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Abstract

A common complication associated with diabetes is painful or painless diabetic peripheral
neuropathy (DPN). The mechanisms and determinants responsible for these peripheral
neuropathies are poorly understood. Using both streptozotocin (STZ)-induced and transgene-
mediated murine models of type | diabetes (TID), we demonstrate that Transient Receptor
Potential Vanilloid | (TRPVI) expression varies with the neuropathic phenotype. We have found
that both STZ- and transgene-mediated T1D are associated with two distinct phases of thermal
pain sensitivity that parallel changes in TRPV I as determined by paw withdrawal latency (PWL). An
early phase of hyperalgesia and a late phase of hypoalgesia are evident. TRPV |-mediated whole cell
currents are larger and smaller in dorsal root ganglion (DRG) neurons collected from hyperalgesic
and hypoalgesic mice. Resiniferatoxin (RTX) binding, a measure of TRPV| expression is increased
and decreased in DRG and paw skin of hyperalgesic and hypoalgesic mice, respectively.
Immunohistochemical labeling of spinal cord lamina | and Il, dorsal root ganglion (DRG), and paw
skin from hyperalgesic and hypoalgesic mice reveal increased and decreased TRPVI expression,
respectively. A role for TRPVI in thermal DPN is further suggested by the failure of STZ treatment
to influence thermal nociception in TRPV| deficient mice. These findings demonstrate that altered
TRPVI expression and function contribute to diabetes-induced changes in thermal perception.

Background

Diabetic peripheral neuropathy (DPN) is a common
chronic complication of diabetes mellitus [1]. Symptoms
of this debilitating condition include progressive loss of
thermal and tactile pain sensation [2,3]. Although, most
individuals with diabetic neuropathy experience reduced
perception, a fraction (~10%) experience painful symp-
toms [2]. Results from the Diabetes Control and Compli-

cations Trial [4] show that intensive glycemic control for
5 years reduces the incidence of neuropathy by 60% in
individuals with T1D, suggesting that dysregulated glu-
cose metabolism contributes to neuropathy. However, the
fact that strict glucose regulation does not completely pre-
vent DPN suggests additional mechanisms of pathogene-
sis exist [3,4]. Furthermore, sensory neuropathy can be
detected in some individuals who have impaired glucose
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tolerance but may not meet the criterion for a diagnosis of
frank diabetes [5]. The occurrence of hyperalgesia prior to
hyperglycemia in some rodent disease models also sug-
gests that aspects of altered sensory perception may be
independent of glucose metabolism [6]. Additional stud-
ies suggest that insulin deficiency or insulin insensitivity
could contribute to development of DPN [7,8]. Direct
insulin signaling achieved by intrathecal administration
of insulin reverses neuropathy in STZ-induced diabetes

[9].

Transient receptor potential (TRP) ion channels are
involved in sensing physical and chemical stimuli
[10,11]. TRPV1 is a Ca?* permeant non-selective cation
channel expressed predominantly by unmyelinated C-fib-
ers and thinly myelinated Ad fibers and plays a major role
in inflammatory thermal sensation [12]. TRPV1 is acti-
vated by heat (~>43°C), protons, N-arachidonyl
dopamine (NADA), anandamide and lipoxygenase
metabolites of arachidonic acid [12-16]. Sensitization of
TRPV1 by phosphorylation is mediated by numerous fac-
tors including, prostaglandins [17,18], bradykinin [19-
21], glutamate [22], serotonin [23], histamine [24], ATP
[25-27], trypsin [28,29] and nerve growth factor (NGF)
[14,30]. Since TRPV1 is involved in inflammatory thermal
sensation, it is logical to determine the expression and
function of TRPV1 in DPN. Furthermore, capsaicin, a
TRPV1 agonist has been shown to improve sensory per-
ception in humans with DPN [31,32].

In this study, we have used STZ-induced and transgene-
mediated diabetes models to study the role of TRPV1 in
DPN. We show in these animal models of diabetes, DPN
manifests as an initial phase of thermal hyperalgesia and
a late phase of thermal hypoalgesia. These phenotypes are
accompanied by up and down regulation of TRPVI,
respectively. We further confirm our findings by the lack
of these phenotypes in STZ-injected diabetic TRPV1
knock-out mice.

Methods

Induction of diabetes

All procedures used in this study were approved by the
animal care and use committee at Southern Illinois Uni-
versity, School of Medicine and conformed according to
NIH and institutional guidelines. All efforts were made to
minimize the number of animals used and their suffering.
The mice were housed in specific pathogen free barrier
animal facility. Rodent laboratory chow (Laboratory Diet
5001, Nutrition International, Inc., Brentwood, MO,
USA) and drinking water were provided ad libitum. Ins-
HA.D2, B6.129S4-Trpv1tmiul/] (TRPV1 knock-out) and
C57B16/] (background strain of TRPV1 knock-out) mice
were housed in standard cages and maintained on a 12-h
light/dark cycle at an ambient temperature of 22 + 1°C.
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Mice were at least 6-10 weeks of age and weighed
between 18 — 23 gms at the time of the experiments.

STZ-induced diabetes model

Age matched Ins-HA.D2 single transgenic mice, TRPV1
knock-out mice, and the back ground strain (C57Bl6/])
was used for STZ-induced diabetes. Diabetes was induced
in mice by a single intraperitoneal injection of 200 mg/kg
STZ (Sigma, St Louis), prepared fresh in saline adjusted to
pH 4.5 with 0.1 N citrate buffer as described previously
[33,34]. Control mice received citrate buffered saline
alone. Although Ins-HA.D2 mice are genetically altered,
HA expression does not affect glucose metabolism or neu-
ronal function as measured by peripheral blood glucose
levels and hot plate tests.

