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Abstract

Neuropathic pain may arise following peripheral nerve injury though the molecular mechanisms
associated with this are unclear. We used proteomic profiling to examine changes in protein
expression associated with the formation of hyper-excitable neuromas derived from rodent
saphenous nerves. A two-dimensional difference gel electrophoresis (2D-DIGE) profiling strategy
was employed to examine protein expression changes between developing neuromas and normal
nerves in whole tissue lysates. We found around 200 proteins which displayed a >1.75-fold change
in expression between neuroma and normal nerve and identified 55 of these proteins using mass
spectrometry. We also used immunoblotting to examine the expression of low-abundance ion
channels Navl.3, Navl.8 and calcium channel 025-1 subunit in this model, since they have
previously been implicated in neuronal hyperexcitability associated with neuropathic pain. Finally,
S¥methionine in vitro labelling of neuroma and control samples was used to demonstrate local
protein synthesis of neuron-specific genes. A number of cytoskeletal proteins, enzymes and
proteins associated with oxidative stress were up-regulated in neuromas, whilst overall levels of
voltage-gated ion channel proteins were unaffected. We conclude that altered mRNA levels
reported in the somata of damaged DRG neurons do not necessarily reflect levels of altered
proteins in hyper-excitable damaged nerve endings. An altered repertoire of protein expression,
local protein synthesis and topological re-arrangements of ion channels may all play important roles
in neuroma hyper-excitability.

Background sensory neuron cell bodies. For example, after damage to
Neuropathic pain is the most problematic of pain condi-  peripheral nerves, up- regulation of the voltage-gated
tions. Mechanistic studies using animal models of neuro- sodium channel Nav1.3, the calcium channel @231 subu-

pathic pain have focused on transcriptional profiling of  nit, the B1 bradykinin and capsaicin TRPV1 receptors were
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observed, whilst other transcripts encoding, for example,
the Nav1.8 sodium channel, B2 bradykinin receptor and
p-opioid receptor were down-regulated [1-4]. All of these
data were acquired from comparison of dorsal root gan-
glion (DRG) tissues of control animals and those in which
neuropathic pain was induced by ligation and dissection
of peripheral nerve. However, the molecular changes in
terms of altered protein components of injured nerves
which underlie neuropathic pain have not been studied,
mainly because of the difficulty in obtaining sufficient tis-
sue material for proteomic profiling.

In the present research, we ligated and transected the
saphenous nerves of mice and rats to generate neuromas,
which we have previously shown to be hyper-excitable
and mechanically sensitised. When peripheral sensory
nerves are damaged, the axon distal to the section degen-
erates, whereas the proximal portion sprouts, and if regen-
eration towards the innervation target is impeded, a
neuroma is formed. After neuroma formation, spontane-
ous activity appears to be generated at trigger zones either
at the regenerating nerve ending (neuroma) or in the DRG
cell bodies [5,6]. Regenerating nerve endings in a neu-
roma are also sensitised to mechanical forces locally [7,8].
Neuromas are attractive models of nerve injury, and have
also been suggested to exhibit many of the properties of
peripheral nerve terminals [8].

To try to better understand the molecular mechanisms
underlying neuropathic pain at the protein level, we have
compared protein expression during neuroma formation
with normal peripheral nerve using an unbiased 2D-dif-
ference gel electrophoresis (2D-DIGE) and mass spec-
trometry (MS)-based profiling approach. A large number
of differentially expressed protein isoforms were identi-
fied and some of these further validated by immunoblot-
ting with specific antibodies. Since large hydrophobic
transmembrane proteins do not resolve well on 2D gels,
we extended this profiling approach by using immunob-
lotting to examine the abundance of several voltage-gated
ion channels (Nav1.3, Nav1.8 and calcium channel a28-
1 subunit) which have previously been implicated in the
response to nerve damage [1-4]. Finally, we used in vitro
S35 methionine labelling to test the hypothesis that local
protein synthesis occurs in neuromas after nerve injury
and independently of gene expression.

Methods

Neuroma formation

The method used for neuroma generation was adapted
from that described in rats by Rivera et al. [8]. Ten C57BL/
6 mice were used to generate neuromas; all mice were
matched by age (8 weeks) and weight (30-35 g). Under
deep anaesthesia with halothane (2-4% in pure O,) and
with sterile precautions, the saphenous nerve was exposed
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at the level of the mid-thigh, dissected free and tightly
ligated with 8-0 silk. The nerve was cut distal to the liga-
ture and the cut end inserted into a 5 mm long tube (0.45
mm internal diameter) to prevent lateral innervation of
surrounding tissue. The tube was tied in place with the
same piece of silk so that the cut end of the nerve was ~2
mm from the distal end of the tube. The distal end of the
tube was left open and ~5 mm of the distal nerve stump
was excised to prevent innervation. The incision was
closed in layers. Neuromas were made in both saphenous
nerves. The animals were housed in groups of two to four
and inspected daily for infections or abnormal behaviour.
The mice were given ad libitum access to water and food.
After 3 days, 1 week, 2 weeks and 3 weeks, the silicone
tube was removed, neuroma were cleared of connective
and fatty tissues and dissected for 2D-DIGE experiments
under a dissecting microscope. Four neuroma samples
were generated from 2 mice in each time point after
transection. At the same time, 4 control samples were gen-
erated from two control C57BL/6 mice without operation.
Similar experiments were carried out on Sprague-Dawley
rats. 32 rats were equally distributed in 4 groups (3 day, 1
week, 2 week and 3 week), one neuroma and one sham-
operation control were generated from each rat. All rats
were matched by age (3-4 months old) and weight (200-
250 g). All animal care and experimental processes were
performed in accordance with the United Kingdom Home
Office Act 1986.

