migration was challenged with triptolide 10 pM,
which completely blocked JWHO015's effects on microglial
MKP-1 and MKP-3 expression. The number of cells that
migrated towards ADP was significantly lower in the
LPS+JWHO15 group compared to the LPS alone group (47
+ 3 vs. 67 = 3 cells respectively, p < 0.05, Figures 7A and
7B). This effect of JWHO015 was significantly inhibited by
triptolide (67 + 4 cells compared to LPS + JWHO015, p <
0.05; Figures 7A and 7B). Triptolide in the presence of LPS
did not affect microglial migration compared to the LPS
alone control group (60 + 2 cells, Figures 7A and 7B).

Discussion

We demonstrated that selective CBR2 activation results in
a change from a pro- to an anti-inflammatory microglial
phenotype by increasing the expression of MKP-3. We fur-
ther showed the functionality of this phosphatase modu-
lation and microglial anti-inflammatory phenotype by
demonstrating that JWHO015-induced MKP-3 inhibited
the ERK pathway, which in turn reduced TNF expression
and microglial migration towards ADP. Together, these
data support a novel mechanism of action of CBR2 ago-
nists via MKP-3 that may explain their anti-inflammatory,
anti-allodynic and/or glial modulatory effects in vivo.

Our results showed that JWHO015-induced ERK dephos-
phorylation depends on a MKP-3 increase, rather than
MKP-1. Triptolide, which blocked both MKP-1 and MKP-
3 induction by JWHO15, increased p-ERK in parallel. Trip-
tolide alone has been shown to reduce inflammatory fac-
tors in LPS- or amyloid-f1-42-stimulated microglia
[34,35]. However, in our setting triptolide alone did not
modify the expression of MKP-1/3, t-ERK and p-ERK in
the presence of LPS. Triptolide is an effective MKP-1
inhibitor, and therefore a blocker of pharmacological
anti-inflammatory effects in LPS-stimulated microglia and
monocytes [28,36,37]. We extended these findings by
showing that triptolide is also a MKP-3 inhibitor. Interest-
ingly, the blockade of JWHO15-induced MKP-1 by
PSI2106 or Ro-31-822 did not affect p-ERK. Similarly,
other anti-inflammatory drugs, such as dexamethasone
induce MKP-1 and, in turn, dephosphorylate p38 and JNK
without affecting p-ERK in LPS-stimulated primary micro-
glia [28]. MKPs display distinct substrate preferences for
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Figure 5

Blockade of CBR2 antagonizes the MKP-3 induction
by JWHO015. Quantification and representative western blot
of MKP-3 expression in LPS-stimulated microglia in the pres-
ence or absence of JWHOI5 (I uM) with or without the
CBR2 antagonist, AM630, or the CBRI antagonist, AM28I.
JWHO15 induced a significant increase in MKP-3 compared
to the LPS alone groups at the 15 min incubation time point.
However, AM630 significantly blocked JWHO15's effects on
MKP-3 expression. JWHO15's effects on MKP-3 were not
modified by AM281. *p < 0.05 vs. LPS alone and LPS +
JWHOI5 | uM groups.

various MAPKs [25]. In the present study, we showed that
MKP-3 selectively targets the ERK pathway in microglia, as
demonstrated previously in in vitro and in vivo human skin
fibroblasts, or during chick, mouse and zebrafish limb/fin
development [25,26]. The fact that MKP-3 is pivotal to
reduce p-ERK makes MKP-3 an attractive target for drug
development.

Microglial p-ERK plays a key role in neuropathic pain
[18], but it is unknown by which specific mechanisms.
Additionally, the intracellular molecular mechanisms and
cellular functional effects from p-ERK modulation are not
fully understood. Herein, we demonstrated that p-ERK is
necessary for microglial TNF expression and migration.
We confirmed that microglial CBR2 activation reduces
TNF expression [11,16] and ERK dephosphorylation
results in a significant reduction of TNF in primary micro-
glia [21]. Multiple pathways are involved in the produc-