Double transgenic diabetes model (TCR-SFE/Ins-HA)

Mice expressing the TCR-SFE transgene were kindly pro-
vided by Dr. von Boehmer [35]. T cells from TCR-SFE mice
express a T cell receptor (TCR) specific for the influenza
hemagglutinin (HA) peptide 110-119 (SFERFEIFPK). Ins-
HA.D2 (Insulin-hemaglutinin) transgenic mice express
HA in islet beta cells and were kindly provided by Dr. Lo
[36,37]. Both TCR-SFE and Ins-HA mice were maintained
on the B10.D2 strain background. When TCR-SFE and
Ins-HA mice are crossed, the resulting double transgenic
(TCR-SFE/Ins-HA) mice become diabetic within approxi-
mately 4-6 weeks of birth.

TRPV| deficient mice

The previously described B6.129S4-Trpy1tmiul/] (TRPV1
knock-out) mice and its background strain (C57Bl6/])
were purchased from the Jackson Laboratory (Bar Harbor,
ME, USA) [38,39]. TRPV1KO mice were maintained as
homozygous mutants in concordance with previous
experiments [38,39].

Blood glucose measurement

Glucose levels were quantitated with a One Touch Ultra
blood glucose monitoring system (Life Scan, California)
using whole blood obtained from the tail. Diabetes was
defined as blood glucose concentrations greater than 299
mg/dl (16.7 mM) [40].

Hot plate testing

All the mice used in this study were housed in the barrier
facility. Mice were tested in the same room of barrier facil-
ity on the days the cages were not cleaned. Mice were
placed individually on a Hot Plate Analgesia Meter (Har-
vard Apparatus, Boston, MA) maintained at a constant
temperature of 52 + 0.3°C after observing them for 5 five
minutes in the cage. The paw withdrawal latency (PWL) is
recorded as the time taken for the animal to exhibit a dis-
tinct pain behavior either by a hind paw lick or a charac-
teristic hind paw flick (whichever occurs first). Mice that
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did not respond within 20 seconds were removed from
the hot plate to prevent tissue damage. We did not find a
significant difference in PWL either with habituation (1-
2 hrs) or without habituation (5 min) inside the barrier
facility. Hot plate testing was performed on randomly
chosen animals from diabetic or control groups. After
completing the test, the ear tags were read to place them
in the appropriate groups. There was no significant effect
of sex, therefore males and females were grouped together
for further analyses. The PWL of control animals
remained constant, any deviation that is significantly dif-
ferent from these values was considered as hyper (PWL <8
s) or hypoalgesic (PWL >12 s). The PWL was significantly
higher (PWL >16 s) in TRPV1 knockout mice as compared
to control mice.

DRG neuronal cultures

After determining the PWL, the DRG were dissected from
diabetic and control mice euthanized by deep anesthesia
with isoflurane followed by decapitation. Isolated DRG
were collected in HBSS (calcium- and magnesium-free)
on ice and then enzymatically digested for 45 minutes at
37°Cin 0.1% collagenase D, Worthington type 2 (Roche
diagnostics, Indianapolis, IN) and 0.1% trypsin, type 1
(Sigma-Aldrich, St. Louis, MO). DRG were dissociated by
trituration using fire-polished Pasteur pipettes. Cells were
plated on 12 mm poly D-lysine coated glass coverslips
placed in 24 well plates and grown in neurobasal medium
(Gibco BRL, Grand Island, NY) supplemented with L-
glutamine (2 mM, Invitrogen, Grand Island, NY) and 10
pl/ml B27-supplement (Gibco, Invitrogen corporation,
GrandlIsland, N.Y). Neurons were maintained at 37°C in
a humidified atmosphere of 5% CO, and were used
within 8-10 hours.

Whole cell patch clamp recording

For whole-cell patch-clamp recordings of cultured DRG
neurons, the bath solution contained (in mM): 140 Na
gluconate, 2.5 KCl, 10 HEPES, 1 MgCl,, and 1.5 EGTA.
The pipette solution contained (in mM): 130 Na gluco-
nate, 10 NaCl, 2.5 KCI, 10 HEPES, 1 MgCl,, and 1.5
EGTA. Both bath and pipette solutions were adjusted to
pH 7.35 with NaOH. Ca?*-free solutions were used to
avoid desensitization and tachyphylaxis of capsaicin-
induced currents. Currents were recorded using a WPC
100 patch-clamp amplifier (E.S.F. Electronic, Goettingan,
Germany). The capacitance and the series resistance were
compensated. Data were digitized (VR-10B; Instrutech,
Great Neck, NY) and stored on video tape. For analysis,
data were filtered at 2.5 kHz (-3 dB frequency with an
eight-pole low-pass Bessel filter; LPF-8; Warner Instru-
ments, Hamden, CT) and digitized at 5 kHz. Current
amplitudes were measured using Channel 2 (software
kindly provided by Michael Smith, Australian National
University, Canberra, Australia). The traces and graphs
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were made using Origin (Microcal Software, Northamp-
ton, MA).

[3H]-Resiniferatoxin (RTX) binding

Hind paw skin and DRG were collected from non-diabetic
and diabetic mice and placed immediately in ice-cold PBS
containing 5 mM EDTA. Samples were lysed in binding
buffer (in mM: 5 KCl, 5.8 NaCl, 0.75 CaCl,, 2 MgCl,, 137
sucrose, and 10 HEPES, pH 7.4) using a tissue homoge-
nizer. Homogenates were centrifuged for 10 minutes at
1000 x g (4°C). Supernatants were collected and centri-
fuged again at 35,000 x g for 30 min (4°C) to obtain par-
tially purified membrane fractions (pellets). Pellets were
resuspended in 0.5 ml binding buffer and protein levels
were quantitated using Biorad protein assay (Bio-Rad lab-
oratories, Inc., CA).

Binding assay mixtures were set up on ice in glass tubes
(Kimble Glass Inc.) and consisted of 100 pl binding
buffer, 50 ul [3H] RTX (37 Ci/mmol specific activity, Per-
kin-Elmer Life Sciences) and 100 pul membrane prepara-
tion (~50 pg/assay tube). In each set of experiments,
nonspecific binding was defined in the presence of 100 pl
of cold 100 uM capsaicin (final concentration). Reaction
mixtures were incubated in a 37°C shaking (50 rpm)
water bath for 1 hour. Reactions were terminated by chill-
ing assay mixtures on ice for 5 minutes. To reduce non-
specific binding, 100 pl of bovine a,-acid glycoprotein (2
mg/ml; Sigma) was added into the binding mix and incu-
bated for an additional 10 minutes. After incubation,
samples were filtered over Whatman GF/B glass fiber fil-
ters (Brandel, Gaithersburg, MD) pretreated with 0.05%
polyethyleneimine. The radioactive content of each filter
was determined using a Beckman Instruments (Fullerton,
CA) liquid scintillation counter.