Chemicals

Protease-inhibitor tablets, Tris-base, urea, thiourea,
ammonium persulfate, ammonium bicarbonate, iodoa-
cetamide (IAA) and 3- [(3-cholamidopropyl)-dimethyl-
ammonio|-1-propanesulfonate) (CHAPS) were from
Sigma (Steinheim, Germany). Protein assay kit was from
Pierce (Rockford, USA). Immobilized pH gradient IPG
strips and Pharmalyte were from GE Healthcare (Chalfont
St. Giles, UK). Dithiothreitol (DIT) was from Melford
Laboratories (Ipswich, UK). Trypsin (modified, sequence
grade, porcine) was from Promega (Madison, WI, USA).
2,5-dihydroxybenzoic acid was from Bruker Daltonics
(Leipzig, Germany). Ammonium sulphate and ortho-
phosphoric acid (85%) were from Fluka (Steinheim, Ger-
many). Methanol, ethanol and Coomassie brilliant blue
G250 were from BDH (Lutterworth, UK). TFA was from
Fisher (Loughborough, UK). NHS-Cy2 was purchased
from GE Healthcare. NHS-Cy3/Cy5 were synthesized 'in-
house' and stored as described [9].

Sample preparation

Pooled neuroma or control nerve samples in 1.5 ml cen-
trifuge tubes were frozen in liquid nitrogen and crushed
into powder with a plastic homogenization pestle. Sam-
ples were lysed in 2D-DIGE lysis buffer (2 M thiourea, 8
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M urea, 4% (w/v) CHAPS, 10 mM Tris-HCI, pH 8.3) and
quantified with a Bradford assay using BSA as a standard.

Fluorescence labelling with Cy-Dyes

Neuroma and control samples were quantified and
labelled with NHS-Cy2, -Cy3 and -Cy5 as previously
described [10]. Briefly, 50 pg of protein taken from
pooled neuroma or control samples was minimally
labelled with 400 pmol of Cy3 or Cy5 in triplicate. An
equal pool of all samples was also prepared and labelled
with Cy2 (also at 8 pmol/ug protein) as a standard run on
all gels to aid in spot matching and cross-gel quantitative
analysis. Labelling was performed on ice in the dark for 1
hour and reactions were quenched with a 20-fold molar
excess of free lysine to dye for 10 minute, and then DTT
added to 65 mM. In addition, two preparative samples
were made using 300 pg of protein from control saphen-
ous nerve labelled with Cy3 or Cy5. Labelled samples
were mixed appropriately and carrier Ampholines/Pharm-
alyte (pH 3-10; 50:50(v/v)) added to a final concentra-
tion of 2%.

Two-dimensional gel electrophoresis (2-DE)

2-DE was performed as described [11-13] using 24 cm pH
3-10 NL IPG strips, and 12% SDS-PAGE gels bonded to
low-fluorescence glass plates. Briefly, Cy3 and Cy5
labelled control, 3 day, 1 week, 2 week or 3 week neuroma
samples and one Cy?2 labelled internal standard sample
were mixed appropriately and separated by first dimen-
sion isoelectric focusing and second dimension SDS-
PAGE. Samples were run as technical triplicates with two
preparative gels loaded with 300 pg of protein. Gels were
run in Ettan 12 gel tanks at 2.2 mA per gel at 16°C until
the dye front had run off the bottom. All steps were carried
out in a dedicated clean room.

Image acquisition and biological variance analysis

Gels were scanned between glass plates using a Typhoon™
9400 variable mode imager and ImageQuant software.
The photomultiplier tube voltage was adjusted for each
dye channel (Cy2, Cy3 and Cy5) for preliminary low-res-
olution scans to give maximum pixel values within 5-
10% for each channel and below saturation, prior to the
acquisition of 100 pm high-resolution images. Images
were cropped and analysed using DeCyder™ V5.0. Com-
parisons of test spot volumes with corresponding stand-
ard spot volume were made and values were averaged
across triplicates for each experimental condition. Statisti-
cal analysis was then performed to pick spots matching
across all images, displaying a >1.75 average-fold increase
or decrease in abundance between neuroma and control
and with p values < 0.05 (Student's t-test). A 1.75-fold
threshold was chosen to limit the substantial number of
significant protein changes detected that would require
MS-based protein identification, but without missing
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potentially interesting low-fold changes. It is important to
note that only significant changes (p < 0.05) in protein
expression were targeted for MS-based identification.

In-gel digestion and protein identification by mass
spectrometry (MS)

Post-stained colloidal Coomassie blue (CCB) G-250
images were matched with corresponding fluorescent
images using DyCyder software. Pick lists of coordinates
were then created for spots of interest relative to a pair of
reference markers fixed to the glass plates at casting. Spots
were excised using an Ettan spot picker (GE Healthcare).
In-gel tryptic digestion was performed as described [9,10],
and extracted peptides were resuspended in 6 uL of water.
For peptide mass fingerprinting, 0.5 uL of each tryptic
digest was mixed with 1 pL of matrix (saturated aqueous
solution of 2,5-dihydroxybenzoic acid) and spotted onto
a sample target plate and dried. Matrix-assisted laser des-
orption/ionization time-of-flight (MALDI-TOF) mass
spectra were acquired using an externally calibrated
Ultraflex TOF/TOF mass spectrometer (Bruker Daltonics)
in the reflector mode. After internal calibration using
trypsin autolysis peaks, prominent peaks in the mass
range m/z 700-4000 were used to generate a peptide mass
fingerprint which was searched against the updated
mouse IPI database using Mascot version 2.1.3 (Matrix
Sciences, London, UK). Identifications were accepted
when a minimum of six peptide masses matched to a par-
ticular protein (mass error of + 50 ppm allowing 1 missed
cleavage), sequence coverage was >25%, MOWSE scores
were higher than the threshold value (p = 0.05) and the
predicted protein mass agreed with the gel-based mass.
Nano-HPLC electrospray ionization (ESI) collision-
induced dissociation (CID) MS/MS was performed on a
Q-TOF mass spectrometer (Waters, Manchester, UK), cou-
pled to an Ultimate system LC (Dionex) with a PepMap
C18 75 um inner diameter column at a flow rate of 300
nL/min. Spectra were processed using MassLynx software
(Waters) and submitted to Mascot database search rou-
tines. Positive identifications were made when at least two
peptide sequences matched an entry and MOWSE scores
were above the significance threshold value (p = 0.05)