http://www.molecularpain.com/content/5/1/25

tion of this pro-inflammatory cytokine, but our results
show a time dependent effect of CBR2 activation on MKP
induction (15 min incubation), ERK dephosphorylation
(30 min incubation) and decreased TNF (60-120 min
incubation), suggesting that p-ERK is instrumental in TNF
expression in LPS-stimulated primary microglia. TNF may
be produced by spinal microglial following peripheral
nerve injury and contribute to behavioral hypersensitivity
[3]. The reduction of microglial TNF production by CBR2
activation may explain the antinociceptive effects of CBR2
agonists in rodent pain models. TNF significantly contrib-
utes to peripheral nerve injury-induced allodynia [22] and
causes direct nerve sensitization [38]. Additionally, TNF
induces the phosphorylation of spinal microglial MAPKs
(i.e. p38) that also contributes to neuropathic pain
[39,40]. This positive feedback loop between TNF and
MAPKs can enhance the expression of other pro-algesic
factors which may contribute to chronic pain. In contrast,
the reduction of TNF expression would disrupt this posi-
tive feedback loop, reducing behavioral hypersensitivity.

Cell migration is partially mediated by p-ERK [23,24].
Herein, we demonstrated that LPS-stimulated microglial
motility depends on p-ERK. Additionally, the reduction of
LPS-stimulated microglial migration by JWHO015 was
blocked by triptolide (which also inhibits MKP-3 expres-
sion). Our data strongly suggest that the modulation of
the MKP-3/p-ERK pathway is the mechanism by which
CBR2 activation reduces microglial migration towards
ADP. ATP/ADP is one of the major chemoattractants for
microglia [41], and it is released from astrocytes [42,43]
or dorsal horn neurons following a pathological event,
such as nerve injury [44]. Therefore, it is possible that
microglial migration contributes to neuropathic pain. We
hypothesize that reducing microglial p-ERK and subse-
quently pro-inflammatory microglial trafficking to
injured neurons following nerve injury, decreases the
release of pro-inflammatory mediators (such as TNF) into
the synaptic milieu, which prevents neuronal sensitiza-
tion, the pathological correlate to chronic pain (Figure 8).

Our findings are in contrast with previous observations.
First, it has been shown that MKP-1 induction by the non-
selective cannabinoids, anandamide and WIN55,212-2
resulted in ERK dephosphorylation, which in turn
reduced NO, but it did not affect TNF expression in BV-2
cells. Second, CBR2 activation by endocannabinoids
seems to promote chemotaxis via ERK phosphorylation in
BV-2 cells [45,46]. We have demonstrated that immortal-
ized microglial cell lines, including BV-2, may not mimic
in vivo situations. They produce significantly lower
amounts of TNF and MCP-1, and express significantly less
p-ERK after LPS stimulation, and possess higher migratory
rates towards ADP than primary microglia [47]. Accord-
ingly, BV-2 and primary microglia also have different can-
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Quantification of JWHO0I15-reduced LPS-stimulated microglial migration. (A) JWHOI5 reduced the number of LPS-
stimulated microglia that migrated towards ADP in a dose related fashion. *p < 0.05 vs. medium control group (0) group. (B)
Blockade of the effects of JWHOI5 (I uM,) on microglial migration by the selective CBR2 antagonist, AM630, but not by the
selective CBR1 antagonist, AM28I. Data are presented as the number of cells that migrated towards ADP. +p < 0.05 vs.
medium group (MED), *p < 0.05 vs. JWHOI5 | uM group (JWH) group. (C) Blockade of microglial migration by the selective
MEK inhibitor UO126 in LPS-stimulated microglia. UO126 (I uM), which selectively blocked MEK and thereby ERK phosphor-
ylation, significantly reduced the number of LPS-stimulated microglia that migrated towards ADP. *p < 0.05 vs.medium group

(MED) group.

nabinoid enzymatic profiles; i.e. primary microglia, but
not BV-2 cells, express monoacylglycerol lipase [48,49].
Furthermore, contradictory findings have been reported
regarding the chemoattractant effects of endocannabi-
noids using the microglial cell lines BV-2 or NI1
[45,46,50]. Therefore, results obtained using BV-2 or
other cell lines should be taken with caution until they are
confirmed and directly compared with primary microglial
cell experiments. The belief that endocannabinoids
induce microglial chemotaxis should be revisited.