Immunohistochemistry

After determining the PWL, mice were anesthetized by
using isoflurane and L5 segments of spinal cord, DRG and
ventral paw skin were collected in the 4 % paraformalde-
hyde following transcardial perfusion of control and dia-
betic mice. Tissues were fixed for 3 hours in fixative and
incubated in 15% and 30% sucrose for 12 hours. Samples
were quickly frozen in liquid nitrogen. Dorsal horn and
paw tissue were cut into 20 um thick sections and DRG
were cut 10 pm thick sections. The paw skin was longitu-
dinally cut into 20 um sections. Sections were incubated
with polyclonal rabbit anti-TRPV1 antibody (Calbio-
chem, PC 420, 1:50) and monoclonal mouse anti-NeuN
antibody (Chemicon, MAB 377, 1:100) for 2 hours at
room temperature, then incubated with Rhodamine Red
(TM)-X donkey anti-rabbit IgG (Jackson 711-295-152, 1:
100) and FITC donkey anti-mouse IgG (Jackson, 715-095-
151, 1: 100) for 1 hour at room temperature, then spread
on slides, mounted with mounting medium (Biomed
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Gel/Mount) and covered by coverslips. Images were taken
by using confocal microscope (Olympus Fluoview,
Melville, NY) keeping a constant exposure time between
tissue sections under 10 times magnification. Immuno-
histochemistry was performed in a fashion that the phe-
notype was not known to the experimenter.

Immunohistochemistry analysis

The animals that clearly exhibited hyperalgesic (PWL< 7s)
and hypoalgesic (PWL >12 s) phenotypes were used for
immunohistochemical studies. Only the full size sections
(which included the soma-dense lateral parts and the
fiber-dense central part) were taken into account for quan-
tification. Sections were randomly selected from 3-4 mice
of each phenotype, whose numbers and stain intensity
(total gray values) of the TRPV1-expressing neurons were
counted by Image J. While analyzing the sections of the
paw skin, only the TRPV1 staining in the small region
between the second foot pad and the fifth foot pad was
taken into account. 8-9 sections in this region from 4
mice of each phenotype were selected randomly, whose
total gray values were measured by Image]. The mean gray
value was calculated by the Image J software, and product
of the area and the mean gray value of the selected region
were regarded as the total gray value of the staining region.
The gray value from the background (an area where no
staining is observed) is obtained and subtracted. We have
used confocal microscope and kept the background inten-
sity constant while analyzing the data. Moreover, we have
subtracted the background value to get an objective meas-
ure.

Data analysis

For behavioral experiments, mixed model analysis was
performed using SAS software, which includes both fixed
events (age and time after diabetes onset) and random
events (number of subjects) with repeated measures
ANOVA. The comparisons were made between control
group and diabetic groups. Data are shown as mean *
S.E.M. (standard Error of Mean) Data are considered sig-
nificant at p < 0.05.

For all other experiments, data are shown as mean *
S.E.M. Significance is tested using unpaired Student's t-test
and the data are considered significant at p < 0.05.

All the chemicals used in this study were obtained from
Sigma (St. Louis, MO).

Results

Changes in blood glucose level, body weight and thermal
pain sensitivity in mice injected with STZ

STZ is toxic to pancreatic beta cells and is commonly used
to induce type 1 diabetes in rodents for the study of DPN
because disease induction is both rapid and reliable. In
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this study, 6-10 weeks old mice of either sex were used
and observed for a period of 7-9 weeks after the onset of
diabetes. Ins-HA.D2 single transgenic mice were injected
with a single dose of STZ (200 mg/kg). Blood glucose lev-
els were significantly elevated within one week after treat-
ment and remained elevated for the entire course of the
study (pre-injection, 157 + 4.4; week 1 post-STZ injection,
503.5 + 24.6; week 6 post-STZ, 578.6 + 15.6 mg/dl, n=11,
p <0.001) as compared to control non-diabetic mice (pre-
injection, 197 + 6.1; week 1 vehicle control, 183.6 + 2.2;
week 6 vehicle control, 186 + 1.6 mg/dl, n = 6) (Fig. 1A).
As disease progressed, body weights of STZ-treated ani-
mals remained stagnant, whereas the body weights of
control animals increased steadily (control week 1,22.1 +
0.2; control week 6, 26.7 + 0.3 gms, n = 6; post-STZ week
1,22.9 +0.5; post-STZ week 6,21.2 + 0.6,gmsn =11, p <
0.001) (Fig. 1B). As indicated in the Method Section, mice
were tested for thermal pain sensitivity by measuring PWL
using a hot plate maintained at 52 + 0.3 °C. An early phase
of thermal hyperalgesia occurred 1-3 weeks post-STZ
treatment, which paralleled the onset of hyperglycemia
(control week 2, 8.9 + 0.5 s, n = 19; diabetic week 2, 7.1 +
0.4, n = 33, p < 0.001) (Fig. 1C). Hyperalgesia was fol-
lowed by a second phase of apparently normal PWL (con-
trol week 4, 9 + 0.5 s, n = 19; diabetic week 4, 9.4 + 0.3 s,
n = 18) and then a final phase of hypoalgesia beginning at
week 6 (control week 8, 9 + 0.8 s, n = 19, diabetic week 8,
13.4+0.7s,n=8,p<0.001) (Fig. 1C). As the disease pro-
gressed, the mice which did not appear healthy were not
used further, hence the 'n' values decreased over the study
period. Together these results indicate that STZ-induced
diabetic animals exhibited an initial phase of hyperalgesia
and a phase of hypoalgesia.