Immunoblotting

Since hydrophobic integral membrane proteins are diffi-
cult to resolve on 2D-gels, and previous data suggested
that altered ion channel expression was correlated with
pain [14-18], the expression of sodium channel Nav1.3,
Nav1.8 and calcium channel a28-1 subunit were meas-
ured by immunoblotting. Briefly, extracts from rat neuro-
mas separated by 1D-SDS-PAGE were electro-blotted onto
Hybond-C Extra membrane (GE Healthcare). Membranes
were blocked for 1 h with 5% w/v BSA in TBS (50 mM Tris
HCI pH 8, 150 mM NacCl) plus 0.1% Tween-20 (TBS-T).
Membranes were incubated for at least 2 h in primary
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antibody in TBS-T, washed in TBS-T (3 x 10 min) and
probed with the appropriate horseradish peroxidase-cou-
pled secondary antibody (GE Healthcare) for 1 h. After
further washes in TBS-T (3 x 10 min), immunoprobed
proteins were visualised using ECL (Perkin-Elmer Life Sci-
ences, Waltham, MA, USA). Films were scanned on a Bio-
Rad GS800 Densitometer. Polyclonal antibodies used
were anti-Nav1.8 (1:2500 dilution; generated in-house),
anti-Nav1.3 (1:2500 dilution; Sigma), anti-voltage cal-
cium channel a.28-1 subunit (1:500 dilution; a kind gift
from Professor A Dolphin, UCL), anti-protein DJ-1
(1:1000 dilution; Santa Cruz Biotechnology, Calne, UK),
anti-vimentin (1:1500 dilution; DAKO, Ely, UK) and anti-
Na+/K+*ATPase (1:1000 dilution; Santa Cruz Biotechnol-
ogy). Monoclonal antibodies used were anti-actin beta
(1:2000 dilution; Sigma) and anti-peroxiredoxin 2
(1:5000 dilution; Lab Frontier, Seoul, South Korea).

S35 methionine in vitro labelling

Mouse neuroma samples were generated as described.
One week old neuromas from two mice were dissociated
and washed 3 times with cold PBS then transferred to
methionine-free DMEM medium for 30 min. S35 methio-
nine (GE Healthcare) was added to a final concentration
of 100 mCi/mL and samples were incubated in a 5% CO,
incubator at 37°C overnight. S35-labelled samples were
washed 3 times in cold PBS, homogenised and lysed in 2D
lysis buffer. The S35-labelled sample (50 pg total protein)
was mixed with 200 pg of intact sciatic nerve and sepa-
rated by 2-DE as described above. Gels were stained with
CCB, dried, scanned by densitometry and then placed in
a cassette with a phosphorimager screen (Kodak, Hemel
Hempstead, UK) for 5 days. Screens were scanned with a
Molecular Imager FX (Bio-Rad Laboratories, Hemel
Hempstead, UK) and radio-labelled spots were picked
from dried gels and identified by MS.

Results and Discussion

Protein expression profiling of control and neuroma
samples

We wused both proteomic and immunoblotting
approaches to catalogue altered protein expression in
hyper-excitable neuromas derived from the saphenous
nerve. 2D gels lose many of the highly insoluble receptors
and channels present at low abundance in cell mem-
branes during the isoelectric focussing phase, so we also
carried out immunoblotting to examine some proteins
previously implicated in neuropathic pain. A 2D-DIGE
analysis was first performed comparing 3 day, 1 week, 2
week and 3 week old neuromas with control uninjured
saphenous nerve. Four samples from two animals were
pooled from each condition, generating 160-210 pg of
total protein and samples were analysed as technical trip-
licates using an internal standard on each gel consisting of
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an equal pool of all samples to aid in spot matching and
quantification (Figure 1).

Approximately 1800 protein features were resolved on the
gels and compared using DeCyder image analysis software
(Figure 2). A Student's t-test was performed for every

A
CyDye

Gel number NHS-Cy2 NHS-Cy3 NHS-Cy5
1 Pool Control-1 N3d-1
2 Pool N1w-1 N2w-1
3 Pool N3d-2 Control-2
4 Pool N2w-2 Niw-2
5 Pool N3w-1 N3d-3
6 Pool Control-3 N2w-3
7 Pool N1w-3 N3w-2
8 Pool N3w-3 N2w-4
9 300ug Control
10 300u Control

Cy5

Merged Image

Figure |

Strategy for comparing neuroma and nerve cell pro-
tein composition. (A) Dye-labelling strategy for 2D-DIGE
experiment profiling of mouse neuroma and control saphen-
ous nerves. Control-1 to Control-3 indicates triplicate con-
trol samples. N3d-| to N3d-3 indicates triplicate 3 day
neuroma samples. NIw-| to NIw-3 indicates triplicate |
week neuroma samples. N2w-1 to N2w-4 indicates quadru-
plicate 2 week neuroma samples. N3w-1 to N3w-3 indicates
triplicate 3 week neuroma samples. Additional preparatory
gels were run with a higher loading of control sample. (B)
Representative example of a 2D-DIGE analytical gel: 50 pg of
control sample was labelled with NHS-Cy3 shown in green,
50 pg of neuroma sample was labelled with NHS-Cy5 shown
in red and 50 pg of pooled internal standard (equal amounts
of control and neuroma sample) was labelled with NHS-Cy?2
shown in blue. The three Cy-dye labelled samples co-sepa-
rate on one gel. Images were acquired on a Typhoon 9400
mutli-wavelength scanner. Around 1800 protein spots were
detected on each gel. Below is a merged image of the three
Cy-dye labelled images.
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matched spot set, comparing the average and standard
deviation of protein abundance across each condition.
There were around 200 spots that were 1.75-fold differen-
tially expressed (p < 0.05) between the neuroma and con-
trol groups (see Table 1). For example, there were 218
spots detected with a >1.75-fold change between 2 and 3
week neuromas and control with 138 increased in neu-
roma and 80 decreased in neuroma versus control.