Conclusion

Microglial reactivity is part of the pathophysiological
process of several neurological diseases including neuro-
pathic, inflammatory or postoperative pain [3,12,13,51].
We have shown that selective CBR2 activation reduces spi-
nal glial reactivity and behavioral hypersensitivity in ani-
mal models of pain (see references above). We propose
that CBR2 activation induces these effects via MKP-3
induction. In summary, our current results uncovered a
cellular mechanism of action of CBR2 agonists that pro-
duces a microglial anti-inflammatory phenotype, which
may modulate microglial motility in vivo. We identified
MKP-3 and microglial migration as potential new targets

for drug development. The clinical utility of CBR2 ago-
nists is supported by their analgesic efficacy and their lack
of neurological side effects in animal models of postoper-
ative or neuropathic pain [12,13].

Methods

Drugs

The CBR1 antagonist AM281 (1-(2,4-Dichlorophenyl)-5-
(4-iodophenyl)-4-methyl-N-4-morpholinyl-1H-pyrazole-
3-carboxamide), the CBR2 antagonist AM630 (6-lodo-2-
methyl-1-  [2-(4-morpholinyl)ethyl]-1H-indol-3-yl](4-
methoxyphenyl)methanone) and the CBR2 agonist
JWHO015 ((2-Methyl-1-propyl-1H-indol-3-yl)-1-naphtha-
lenylmethanone) were obtained from Tocris, Ellisville,
MI, USA. Drugs were diluted in dimethylsulfoxide
(DMSO) and then in saline to a final concentration of 100
uM (5% DMSO). The final concentration of DMSO in cell
culture with cannabinoid treatments was never higher
than 0.05%, and this was used as the control group
(medium control). JWHO015 was chosen because we have
shown in vivo that it selectively acts on spinal microglial
CBR2 in L5 nerve transection rats and reduces spinal Iba-
1 expression in association with its anti-allodynic effects
[13]. We chose the specific antagonists because we also
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LPS + JWH + Trip

Blockade of the JWHO0I5 effects in microglial migration by MKP-1 and MKP-3 inhibition. (A) JWHO0I15 | uM (JWH
I) significantly reduced the number of LPS-stimulated microglia that migrated towards ADP and triptolide 10 uM (Trip 10)
blocked this effect. Triptolide 10 uM did not modify the number of LPS-stimulated microglia that migrated towards ADP. *p <
0.05 vs. JWHOI5 group. (B) Representative photomicrographs of the migration chamber membranes with attached microglial
cells stained with crystal violet. Cells (black) migrated through the pores (white circles) and towards ADP placed into the

lower well.

showed in the same study that AM630 blocked JWHO015's
effects, while AM281 did not. JWHO15 at 5 uM concentra-
tion has been shown to effectively reduce pro-inflamma-
tory factors in microglia with CBR2 selectivity [16]. We
chose a maximum dose of 1 uM for JWHO015 (and equi-
molar doses for the antagonists) to assure its specificity.

Since ERKs are the only known substrates of MEK, the
MEK inhibitor, UO126 (Cell Signaling, Danvers, Massa-
chusetts, USA) was used to produce ERK inactivation.
PSI2106 [52] (kindly provided by Dr. Key Brummon,
University of Pittsburgh, Pennsylvania, USA), Ro-31-8220
[29] and triptolide [28,53,54] were used as MKP-1 inhib-
itors. UO126, PSI2106 and triptolide (Sigma, St. Louis,
Missouri, USA) were diluted in DMSO and then in saline
to a final concentration of 100 pM (1% DMSO). The final
concentration of DMSO in cell culture with these drug
treatments was never higher than 0.01%, and this was
used as control group (medium control). Ro-31-8220,
minocycline, adenosine diphosphate (ADP) and lipopol-
ysaccharide (LPS, 0111:B4 serotype) were diluted in saline
(Sigma).