Changes in blood glucose level, body weight and thermal
pain sensitivity in double transgenic mice model of
diabetes

To study DPN in a model system devoid of exogenous tox-
ins or infectious agents that might themselves influence
nerve function, we examined sensory perception in a
cohort of diabetic double transgenic TCR-SFE/Ins-HA
mice. These mice become diabetic within 4 to 6 weeks of
age due to CD4 T cell mediated destruction of pancreatic
beta cells [36,37]. Autoimmune diabetes occurs spontane-
ously and exhibits complete penetrance with a predictable
rapid disease course. Diabetes was well established among
TCR-SFE/Ins-HA double transgenic mice at 6 weeks of age;
average blood glucose levels were typically at the maxi-
mum limit of detection (>600 mg/dl) (Fig. 2A). Age-
matched single transgenic mice (TCR-SFE or Ins-HA.D2)
served as controls and remained euglycemic over the
course of study. Average body weights were also signifi-
cantly lower among TCR-SFE/Ins-HA mice as compared to
single transgenic control mice (week 6 single transgenic,
22.1 +0.2; week 18, 26.7 + 0.3 gms, n = 6; week 6 double
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mice increased steadily (open circles, n = 6, p < 0.001) C. PWL of diabetic mice determined every week after injection of STZ
show significant changes: exhibited a phase of hyperalgesia (filled circles; n = 33, p < 0.001) between weeks | and 4; a phase of
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transgenic, 16.1 + 0.4 gms; week 18, 18.1 + 0.3 gms, n=9,
p < 0.01)(Fig. 2B).

Thermal sensitivity was determined from 6 weeks to 17—
19 weeks of their age using a hot plate as described in the
Methods Section. As seen with STZ-treated mice, devia-
tion from normal PWL was characterized by a phase of
hyperalgesia and a phase of hypoalgesia. However, unlike
STZ-induced diabetic mice, a uniform change in PWL was
not observed in double transgenic diabetic mice. To best
explain the observations, the animals were separated into
three groups based on the following criteria. First, the ani-
mals were divided into two groups based on the animals
that developed hypoalgesia vs. the animals remained
hyperalgesic. The group of animals that showed hyperal-
gesia was further subdivided because a subset of animals
exhibited only hyperalgesic phenotype.

One group of diabetic SFE/Ins-HA mice was characterized
by an initial stage of hyperalgesia (week 11, 4.7 + 0.3 s, n
=12, as compared to control single transgenic, 8.9 + 0.3 s,
p < 0.01, n = 19) followed by an intermediate phase of
apparently normal pain sensitivity (week 16, 8.7 + 0.7 s, n
=12, as compared to controls 9 + 0.5 s, n = 19) and a late
phase of thermal hypoalgesia, which lasted for the
remainder of the study (week 18, 13.1 + 1 s n = 8, as com-
pared to controls, 9.3 + 0.4 s, n =19, p < 0.05) (Fig. 2C).
The second group of diabetic SFE/Ins-HA mice exhibited
hypoalgesia without an early phase of hyperalgesia
between weeks 13 and 16 (week 14, 14.6 + 1.6 s, n = 8 as
compared to controls, 8.6 + 0.3, n=19, p< 0.01) (Fig. 2C).
Finally, the third group of diabetic SFE/Ins-HA mice
showed a significant decrease in PWL (week 8, 10.4 + 0.8
s; week 14, 6.9 + 0.6 s; week 18, 6.4 + 0.4s, n =12, p <
0.05) as compared to controls (week 8, 9.4 + 0.3s,n=19;
week 14, 8.6 + 0.3 s, n =19, week 18,9.3 + 0.4 s, n = 19)
(Fig. 2C). Thus, hyper and hypoalgesic phenotypes were
observed in diabetic TCR-SFE/Ins-HA mice, but the phases
were not clearly demarked as in STZ treated animals.

Changes in blood glucose level, body weight and thermal

pain sensitivity in TRPV I knock-out mice injected with STZ
To determine whether TRPV1 plays a role in the altered
thermal pain sensitivity observed in diabetic mice, we
treated TRPV1-/- mice with 200 mg/kg STZ or vehicle and
then determined PWL. TRPV1-/- mice became hyperglyc-
emic following STZ treatment, (preinjection 206 + 11;
week 7 post-STZ, 464 + 39 mg/dl; n =14, p<0.001) com-
pared with vehicle injected control non-diabetic TRPV1-/-
mice (preinjection, 206 + 9; week 7 post-vehicle, 208.7 +
11 mg/dl, n = 6) (Fig. 3A). STZ-treated diabetic TRPV1+/-
mice did not gain weight (prediabetic, 20.1 + 0.5; diabetic
week 7, 17.9 + 0.7, n = 14), whereas the body weight of
vehicle injected non-diabetic TRPV1-/- mice increased
steadily (preinjection 21.1 + 1.3; week 7 post-vehicle, 26.7
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+ 0.4, n =6, p<0.05 from the preinjection). Thermal pain
sensitivity of these mice was tested upto 8 weeks after the
onset of diabetes. PWL of STZ treated diabetic TRPV1+/-
mice did not differ from vehicle injected control non-dia-
betic TRPV1-/- mice (STZ treated TRPV1-/- mice week 4,
18.3 + 0.8, n = 14; week 8, 18.2 + 0.9, n = 14; vehicle
treated TRPV17/- mice week 4, 16.2 + 1.1, n = 6; week 8,
17.5 + 1 s, n = 6) (Fig. 3C). Together these data demon-
strate that STZ-induced diabetes does not alter thermal
pain sensitivity in TRPV1 knock-out mice further suggest-
ing TRPV1 plays a major role in diabetes-induced altered
thermal pain sensitivity. In our experimental conditons,
in contrast to previous studies, we noticed a higher PWL
in TRPV1 knock-out mice as compared to non-diabetic
wild type mice (Ins-HA.D2 or C57BL/6J mice) suggesting
that TRPV1 is necessary for acute thermal sensation [39].
We used Ins-HA.D2 mice as a control non-diabetic mice
and parameters such as thermal pain sensitivity and blood
glucose levels did not vary with background strain of
TRPV1 knock-out mice that is C57BL/6] mice (Ins-HA.D2
mice, pretreatment 10 weeks of age, PWL 9.3 + 0.6s, n =
14, blood glucose levels 213.9 + 9.8, n = 23; C57BL/6]
mice pretreatment 10 weeks of age PWL 10.8 + 0.4 s, n =
15, blood glucose levels 231.16 + 5.6, n = 15).