Identification of differentially expressed proteins
Differentially expressed spots detected in analytical gels
were matched and picked from preparative gels run at the
same time (loaded with 300 pg protein from control
nerves). Combined MALDI-TOF MS and Q-TOF LC-MS/
MS analysis identified 55 protein spots with a high degree
of confidence. The identification of each protein is set out
in Table 2 with MS search results, the description of aver-
age fold-changes in abundance between 2 and 3 week
neuroma versus control nerve, the t-test P value and a
description of known molecular function. According to
function, the identified proteins could be classified into
several main groups:

Structural proteins involved in cytoskeletal organization

These included several tubulin isoforms, major compo-
nents of the microtubule network. Tubulins al, a2, a6
and tubulin B5 were expressed at lower levels, whereas
tubulin 32C was more highly expressed (2.74-fold) in the
neuroma versus control samples. Intermediate filament
proteins were also represented. Neurofilament triplet M
and L proteins were down-regulated in neuromas (-4.69-
fold and -5.93-fold, respectively), as was the class III neu-
ronal intermediate filament protein peripherin (isoform 5
g). Five spots were found to contain isoforms of vimentin.
Four of these were more highly expressed in neuroma and
one was reduced in expression, suggesting differential
post-translational modification of isoforms. Vimentin is a
class-III intermediate filament protein and is one of the
most prominent phosphoproteins found in cell types of
mesenchymal origin. Vimentin phosphorylation is
enhanced during cell division, at which time vimentin fil-
aments are significantly reorganised [19,20]. In the
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present study, 4 of the 5 vimentin isoforms identified
were overexpressed in the neuroma samples, suggesting
enhanced filament reorganisation after peripheral nerve
injury. Vimentin has also been shown to play an impor-
tant role in the spatial translocation of activated MAP
kinase (pERK) in injured nerves [21]. Here, local synthesis
of vimentin at the axonal lesion site (confirmed by S35
labelling; see below) was proposed to allow linkage of
PERK to a retrogradely transported complex via a direct
interaction of vimentin with importin beta. After travel-
ling from the axon to the DRG, pERK dissociates from
vimentin and is then available to phosphorylate down-
stream targets in the cell body or the nucleus, for example,
transcription factors to control the proliferation or apop-
tosis of the neuron [21]. In several animal models of neu-
ropathic pain, nerve injury-induced phosphorylation of
ERK occurs early and is long-lasting [22]. pERK is sequen-
tially activated in neurons by spinal nerve ligation and
contributes to mechanical allodynia in neuropathic pain
models [23].

Components of the actin cytoskeleton also showed
changes. Expression of two p-actin isoforms was
increased, whilst an a-actin isoform was reduced. Actin
binding proteins, usually associated with immune system
cells, were also altered in expression. The actin-bundling
protein plastin-2 (two spots) was up-regulated, as was
macrophage capping protein (2.64 fold). Macrophage
capping protein (CapG) is a calcium-sensitive actin-mod-
ulating protein that binds to the plus ends of actin mono-
mers or filaments. It can promote the assembly of
monomers into filaments, but not sever pre-formed fila-
ments [24]. CapG is expressed broadly, although its up-
regulation may correspond to invasion of the neuroma by
immune cells. The multiple changes in cytoskeletal pro-
teins of all filament types may also be related to the com-
plex neurite outgrowth that occurs in developing
neuromas.

Metabolic enzymes
Two proteins which play a central role in energy transduc-
tion were differentially expressed. Two protein spots iden-

Table I: Numbers of protein spots differentially expressed between 3 day, | week, 2 week, 3 week and 2 week plus 3 week neuromas

and control saphenous nerves.

3 day neuroma/ | week neuroma/ 2 week neuroma/ 3 week neuroma/ 2 and 3 week
control control control control neuroma/control

Total number of 224 248 254 182 218
differentially

expressed spots

(=1.75-fold)

Increased 137 141 153 125 138
Decreased 87 109 101 57 80

Spots displaying a >1.75-fold increase or decrease in expression with a Student T-test P value of < 0.05 (n = 3/4) and matching across all 8 analytical

gels were included.
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Figure 2

2D-DIGE DeCyder BVA (Biological Variation Analysis) showing a representative gel image with labelled sam-
ple of control and neuroma. Changes in protein expression were compared between 4 time-points (3 day, | week, 2 week
and 3 week neuromas) and controls after normalisation with a pooled internal standard. The master gel image shows the loca-
tions of differentially expressed proteins (=1.75 change in abundance; p < 0.05; n = 3). The lower part of the figure shows an
enlarged region of the gel and 3-D view of up-regulated spot 1666 as an example (lower left). Spot no 1666 (protein DJ-1) is

shown in detail as displaying increased expression during neuroma formation (lower right).

tified as ATP synthase beta subunits showed a 2.08-fold
up-regulation and 4.82-fold down-regulation in neu-
roma, respectively, suggesting that changes in post-trans-
lational modifications may occur during formation of the
neuroma. Similarly, two protein spots were found to con-
tain creatine kinase B-type, and showed a 4.71-fold up-
regulation, and 1.89-fold down-regulation in neuroma
versus control. Other metabolic or protein synthesis
enzymes were identified as aspartyl-tRNA synthetase (two
spots), D-3-phosphoglycerate dehydrogenase, prolyl 4-
hydroxylase beta polypeptide, alpha-enolase (three spots)
and gamma-enolase, all of which were more highly
expressed in neuroma, whereas pyruvate kinase isozyme
M2, cytosolic non-specific dipeptidase, lactate dehydroge-
nase B chain and carbonic anhydrase 3 (two spots) were
expressed at a lower level.