Cell culture

After approval by the Institutional Animal Care and Use
Committee at Dartmouth College (Hanover, New Hamp-
shire, USA), highly purified primary microglial cultures
were prepared using postnatal day (P) 2-3 Harlan
Sprague-Dawley pups (Indianapolis, Indiana, USA) as
described previously [33,47]. Briefly, pups were decapi-
tated and the cerebral cortices were removed; meninges
were dissected away; cortical tissue was minced with a
sterile scalpel blade and digested with trypsin/EDTA 1x
(Mediatech, Herndon, Virginia, USA) for 15 min at 37°C.
The supernatant was discarded and 5 mL Dulbecco's mod-
ified Eagle's medium (DMEM; Mediatech) supplemented
with 10% charcoal-stripped fetal bovine serum (FBS;
Hyclone, Logan, Utah, USA), 1.1% GlutaMax (Gibco-Inv-
itrogen, Carlsbad, California, USA), and 1% penicillin/
streptomycin (100 U/mL penicillin and 100 pg/mL strep-
tomycin; Mediatech) containing 2000 U DNase (Sigma)
were added to the tissue on ice. The tissue was triturated
with a 5 mL pipette. The tissue clumps were allowed to
settle and the supernatant was removed to a sterile 50 mL
conical tube on ice between triturations. Triturations were
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Proposed hypotheses. (A) Scheme of the proposed
hypothesis on the mechanisms by which p-ERK induces a
pro-inflammatory phenotype in microglia and contributes to
neuropathic pain. Peripheral nerve injury increases microglial
p-ERK in spinal cord dorsal horn, which in turn leads to the
expression of TNF and an increase in microglial motility.
These pro-inflammatory microglia migrate towards the spinal
injured neuron area attracted by chemoattractants, such as
ATP/ADP. The enhancement of pro-inflammatory microglia
sensitizes spinal nociceptive neurons by increasing the con-
centration of pro-algesic factors, such as TNF. (B) Scheme of
the proposed hypothesis on the mechanisms by which CBR2
activation-induced MKP-3 promotes an anti-inflammatory
phenotype in microglia and alleviates neuropathic pain.
Microglial CBR2 are increased in microglia following periph-
eral nerve injury. Microglial CBR2 activation induces an anti-
inflammatory phenotype in microglia by increasing MKP-3
expression, which selectively inhibits p-ERK in spinal cord
dorsal horn. Subsequently, ERK dephosphorylation results in
a reduction of TNF expression and microglial motility. The
reduction in the migration of pro-inflammatory microglia
reduces the source of pro-algesic factors, such as TNF pre-
venting neuronal sensitization and alleviating peripheral nerve
injury-induced allodynia.
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repeated until no tissue clumps were observed. The final
volume was diluted to 25 mL with media and centrifuged
at 310 g for 15 min. The supernatant was discarded and
the cells resuspended in media. A small aliquot of cells
was stained for trypan blue (Sigma) exclusion and cells
were plated at 1 x 100 cells per 75-cm? flask. Cultures were
maintained at 37°C and 5% CO,. Media was changed
every 3-4 days. After 8 days in vitro (DIV 8), the flasks were
confluent with astrocytes and microglia. Flasks were
lightly shaken by hand for 1 min and the media contain-
ing microglia was removed and centrifuged at 310 g for 15
min. Cultures were found to be 99% microglia by staining
with OX-42 antibody (generous gift from Dr William
Hickey) a marker for the CR3/CD11b receptor.