Alterations in TRPYI-mediated whole cell currents in DRG
neurons obtained from diabetic mice

In order to determine if TRPV1 channel function changes
as thermal perception increases or decreases in diabetic
mice, we recorded capsaicin-induced whole cell currents
by patch clamp techniques using acutely dissociated DRG
neurons from hyperalgesic, hypoalgesic and normal mice
from both age matched non-diabetic and STZ-induced
diabetic mice and transgenic diabetic mice. Dissociated
neurons were obtained after confirming the phenotype by
PWL. Neurons were grown in the absence of trophic fac-
tors to avoid post translational and post transcriptional
modification and used within 8 to 10 hrs. Whole-cell cur-
rents from these neurons were recorded using different
concentrations of capsaicin. Peak current responses to 1
uM capsaicin were significantly larger (1056 + 136 pA, n
= 26 cells from 6 mice) (1.91 + 0.12 fold, p < 0.05) from
DRG obtained from hyperalgesic mice as compared to the
age matched control mice (545 + 83 pA, n = 23 cells from
6 mice). In DRG obtained from hypoalgesic mice, TRPV1-
mediated currents were smaller (292 + 75 pA, n = 26 cells
from 6 mice) (0.56 + 0.26 fold; p < 0.05) as compared to
age matched control mice (545 + 119 pA, n = 14 cells from
3 mice) (Fig. 4B). Similarly, hyperalgesic diabetic trans-
genic mice, the current amplitude was larger (906 + 84 pA,
n = 26 cells from 4 mice) as compared to age matched
control mice (499 + 49 pA, n = 23 cells from 4 mice).
These results demonstrate that altered TRPV1 currents cor-
relate with altered thermal pain sensitivities in diabetic
mice. We have used near saturating concentrations of cap-
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Figure 3

Changes in blood glucose level, body weight and thermal pain sensitivity in TRPV| knock-out mice (B6.129S4-Trpv |tmljulf])
injected with STZ. A. After intraperitoneal injection of STZ, within the first week, blood glucose level significantly increased
(filled squares, n = 14, p < 0.001) and remained constant throughout the course of the experiment as compared to non-dia-
betic TRPVI knock-out mice (open squares, n = 6) or the background strain of TRPV| knock-out mice (C57BL/6J) (open cir-
cles n = 15). B. The body weight of TRPV| knock-out diabetic mice remained constant (filled squares, n = 14), but the body
weight of non-diabetic knock-out mice increased steadily (open squares, n = 6, p < 0.001). C. PWL of TRPVI knock-out dia-
betic mice, determined every week did not show any significant change (filled squares, n = 14) as compared to control non-dia-
betic TRPVI knock-out mice (open squares, n = 6) and the background strain of TRPVI knock-out mice (open circles n = |5).
Note that PWL is significantly higher in TRPV| knock-out mice as compared to the background strain. Asterisk (**) represents
p <0.001.
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Altered capsaicin-evoked TRPV |-mediated whole cell currents in diabetic mice. Capsaicin (I 1M)-evoked TRPVI-currents
were recorded from acutely dissociated DRG neurons from age matched diabetic and non-diabetic mice. A. Representative
traces of capsaicin-evoked TRPVI currents show that the amplitude is larger in hyperalgesic mice and smaller in hypoalgesic
mice as compared to responses in control mice. B. Summary graph showing an average fold change in TRPV|-mediated peak
currents is significantly larger in hyperalgesic (n = 26 cells, p < 0.05) and smaller in hypoalgesic mice (n = 26 cells, p < 0.05) as
compared to age matched control mice (n = 23). Number in the parenthesis represents the number of cells and the asterisks

(*) represents p < 0.05.

saicin and the differences in current amplitude suggest
that the TRPV1 protein content as a result of altered tran-
scriptional regulation is higher and lower in hyper and
hypoalgesic mice, respectively rather than phosphoryla-
tion state of TRPV1, where they showed prolongation of
decay phase [41].

Determination of [3H]-RTX binding in diabetic mice

Changes in capsaicin-induced currents may result from
altered receptor sensitivity as well as expression. There-
fore, to confirm that the TRPV1 protein content is differ-
ent, TRPV1 levels were quantitated by using [3H]-RTX
binding assays in DRG obtained from STZ treated diabetic
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or transgenic diabetic or vehicle injected non-diabetic
mice (Fig. 5A) Compared to DRG obtained from vehicle
treated non-diabetic control mice (167 + 20 fmol/mg tis-
sue), [3H]-RTX binding was significantly increased in DRG
from hyperalgesic mice (2.6 + 0.02 fold, n = 4, p < 0.05)
and decreased in hypoalgesic mice (0.34 + 0.04 fold, n =
3, p < 0.05). The DRG obtained from hypoalgesic trans-
genic diabetic mice showed lower (0.34 + 0.09 fold, n = 4,
p <0.05) [3H]-RTX binding as compared to control mice).

Alterations in DRG TRPV1 expression may be secondary
to changes that occur in the periphery. To determine the
state of TRPV1 protein expression in the periphery, we
quantitated TRPV1 levels in paw skin using [3H]-RTX
binding assays (Fig. 5B). Similar to data obtained from
DRG, [3H|-RTX binding was higher in paw skin from
hyperalgesic mice (1.81 + 0.05 fold, n =5, p < 0.05) and
lower in hypoalgesic mice (0.51 + 0.09 fold, n =5, p <
0.05) as compared to non-diabetic control mice (188.8 +
26.5 fmol/mg tissue). The paw skin of hypoalgesic trans-
genic diabetic mice showed lower [3H]-RTX binding (0.29
+0.06 fold, n = 4, p < 0.05) as compared to paw skin har-
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vested from control nondiabetic mice. Thus, changes in
TRPV1 protein expression at both the peripheral nerve ter-
minals and DRGs may contribute to the abnormal ther-
mal sensitivity observed in diabetic mice. As the K of this
radio ligand in most tissues is ~0.1 nM, it is estimated that
> 90% of the available receptors are labeled with this con-
centration [42,43]. Therefore, the increase in radioligand
binding observed in the diabetic mice with [3H]-RTX
reflects an increase in the total TRPV1 levels.