Redox proteins

Several proteins involved in the elimination of peroxides
and redox regulation were identified. Both peroxiredoxin-
1 (two spots) and peroxiredoxin-2 were up-regulated
(1.93-, 3.52- and 1.79-fold, respectively) in neuromas.
Peroxiredoxin 1 and 2 are a family of ubiquitous proteins
that function as antioxidant cytoprotective proteins in all
metazoan and protozoan organisms. In general, they uti-
lise electrons from thioredoxin or other sulphydryl
donors to reduce cellular peroxides, including hydrogen
peroxide [25]. Peroxiredoxins may participate in the sig-
nalling cascades of growth factors and tumour necrosis
factor-alpha by regulating the intracellular concentration
of H,0, [26]. The up-regulation of peroxiredoxin 1 and 2
suggests that oxidative insult is part of the nerve injury
process, and that they play a role in protecting proteins
and lipids against oxidative damage.
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Table 2: Differentially expressed proteins identified from 2D-DIGE profiling of neuroma and control saphenous nerve samples.

Spot no. Protein name  Accession % Cov MOWSE Est. mass Est.pl Pred. Pred.pl Auv.ratio (2 P-value (t- Function
no. score mass and 3 week test)
neuromavs.
control)
Structural proteins
1171 Beta-actin IPI00110850 8 107/35 46073 5.1 42051 5.29 -1.84 3.00E-05 Major cytoskeletal protein involved in
cell motility
1173 Beta-actin IPI00110850 33 190/35 40780 5.2 42051 5.29 -1.9 0.00095 Major cytoskeletal protein involved in
cell motility
1234 Macrophage IP100136906 9 154/35 39216 6.7 39241 6.73 2.64 2.90E-09 Calcium-sensitive protein which
capping protein reversibly blocks barbed ends of actin
filaments.
553 Plastin-2 IPI0OO1 18892 I 103/35 69112 5.1 70019 4.96 1.75 I.10E-05 Actin-bundling protein
638 Plastin-2 IPIOO1 18892 4 36/35 66167 5.2 70019 4.96 4.03 5.00E-07 Actin-bundling protein
857 Tubulin alpha-1 IPI00110753 10 66/35 57828 5.0 50788 4.94 -2.59 3.60E-05 Major microtubule protein
902 Tubulin, alpha 6  IPI00403810 44 100/64* 56122 5.0 49877 4.96 -3.29 4.00E-06 Major microtubule protein
912 Tubulin alpha 2 IPI001 17348 23 122/64* 55894 5.0 50120 4.94 -3.77 4.40E-07 Major microtubule protein
966 Tubulin, beta 5 IPIO01 17352 16 708/35 54467 5.0 49671 4.52 -2.41 3.00E-05 Major microtubule protein
973 Tubulin beta-2C  IPI00169463 7 365/35 53804 4.6 49832 4.52 247 1.70E-06 Major microtubule protein
196 Neurofilament IP100323800 24 100/64* 96041 4.8 95941 4.76 -4.69 8.20E-07 Maintenance of neuronal caliber
triplet M
636 Neurofilament IPI00169702 49 630/35 66257 4.7 61378 43 -5.93 3.80E-06 Maintenance of neuronal caliber
triplet L
939 Vimentin 1P100227299 25 113/35 55515 5.2 53557 4.77 1.76 0.00039 Class-lll intermediate filament protein
997 Vimentin 1P100227299 21 191/35 52933 4.8 53557 5.06 2.19 7.20E-07 Class-lll intermediate filament protein
1008 Vimentin 1P100227299 28 195/35 52431 5.1 53557 5.06 3.05 1.30E-07 Class-lll intermediate filament protein
1108 Vimentin 1P100227299 27 349/35 48584 4.7 53557 5.06 -2.67 0.00018 Class-lIl intermediate filament protein
112 Vimentin 1P100227299 20 180/35 48123 5.0 53557 5.06 5.11 8.90E-09 Class-lll intermediate filament protein
839 Peripherin IP100129527 9 100/35 58302 5.5 54268 522 -9.58 2.20E-06 Class-lll neuronal intermediate filament
(isoform 5g) protein
858 Peripherin IP100129527 15 363/35 58064 5.4 54268 522 -3.44 5.50E-07 Class-Ill neuronal intermediate filament
(isoform 5g) protein
Metabolic enzymes
734 Aspartyl-tRNA IPI00122743 21 70/64* 62153 5.0 57117 6.06 1.84 0.00046 Protein biosynthesis
synthetase
907 Aspartyl-tRNA IPI00122743 28 66/64* 56122 6.5 57117 6.06 2.87 2.30E-06 Protein biosynthesis
synthetase
817 D-3- IP10022596 | 8 111/35 59666 6.2 56455 6.5 2.5 3.90E-06 Glycolytic enzyme
phosphoglycerat
e dehydrogenase
1031 Alpha-enolase 1P100462072 33 526/35 51162 6.8 47010 6.37 1.78 0.00056 Glycolytic enzyme and other functions
1038 Alpha-enolase 1P100462072 10 40/35 50954 6.9 47010 6.37 2.06 1.20E-05 Glycolytic enzyme and other functions
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g Table 2: Differentially expressed proteins identified from 2D-DIGE profiling of neuroma and control saphenous nerve samples. (Continued)
g 1039 Alpha-enolase 1P100462072 56 369/35 51093 7.0 47010 6.37 1.9 3.10E-07 Glycolytic enzyme and other functions
E 1049 Gamma-enolase  IPI00331704 15 90/35 50677 5.8 47166 4.73 2.08 3.80E-06 Has neurotrophic and neuroprotective
Qo properties
5 807 Pyruvate kinase  1PI00407130 4 55/35 59910 74 58004 7.52 -1.85 5.20E-06 Glycolytic enzyme
L M2
g 965 Cytosolic IP100315879 6 72/35 54467 49 52768 5.38 -2.62 3.70E-05 Non-specific dipeptidase activity
e nonspecific
'% dipeptidase
2 1359 Lactate IP100229510 22 128/35 37311 5.8 36442 5.7 -2.79 3.60E-06 Glycolytic enzyme
% dehydrogenase B
8 chain
© 1567 Carbonic 1P100221890 62 307/35 26265 7.5 29235 6.89 -2.15 8.40E-06 Reversible hydration of carbon dioxide
€ anhydrase 3
% 1570 Carbonic 1P100221890 31 413/35 26229 7.6 29235 6.89 -2.54 2.70E-05 Reversible hydration of carbon dioxide
3 anhydrase 3
a 770 Pyruvate kinase  1PI00407130 10 148/35 60897 7.5 58536 7.18 2.19 9.40E-05 Glycolytic enzyme
E M2
801 Pyruvate kinase  1PI00407130 18 218/35 59910 7.3 58004 7.52 -2.21 3.30E-06 Glycolytic enzyme
M2
958 ATP synthase IPI0046848 | 35 266/35 54616 49 56300 5.19 -4.82 7.80E-07 Produces ATP from ADP
subunit beta,
mitochondrial
precursor
1011 ATP synthase IPI0046848 | 6 787/35 52005 5.0 56300 5.19 2.08 3.30E-06 Produces ATP from ADP
subunit beta,
mitochondrial
precursor
1143 Creatine kinase  IPI00136703 30 337/35 47023 5.5 42714 5.42 -1.89 0.00036 Transfer of phosphate between ATP and
B-type phosphogens
1189 Creatine kinase  1PI00136703 32 244/35 45388 48 42714 5.42 4.71 5.00E-08 Transfer of phosphate between ATP and
B-type phosphogens
Redox regulation
1666 Protein DJ-1 IPI001 17264 25 68/35 20021 6.3 20021 6.32 991 1.60E-09 Positive regulator of androgen receptor-
dependent transcription, protects
neurons against oxidative stress and cell
death
1618 Peroxiredoxin | IPI00121788 43 75/64* 23048 7.3 22177 826 1.93 0.00022 Involves in redox regulation of the cell
3 1647 Peroxiredoxin | IPI00121788 46 211/35 22117 8.3 22177 8.26 3.52 1.40E-06 Involves in redox regulation of the cell
< 1678 Peroxiredoxin 2 IPIO0117910 30 88/35 19551 5.1 21648 5.2 1.79 0.002 Involves in redox regulation of the cell
3
& Cell signalling
£
& 789 Rab GDP IPI00323179 24 290/35 60731 4.9 50522 4.7 -2.01 1.00E-05 Regulates the GDP/GTP exchange
Eu dissociation reaction of Rab
g inhibitor alpha
S
=