Western blot analysis

Confluent DIV 8 primary microglia were shaken, counted
and plated for at least 1.5 hr in serum free medium (SFM)
at a density of 400 x 103 cells/mL. The cells were treated
with different drugs (see below) using a time course incu-
bation (15, 30, 60 and 120 min). Following treatments,
the culture plates were briefly centrifuged; supernatants
were removed and 60 pL of 1x Laemmli buffer (Bio-Rad,
Hercules, California, USA) containing 2-mercaptoethanol
(ME) (Sigma) was added to each well. Protein expression
was assessed using western blot analysis. Briefly, samples
and standard protein markers were subjected to sodium
dodecyl sulfate-polyacrylamide gel electrophoresis (10%
gels; Bio-Rad) and transferred to polyvinylidene difluo-
ride (Bio-Rad) membranes. Non-specific binding was
blocked by incubation with 5% bovine serum albumin in
Tris-buffered saline-Tween 20 (0.05%; Sigma) at 22°C,
then membranes were incubated overnight or for 36-40
hr at 4 ° C with rabbit anti-phospho-ERK 44/42 (phospho-
mitogen-activated protein kinase, p-ERK, 1:500; Cell Sig-
naling), mouse anti-total-ERK 44/42 (total mitogen-acti-
vated protein kinase, t-ERK, 1:1000; Cell Signaling),
rabbit anti-MKP-1 (mitogen-activated protein kinase
phosphatase-1, MKP-1, 1:400; Santa Cruz, California,
USA), goat anti-MKP-3 (mitogen-activated protein kinase
phosphatase-3, MKP-3, 1:400; Santa Cruz, USA) or rabbit
anti-TNF (1:1000; Peprotech, Rocky Hill, New Jersey,
USA). The next day (or 36-40 hr), blots were incubated
for 1 h at 22°C with goat anti-rabbit, mouse or donkey
anti-goat horseradish peroxidase-conjugated secondary
antibodies (1:3000; Pierce, Rockford, Illinois, USA), visu-
alized with SuperSignal West Femto Maximum Sensitivity
Substrate (Pierce) for 5 min and imaged using the Syn-
gene G-Box (Synoptics, Frederick, Maryland, USA). After
incubation with the first primary and secondary antibod-
ies, three blots were incubated for 25 min at 37°C in strip-
ping buffer. Blots were visualized using SuperSignal West
Femto Maximum Sensitivity Substrate (Pierce) for 5 min
and we observed that the antibodies were completely
removed. Therefore, the same stripping procedure was

Page 12 of 15

(page number not for citation purposes)



Molecular Pain 2009, 5:25

used to re-probe with another primary and secondary
antibodies. This methodology allowed us to observe the
effects of the drug treatments in different proteins from
the same treated cells. Finally, blots were subsequently
stripped and re-probed with mouse anti-beta-actin anti-
body (1:3000; Abcam, Cambridge, Massachusetts, USA),
and this was used as the protein loading control. Band
intensity was assessed using the analysis software package
provided with the Syngene G-Box and data were quanti-
fied as relative intensity of band of interest divided by
intensity of beta-actin. Normalization of p-ERK and t-ERK
were also conducted against beta-actin, then p-ERK data
were quantified as relative intensity of band divided by
intensity of t-ERK. Data were expressed as relative inten-
sity normalized to beta actin control and to the control
group for each experiment + SEM. Incubation of blots
with only secondary antibodies did not show any protein
band.

The following treatment groups were performed. Medium
control (time 0) or LPS (5 ng/ml) alone groups were used
as the control groups to compare the effects of selective
microglial CBR2 activation on MKP-1/3 (n = 5-7), t-ERK
(n=5-7), p-ERK (n = 5-7) and TNF (n = 4) using a group
with LPS + JWHO15 (1 uM). To test the specificity of the
CBR2 agonist (JWHO015), LPS + JWHO015 (1 uM) group
was compared to LPS + JWHO15 (1 uM) + AM281 or
AMG630 (1 uM, n =9) groups. The dependence of TNF pro-
duction on p-ERK has been previously shown [21,32]. To
confirm this in our preparation, we used the MEK inhibi-
tor, UO126 (1 uM, n = 6) in LPS-stimulated cells. Addi-
tionally, to probe that CBR2 activation reduces p-ERK by
inducing MKP-1 and/or MKP-3, we challenged the effects
of JWHO015 (1 uM) in the presence of LPS with different
drugs claimed to be MKP-1 inhibitors. Thus, the LPS +
JWHO015 (1 uM) group was compared with LPS + JWHO015
(1 uM) + Ro-31-8220, triptolide or PSI2106 (1-10 uM, n
= 3). All data were normalized to control groups which
were given a value of 1.