Determination of TRPVI expression using
immunohistochemistry

To confirm [3H]-RTX binding results and further examine
TRPV1 expression, immunohistochemistry was per-
formed on spinal cord, DRG and paw skin tissue har-
vested from STZ treated or transgenic diabetic
hyperalgesic, hypoalgesic mice and age matched non-dia-
betic mice (Ins-HA.D2). TRPV1 is expressed in the central
terminals of DRG neurons, which synapse with the sec-
ond order dorsal horn neurons at laminae I and II of the
spinal cord (Fig. 6). Expression of TRPV1 was significantly
higher in the DH from hyperalgesic diabetic mice (54 +
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[BH]RTX binding in DRG neurons and paw skin obtained from STZ-induced diabetic mice. A. Diabetic hyperalgesic and
hypoalgesic mice DRG exhibited higher (n = 4 experiments, p < 0.05) and lower (n = 3 experiments, p < 0.05) TRPVI levels,
respectively as compared to control non-diabetic mice. B. Paw tissue obtained from STZ-induced diabetic hyperalgesic and
hypoalgesic mice expressed higher (n = 5 experiments, p < 0.05) and lower (n = 5 experiments, p < 0.05) TRPVI levels,
respectively as compared with control non-diabetic mice. Number in the parenthesis represents the number of experiments

performed and the asterisk (*) represents p < 0.05.
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Figure 6

Altered TRPVI staining in spinal cord dorsal horn of diabetic mice. A. Representative pictures of TRPV| and NeuN staining
from a control (a, b, c), STZ-induced diabetic hyperalgesic (d, ¢, f)), hypoalgesic (g, h, i), and non-diabetic TRPV| knock-out
mice (j, k, I). An enlarged segment of Af is shown in Am. B. Mean gray values of TRPVI staining in dorsal horn was significantly
increased (n = 14 sections from 3 mice, p < 0.01) in hyperalgesic mice and significantly decreased (n = |6 sections from 3 mice,
p < 0.01) in hypoalgesic mice as compared to age matched control non-diabetic mice. Number in the parenthesis represents
the number of TRPVI stained sections and the asterisks (**) represents p < 0.0 obtained from student unpaired t-test. Scale
bar is 50 um.
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2.4 gray value, n = 14 sections from 3 mice, p < 0.01) and
lower in hypoalgesic mice (33 + 2, n = 16 sections from 3
mice, p < 0.01) as compared to age matched non-diabetic
mice (42.5 + 1, n = 20 sections from 3 mice) (Fig. 6B).
Similarly, in transgenic hyperalgesic and hypoalgesic dia-
betic mice the TRPV1 expression in DH was higher (71 +
4 gray value, n = 6 sections from 3 mice, p < 0.01) and
lower (41 + 1.5 gray value, n = 8 sections from 3 mice, p <
0.05), respectively as compared to control animals (52 +
3 gray value, n = 8 sections from 3 mice, p < 0.05). In
order to confirm the specificity of anti-TRPV1 antibody
binding, we used TRPV1 deficient mice, which exhibited
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no staining for TRPV1. The general morphology and the
distribution of neurons in diabetic mice were normal as
indicated by the staining of the neuronal marker, NeuN
(Fig. 6A b, e, h, k).

Immunohistochemistry performed on DRG from hyperal-
gesic, hypoalgesic or non-diabetic mice (Fig. 7) revealed
that TRPV1 protein expression was more extensive among
DRG obtained from hyperalgesic as compared to non-dia-
betic mice (Fig. 7A) and was reduced among tissues from
hypoalgesic compared to non-diabetic mice. To better
quantitate anti-TRPV1 staining, gray scale analyses were

Hypoalgesic TRPV1 KO
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Altered TRPVI staining is observed in DRG obtained from STZ-induced diabetic mice. A. Representative TRPV| immunofluo-
rescent pictures of DRG sections from control non-diabetic (a), STZ-induced diabetic hyperalgesic (b), hypoalgesic mice (c)
and non-diabetic TRPVI knock-out mice (d). B. Summary graph showing increase in mean gray values of TRPV| staining (n = 5
sections from 4 mice, p < 0.058) in hyperalgesic DRG and decrease in TRPV| gray value in hypoalgesic diabetic mice (n = 6 sec-
tions from 4 mice, p < 0.05) as compared to control non-diabetic mice. C. Percentage of TRPV |-expressing neurons in total
DRG neuron was higher (n = 5 sections from 4 mice, p < 0.05) in hyperalgesia and did not change in hypoalgesic (n = 6 sec-
tions) diabetic mice as compared to age matched control non-diabetic mice. Note that TRPV | knock-out mice sections did not
exhibit any TRPV| staining serving as negative control. Number in the parenthesis represents the number of TRPV| stained
sections and the asterisk (*) represents p < 0.05. Scale bar is 50 um.
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performed. Overall fluorescence was highest in DRG tis-
sue sections from hyperalgesic mice (78.8 + 12.01, n =5
sections from 4 mice), followed by control tissues (65.3 +
9.37, n = 8 sections from 4 mice) and then tissues from
hypoalgesic mice (33.3 + 5.6, n = 6 sections from 4 mice,
p < 0.05) (Fig. 7B).