Page 8 of 14

(page number not for citation purposes)



http://www.molecularpain.com/content/4/1/33

Table 2: Differentially expressed proteins identified from 2D-DIGE profiling of neuroma and control saphenous nerve samples. (Continued)

1430 Annexin Al 1P100230395 20 87/35 36121 4.9 35752 4.83 1.78 1.30E-05 Promotes membrane fusion and is
involved in exocytosis
1454 Annexin A4 IP100353727 44 136/35 32168 5.4 36121 5.43 24 1.60E-08 Promotes membrane fusion and is
involved in exocytosis
Protein folding/chaperone function
768 Protein disulfide  1P100230108 8 103/35 60897 5.9 57099 5.88 2.03 2.60E-05 Protein folding and electron transport
isomerase
associated A3
820 Protein disulfide  1P100230108 35 525/35 57099 5.9 57099 5.88 251 9.00E-08 Protein folding and electron transport
isomerase
associated A3
824 Protein disulfide  1P100230108 5 67/35 59504 59 57099 5.88 1.91 0.00063 Protein folding and electron transport
isomerase
associated A3
825 Prolyl 4- IP100122815 30 357/35 59343 4.8 57422 4.77 2.24 7.10E-07 Catalyzes the rearrangement of -S-S-
hydroxylase, bonds in proteins
beta polypeptide
778 Calreticulin IPI00123639 12 159/35 60237 44 47995 4.09 2.67 8.10E-07 Protein folding
precursor
862 T-complex 1P100320217 6 62/35 57907 6.5 57347 6.37 222 0.00031 Molecular chaperone, assist the folding of
protein | subunit proteins upon ATP hydrolysis
beta
Others
1572 Calpain small IP100130992 9 85/35 25980 5.3 28464 5.34 4.83 4.30E-05 Catalyzes limited proteolysis of
subunit | substrates involved in cytoskeletal
remodelling and signal transduction.
1283 Guanine IPI001 15546 4 86/35 41603 5.8 39906 5.69 -2.3 8.50E-05 Modulator or transducer in various
nucleotide- transmembrane signalling systems
binding protein
G(o) subunit
alpha 2
1415 Mimecan 1P100120848 Il 153/35 34668 5.9 34012 5.52 -1.8 0.0032 Induces bone formation in conjunction
precursor with TGF-beta-| or TGF-beta-2
1821 Gamma- IP10027 1440 65 247/35 13152 4.7 13160 4.68 -1.87 0.00066 Plays a role in neurofilament network
synuclein integrity
1598 Ubiquitin C- IPI003 13962 45 279/35 24437 5.2 24839 5.14 -2 3.70E-05 Ubiquitin-protein hydrolase
terminal
hydrolase
isozyme LI
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Proteins were identified using a combination of LC-ESI-MS/MS peptide sequencing and MALDI-TOF MS peptide mass fingerprinting. The International Protein Index (IPl) accession number, the