Migration

Our laboratory has previously characterized and opti-
mized the incubation times and chemoattractants that
allow optimum cell migration susceptible to pharmaco-
logical modulation [33,47]. We used Costar Transwell®
plates (6.5 mm diameter insert, 8.0 pm pore size, polycar-
bonate membrane; Corning Inc., Corning, New York,
USA). For this group of experiments, the bottom chamber
of these plates contained 10 uM ADP, a potent microglial
chemoattractant released from injured neurons
[33,41,47,55]. Confluent DIV 8 primary microglia were
shaken, washed with PBS, counted using trypan blue, then
placed in SFM (DMEM). Cells were resuspended at 100 x
103 cells in 200 pL SFM and treated with different drugs.
To assess the effects of cannabinoid or other pharmaco-
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logical treatments on primary microglia, cells were pre-
treated with drugs for 2 h in the presence of LPS (5 ng/ml).
Then, cells were centrifuged, medium containing the
drugs was discarded and fresh SFM was added. Cells were
counted using trypan blue to insure survival post-treat-
ment (> 95% viability).

Cells were added to the top chamber (100 x 103 cells in
200 pL SFM) of a transwell plate with fibronectin-coated
membranes with ADP (10 puM, 500 pL in SEM) in the bot-
tom chamber. Cells were then allowed to migrate towards
ADP for 1 or 2 h at 37°C and 5% CO,. Following migra-
tion, the medium in the top chamber was aspirated and
the membrane gently wiped with a cotton swab to remove
the cells that did not migrate. The membranes were first
rinsed with PBS, the cells were then fixed with 2% formal-
dehyde in PBS, permeabilized with 0.01% Triton X-100
(Sigma) in PBS, and finally stained with crystal violet
(Sigma). The membranes were then dried and mounted
on microscope slides. Images of nine random fields (20x
objective) for each membrane were captured via a Q-Fired
cooled CCD camera attached to an Olympus microscope
and counted by hand with aid of SigmaScan Pro imaging
analysis software. Counts for all nine fields were averaged
to give a mean cell count for each membrane. All experi-
ments were completed at least three times (n = 3).

To study the effects of CBR2 activation on cell migration
in LPS-stimulated microglia we used the following
groups: LPS + JWHO015 (0.01-1 uM, n =9). To test the spe-
cificity of the CBR2 agonist, we challenged its effects with
specific CBR1 (AM281) and CBR2 (AM630) antagonists
by using the following groups: LPS + JWHO015 (1 uM) +
AM281 (1 puM, n = 4) or AM630 (1 uM, n = 6). To test
whether p-ERK is involved in microglial migration we
used a specific MEK inhibitor, UO126 (1 uM, n = 6) in
LPS-stimulated cells. We also used a positive control
group using LPS-stimulated microglia + minocycline (60
UM, n = 6), a dose that our laboratory has shown to be
effective in reducing microglial migration in non-stimu-
lated microglia [33]. To further test whether JWHO015's
effects on MKP-1/3 were causatively linked with
JWHO015's effects on microglial migration, we used Trip-
tolide (10 uM, 15 min pre-treatment, n = 6) in LPS-stim-
ulated cells + JWHO15 (1 uM) incubated for 2 hr in the
migration well. It has been shown that JWHO015 act as che-
moattractant in human monocytes when used at 20 pM
concentration in parallel to an induction in ERK phos-
phorylation. However, JWHO015 does not induce chemo-
taxis at 5-10 uM concentrations, [56]. Therefore, we chose
1 uM as our highest JWHO015 dose tested.

Statistical analyses
Data are expressed as mean + SEM. Statistical analyses
were completed using GraphPad Prism 4 (GraphPad Soft-
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ware, Inc., San Diego, California, USA). The effects of LPS
and drug on proteins measured by western blot analyses
and cell migration were examined using the repetitive
measurements one-way analysis of variance. If significant
effects were found, Dunnett's test was conducted. When
appropriate (non-normally distributed), these data were
evaluated using the Friedman Repeated Measures Analysis
of Variance on Rank test. If significant effects were found,
non-parametric Wilcoxon signed ranks tests were con-
ducted comparing each time point to the medium control
group. Between group differences were examined using
two-way analysis of variance. If differences were found,
Bonferroni post test was used. When appropriate (non-
normally distributed), between group differences were
examined at each time period using the Kruskal-Wallis
test. Significant effects were followed using the Mann-
Whitney U test comparing only the novel treatment to
control or agonist group. Data are presented as mean +
SEM. Significance was determined at a level of p < 0.05.
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