Recent studies suggest that TRPV1 expression may occur
ectopically on large diameter DRG neurons in diabetic
mice [44]. In contrast, other studies suggest that long
standing diabetes results in neuronal loss [45]. To deter-
mine if changes in TRPV1 staining among DRG might be
due to either ectopic expression or neuronal loss, we
determined the average percentage of neurons expressing
TRPV1 per section (Fig. 7C). The percentage of TRPV1
positive neurons was similar for tissues from hypoalgesic
(15.6% + 3.2, n = 6 sections from 4 mice) and control
(16.7% = 0.9, n = 8 sections from 4 mice, p < 0.71) mice.
However, more neurons expressed TRPV1 in DRG from
hyperalgesic (22.6% + 1.9, n = 5 sections from 4 mice p <
0.05) mice. Collectively, these data suggest that the ther-
mal hypoalgesia observed secondary to protracted dysgly-
cemia in STZ-treated mice in our study is not due to loss
of TRPV1 positive DRG neurons, however ectopic expres-
sion of TRPV1 on large diameter neurons cannot be
excluded as a possible explanation for the increased
TRPV1 expression observed among DRG isolated from
hyperalgesic diabetic mice.

Expression of TRPV1 is elevated in the fibers of the dermis
of skin from hyperalgesic diabetic mice and decreased in
skin from hypoalgesic mice compared to control non-dia-
betic mice (Fig. 8A). Overall fluorescence was higher in
the dermal regions of skin from hyperalgesic mice (22.5 +
4.5, n= 8 sections from 4 mice) compared to control mice
(11.1 +£ 1.6, n = 8 sections from 4 mice, p < 0.05) (Fig. 8B).
In contrast, overall fluorescence was reduced in the dermis
of skin from hypoalgesic mice (6.7 + 1, n = 9 sections from
4 mice, p < 0.05) compared to control non-diabetic mice.
TRPV1 immunoreactivity was absent from the dermis of
paw skin sections obtained from TRPV1 deficient mice
(Fig. 8Ad). Thus, altered TRPV1 levels at the central termi-
nals of sensory neurons in the spinal cord, DRG neurons
and the peripheral terminals indicate that altered expres-
sion of TRPV1 is responsible for the observed differences
in thermal sensitivity.

Discussion

Altered thermal sensation in mouse models of diabetes

In diabetes, peripheral neuropathy (DPN) can manifest as
focal, autonomic, or peripheral sensory neuropathy [46].
Altered thermal perception can occur as a result of sensory
neuropathy [2]. In this study, we used both STZ- and
transgene- (TCR-SFE/Ins-HA; [47]) mediated Type 1 dia-
betes (T1D) models to determine whether TRPV1 expres-

http://www.molecularpain.com/content/4/1/9

sion and function were altered with changes in thermal
pain sensitivity in diabetes. STZ was used because of its
frequent use in similar studies of DPN, rapid and efficient
rate of hyperglycemia induction, and ability to produce
and sustain a 'moderate degree' of hyperglycemia (~450-
500 mg/dl). However, STZ has toxic effects on cells other
than islet beta cells that might confound results making it
important to use other models of diabetes. Unlike diabe-
tes induced by STZ, TCR-SFE/Ins-HA double transgenic
mice become hyperglycemic spontaneously by 4-6 weeks
of age. Disease parallels human diabetes in that it is
immune-mediated, affects both genders equally and
results from selective destruction of islet beta cells.

STZ-induced diabetic mice exhibited two phases of altered
thermal pain sensitivity, an initial transient phase of
hyperalgesia followed by a phase of hypoalgesia. Simi-
larly, when subjected to the hot plate test, transgenic dia-
betic mice exhibited two phases of altered thermal pain
sensitivity. However, the transition to different phases was
not uniform in these animals. Careful examination of
thermal sensitivities of individual mice over the course of
the study allowed for classification of three unique phe-
notypes. One group exhibited thermal sensitivities similar
to those observed with STZ treated mice. Thus, phenotype
1 was characterized by a period of hyperalgesia followed
by a sustained phase of hypoalgesia. A second group of
diabetic TCR-SFE/Ins-HA mice exhibited thermal
hypoalgesia at approximately the same age as observed for
phenotype 1 mice but lacked an early hyperalgesic phase
(phenotype 2). The third group of animals became
slightly hyperalgesic and remained hyperalgesic during
the course of the study (phenotype 3). It is unclear why
these unique thermal sensitivity phenotypes are observed
among syngenic mice with uniformly dysregulated glu-
cose control. Together these behavioral studies show
altered heat sensation, a finding in diabetic neuropathy, is
present in our animal models [48,49].

Evidence of TRPVI involvement in the altered thermal
nociception of diabetic mice

We tested the hypothesis that the altered pain sensation is
due to changes in TRPV1 because the altered temperature
sensitivity corresponds to the temperature range that acti-
vates TRPV1. We provide four lines of evidence to support
the involvement of TRPV1. First, thermal sensitivity was
not altered among STZ-induced diabetic TRPV1 deficient
mice demonstrating the thermal sensitivity in diabetic
mice is dependent on TRPV1. However, a significantly
higher PWL was observed in TRPV1 knock-out mice as
compared to wild type mice with similar back ground
strain suggesting that TRPV1 knock-out mice has defi-
ciency in acute thermal pain sensation (Fig. 3C).
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Figure 8

Altered TRPVI staining in paw skin tissue obtained from STZ-induced diabetic mice. A. Representative TRPV| immunofluores-
cent pictures of paw skin sections from control non-diabetic (a), STZ-induced diabetic hyperalgesic (b), hypoalgesic mice (c)
and non-diabetic TRPV| knock-out mice (d). Arrows indicate the TRPV | -expressing fibers in dermis (De). Background staining
was consistently observed in the epidermis (Ep) of all sections including TRPV| knock-out mice. B. Summary graph showing
increased (n = 8 sections from 4 mice, p < 0.05) and decreased (n = 9 sections, p < 0.05) mean gray values of TRPV | staining in
diabetic hyperalgesic and hypoalgesic fibers of the paw dermis layer as compared with control non-diabetic mice (n = 8 sec-
tions from 4 mice). Number in the parenthesis represents the number of TRPVI stained sections and the asterisk (*) repre-

sents p < 0.05. Scale bar is 50 um.

Second, TRPV1 mediated capsaicin induced currents in
DRG neurons collected from mice exhibiting hyperalgesia
or hypoalgesia were significantly larger or smaller, respec-
tively, compared to currents obtained from euglycemic
control mice. The change could be as a result of enhanced
expression or sensitivity. The increase was observed in sat-
urating concentrations of capsaicin confirming increased
TRPV1 protein levels rather than as a result of increased
sensitivity due to phosphorylation of TRPV1 [41].