percentage coverage of the protein sequence where matching peptides were found (% Cov), the MOWSE score and threshold score (at P = 0.05) from Mascot searches, the estimated (from 2D
gels) and predicted (from database) molecular mass and pl, the average fold-change in spot volume between the 2 and 3 week neuroma and control samples, Student's t-test P value and known
molecular function is given for each protein. Proteins are divided into six broad functional groups. ¥ MOWSE score and significance threshold from Mascot searches using MALDI-TOF peptide

mass fingerprinting data.
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Another putative redox regulator, protein DJ-1/PARK?7,
showed a linear increase with time during neuroma for-
mation, increasing 9.91-fold by 3 weeks (Table 2 and Fig-
ure 2). The DJ-1 protein also affects cell survival by
modulating PTEN/PI3K/AKT-regulated signalling cas-
cades and alters p53 activity [27,28]. Recently, DJ-1 was
associated with Parkinson's disease and the protection of
neurons from oxidative stress [28]. Under oxidising con-
ditions, DJ-1 is activated by the modification of cysteine
residues to cysteine-sulfinic and cysteine-sulfonic acids to
exert its protective effects [29,30]. Other redox-sensitive
proteins were also identified including protein disulfide
isomerase-associated 3, a multi-functional enzyme
mainly located in the endoplasmic reticulum which catal-
yses the disruption and formation of disulfide bonds.
Tanaka et al reported that protein disulfide isomerase is
up-regulated in response to hypoxia/brain ischemia in
glial cells [29], whilst increased protein disulfide isomer-
ase expression has been shown to be neuroprotective in
the rat hippocampal CA1 region [31].

Protein folding/chaperones

Several proteins that function as molecular chaperones
were identified. For example, prolyl 4-hydroxylase beta
polypeptide was 4.77-fold up-regulated in neuroma.
Three spots were identified as protein disulfide isomerase
A3 and all were up-regulated (see above). Calreticulin pre-
cursor and T-complex protein 1 subunit beta were also
more highly expressed in neuroma. Calreticulin functions
as a molecular calcium binding chaperone promoting
folding, oligomeric assembly and quality control in the
ER via the calreticulin/calnexin cycle. T-complex protein 1
subunit beta is a molecular chaperone, assisting in the
folding of proteins such as actin and tubulin.

Other proteins

Annexins A1 and A4 were up-regulated 1.78-fold and 2.4-
fold in the neuroma samples, respectively. The annexins
are a family of structurally-related proteins whose com-
mon property is calcium-dependent phospholipid bind-
ing and which promote membrane fusion and exocytosis.
Annexin Al plays a role in many diverse cellular func-
tions, such as membrane aggregation [32], inhibition of
arachidonic acid mobilisation and phagocytosis [33]. Rab
GDP dissociation inhibitor-alpha (RabGDIa), a protein
involved in the regulation of vesicle-mediated cellular
transport was 2.01-fold down-regulated. RabGDIa regu-
lates GDP/GTP exchange of most Rab proteins by inhibit-
ing the dissociation of GDP. The Rab family of small
GTPases are essential regulators of intracellular mem-
brane sorting and membrane trafficking [34]. Ishizaki et
al demonstrated that loss of RabGDIa in mice leads to
neural hyper-excitability and the mice become prone to
epileptic seizures [35]. The down-regulation of RabGDIa
could thus play a role in hyper-excitability of neuromas.

http://www.molecularpain.com/content/4/1/33

Calpain small subunit 1 displayed increased expression in
the neuromas, whilst guanine nucleotide-binding protein
Go subunit alpha 2, ubiquitin carboxyl-terminal hydro-
lase isozyme L1 (UCH-L1), gamma-synuclein, mimecan
precursor were all down-regulated (Table 2). Of these,
UCH-L1 is neuron-specific and is expressed throughout
the brain and in Lewy bodies, the pathological biomarker
of Parkinson's disease. UCH-L1 plays an important role in
ubiquitin-dependent proteolysis by recycling polymeric
chains of ubiquitin to monomeric ubiquitin. Ubiquitin is
activated, conjugated and ligated to damaged proteins for
proteasomal degradation. Disruption of the ubiquitin
proteasomal system and resultant cytoplasmic aggrega-
tion of alpha-synuclein has been implicated as a potential
cause of Parkinson's disease [36].

Validation by immunoblotting

Differential expression of several of the identified proteins
was validated by immunoblotting, although samples
from rats were used, due to insufficient material being
obtained from the mice. The expression of protein DJ-1
increased with time of neuroma formation as shown from
the 2D-DIGE/MS profiling of mouse samples (Figure 3).
Similarly, the increased expression of peroxiredoxin 2
during neuroma formation was also confirmed, as was
vimentin expression. Importantly, the immunoblotting
results of rat neuromas were consistent with the 2D-DIGE
analysis of mouse samples, showing that the observed
changes can be translated across species and are likely to
be functionally relevant in neuroma formation.

lon channel protein expression level in rat neuroma
Various ion channels have been implicated in the pain
response. However, due to their very hydrophobic nature