Third, RTX binding assays demonstrated that TRPV1
expression parallels thermal sensitivity. DRG neurons
from hyperalgesic mice bound more RTX and hypoalgesic
mice bound less RTX than DRGs from age-matched eugly-
cemic control mice. It is conceivable that peripheral
TRPV1 expression might influence expression in DRG;
therefore, we determined TRPV1 levels from the paw skin.
Peripheral TRPV1 expression mirrored that observed in
DRG neurons. Thus, changes in TPRV1 expression parallel
the thermal sensitivity observed among diabetic mice and
are seen both at peripheral tissue and in DRG.
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Fourth, we used immunohistochemical localization of
TRPV1 in DH of the spinal cord, DRG neurons and the
paw skin to confirm changes in TRPV1 expression
detected in RTX binding assays and to determine if
increased RTX binding was the result of ectopic TRPV1
expression (on neurons other than C and Ag fibers). In the
DH, there was no obvious co-localization of TRPV1 with
the neuronal marker NeuN, suggesting that the distribu-
tion of TRPV1 in DH is predominantly in fibers projecting
from DRG rather than in the cell body of DH neurons. We
observed a significant increase in expression of TRPV1 in
DH, DRG and paw skin from hyperalgesic diabetic mice as
compared to age-matched control mice. Significant
decreases were also observed among tissues harvested
from hypoalgesic diabetic mice. Furthermore, the number
of neurons expressing TRPV1 is altered in tissues har-
vested from hypoalgesic mice, but the total number of
neurons remains unchanged. This is important to address
because it has been suggested that there may be neuronal
loss in diabetes leading to altered thermal sensitivity [45].
We found the number of neurons expressing TRPV1 was
higher in hyperalgesic mice, consistent with a previous
report [44]. There was no change in the number of neu-
rons expressing TRPV1 in hypoalgesic mice relative to
controls.

Possible down stream events leading to altered TRPV|
expression

In diabetes, the link between abnormal thermal sensitivity
and hyperglycemia resulting from insulin deficiency is not
clear. Here, we have shown that TRPV1 is a major player,
but questions still exist with respect to how TRPV1 func-
tion and expression are modulated in diabetes. Previ-
ously, we showed that insulin and IGF-1, acting via the
IGF-1 receptor, potentiates TRPV1 current by activating
PKC [50]. Based on this observation, the long lasting
hypoalgesic phenotype could be explained by insulin
deficiency leading to downregulation of TRPV1 expres-
sion and function. However, it is counterintuitive that
lack of insulin results in hyperalgesic phenotype, which
can not be explained readily. It is possible that an abrupt
reduction in insulin levels as occurs in STZ-treated mice
could trigger compensatory enhancement of TRPV1
expression resulting in hyperalgesia. On the other hand,
diabetes in our transgenic mouse model results from a
slower, more sustained destruction of beta cells that may
lead to a different course of neuropathic progression.
Based on this premise, hyperalgesia in some patients
(~10%) may be explained by rapid metabolic decompen-
sation, perhaps a sudden onset. An increase in TRPV1
expression in DRGs occurs as a transient compensatory
mechanism to decreased TRPV1-mediated neuronal activ-
ity similar to what happens during deafferentation. Fur-
thermore, hyperglycemia is known to induce oxidative
stress, as a result a slight increase in ROS is known to acti-
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vate transcriptional machinery enhancing the expression
of TRPV1, at the same time higher levels of ROS can lead
to neuronal cell death [45,51,52]. Another important
finding we have made in our recent studies is that some
mice injected with STZ were not hyperglycemic but were
hyperalgesic. These results have led to a new hypothesis
that STZ has a direct effect and may contribute to hyperal-
gesia independent of hyperglycemia. This may be one of
the reasons that the hyperalgesic phenotype is clearly seen
in STZ induced diabetes [53].

We have recently showed Increased sensitivity of TRPV1 in
STZ-induced diabetic mice has been shown that increased
thermal sensitivity results from sensitization of TRPV1,
possibly through PKC [33,41,54]. In chronic pain condi-
tions, increased TRPV1 expression occurs via MAPK activ-
ity [10,55]. Furthermore, increased enzyme activity from
hyperglycemia, specifically PKCP is implicated in several
diabetic complications including thermal hyperalgesia
[56,57]. All these studies offer an explanation for the
hyperalgesic phenotype, which is rarely observed in dia-
betes, or goes undetected because of its transient nature.
The significant finding of this study is that the predomi-
nant phenotype observed over time is thermal hypoalge-
sia as a result of reduced TRPV1 expression and function.
If untreated, this might lead to more serious complica-
tions, which include changes in microvascular function
due to decreased release of CGRP, neuronal loss, develop-
ment of gangrene and total loss of sensation leading to
amputation. Careful monitoring of hypoalgesic pheno-
type and a prompt treatment with insulin may decrease
the progression and the severity of the disease.

Consequences of enhanced and reduced TRPV | expression
and function other than abnormal thermal sensation
TRPV1 is present in areas that are not exposed to sufficient
changes in temperature to cause channel activation and is
widely believed to have functions other than temperature
sensation. TRPV1 is detected throughout the neuroaxis by
RT-PCR [58] and identification of specific ligands such as
NADA and anandamide in certain brain regions confirms
a role in the CNS [15]. The nature of the receptors
involved in this response and their roles in the CNS is not
clearly understood, but suggest TRPV1 may have direct
and/or indirect effects on neurotransmitter release [15,59-
61]. TRPV1 expressing neurons in pancreas are also shown
to play a role in beta cell function and diabetes pathoeti-
ology [62]. TRPV1 is also expressed in the bronchi, urinary
bladder, heart and blood vessels [63-66]. Activation of
TRPV1 in sensory nerve endings supplying heart and
blood vessels causes release of multiple vasoactive agents
[67]. Therefore, as diabetes progresses, modulation of
TRPV1 has the potential to contribute to many complica-
tions such as CNS, cardiovascular, respiratory and urinary
disturbances.
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