Control  3d 1w 2w 3w

DRG

Peroxiredoxin 2

Vimentin

ATPase

Figure 3

Western blotting confirmation of 2D-DIGE results
for candidate proteins DJ-1, peroxiredoxin 2 and
vimentin. Na*/K*-ATPase detection was used as a loading
control. Neuroma and control sample was taken from rat.
Thirty pg of total protein from dorsal root ganglia (DRG)
dissected from normal mice were loaded as a positive con-
trol.
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and large masses, these proteins cannot be readily
extracted from samples or resolved by 2-DE. Thus, sodium
channels Nav 1.3 and Nav 1.8 and calcium channel 0.238-
1 subunit expression were evaluated in individual rat neu-
romas and control nerves from the same animals by
immunoblotting samples which had been lysed directly
in boiling SDS-PAGE sample buffer. Loading was then
normalised against Na+/K*-ATPase (Figure 4). The expres-
sion of Nav 1.3 appeared to be the same between 3 day
neuroma and control, slightly increased in 1 week and 2
week neuromas and slightly decreased in 3 week neuro-
mas. However, these differences were not significant
when the loading was normalised to Na*/K+*-ATPase (Fig-
ure 4A). Similarly, although neuroma-specific changes in
expression were suggested for Nav 1.8 and calcium chan-
nel a28-1 subunit, these changes were not consistent
when the protein loading was normalised against Na*/K+*-
ATPase (Figure 4B-C). We conclude that there are no sig-
nificant changes in the expression of these proteins during
neuroma formation.

Examination of local protein synthesis in neuromas
Neuromas and control saphenous nerves were incubated
in vitro with S35 methionine to detect de novo protein syn-
thesis in the absence of the cell body/DRG. 2-DE was then
used to separate and compare protein synthesis between
the neuroma and control samples. Interestingly, most of
the S35-labelled protein spots detected were found in the
neuroma sample and only a few were present in both sam-
ple types (Figure 5). S35-labelled and colloidal Coomassie
blue-stained spots were picked and digested for identifica-
tion by MS. Vimentin, moesin, gamma-actin and neuron-
specific protein neurofilament-L were among the proteins
identified (Table 3). This demonstrates that gene-expres-
sion-independent translation of neuron-specific proteins
occurs in neuromas. The presence of mRNA encoding a
variety of proteins in DRG sensory neurons has been dem-
onstrated by Willis et al [37]. In addition, protein changes
in the central nervous system have been measured that are
related to peripheral nerve damage [38]. Zheng et al pro-
vided evidence that DRG axons can synthesise proteins
after crush [39], and these experiments confirm these
findings. It is striking that the neuroma, defined as a use-
ful model of the nerve terminal shows much higher levels
of protein synthesis than isolated saphenous nerve. This is
consistent with a significant role for local protein synthe-
sis in regulation of terminal excitability in normal nerve
endings.

Conclusion

We have found changes in the expression and post-trans-
lational modification of components of all types of fila-
mentous structures, actin, tubulin and intermediate
filaments in mouse neuromas. In addition a number of
enzymes associated with oxidative stress and protein

http://www.molecularpain.com/content/4/1/33

chaperones are up-regulated. We accept that the sample
number used and the pooling strategy adopted for the 2D-
DIGE profiling is not ideal and that there may be consid-
erable animal to animal variation which has been
masked. However, immunoblotting of lysates from a
larger number of rat neuromas (8 in each pool) with con-
trol nerves from the same animals, showed a similar pat-
tern of expression as observed in the mouse model, at
least for three of the candidate proteins tested. This sup-
ports the notion that the expression changes are indeed
consistent from animal to animal as well as across species.
Surprisingly, there seemed to be little change in the
expression of immuno-reactive sodium channels Nav1.3,
Nav1.8 and calcium channel 023-1 subunit in neuromas,
whilst the mRNA levels encoding these proteins are dra-
matically altered in the cell bodies of damaged sensory
neurons [3]. Local protein synthesis of neuronal-specific
proteins such as neurofilament-L chain occurred at higher
levels in the neuromas than in normal nerve, suggesting
by analogy that local protein synthesis in nerve terminals
may occur at a higher level than in nerve trunks. These
studies show both the power and limitations of current
proteomic technology in following the altered levels of
expression of very low abundance membrane-associated
insoluble proteins that are key elements in determining
neuronal excitability. Whilst a number of cytoplasmic
enzymes associated with neuronal damage and death in
other neurodegenerative states have been catalogued, the
molecular basis of hyper-excitability is likely to reflect the
altered topology of voltage-gated channel expression
which can be best addressed by antibody studies. Unfor-
tunately, few mono-specific antibodies to ion channels
are commercially available, making this approach techni-
cally difficult.

Interestingly, a number of markers associated with the
characteristic nerve damage observed in Parkinson's dis-
ease have been identified in neuromas (e.g. protein DJ-1),
suggesting that these proteins are not causally linked to
nerve damage in particular pathologies, but are up-regu-
lated as a consequence of nerve damage. RabGDIo down-
regulation is known to result in enhanced neuronal excit-
ability, and its disruption may contribute to neuroma
excitability changes. However, few of the other catalogued
proteins have an obvious role in contributing to ectopic
firing. Combining the current approach with immunocy-
tochemical studies of channel distribution should provide
a better insight into the underlying mechanisms that
result in neuroma hyper-excitability.

Abbreviations

2D-DIGE: two-dimensional differential gel electrophore-
sis; Cy2: 3-(4-carboxymethyl) phenylmethyl-3'-ethyl-
oxacarbocyanine halide; Cy3: 1-(5-carboxypentyl)-1'-
propylindocarbocyanine  halide; Cy5, 1-(5-carbox-
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Nav1.8 adj volume Nav1.3 adj volume %
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o25-1 adj volume %
normalized with ATPase

Figure 4
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Graphs showing expression of sodium channel Navl.3 (A), Navl.8 (B) and calcium channel 0:25-1 subunit (C) in
rat neuromas and control nerves as determined by western blotting. Columns represent the mean adjusted band
volume (%) = SD after normalisation with the Na+/K+ ATPase loading control. N3d, NIw, N2w and N3w are 3 day, | week, 2
week and 3 week neuroma groups. C3d, Clw, C2w and C3w are 3 day, | week, 2 week and 3 week normal nerve control
group. Data was combined from the analysis of individual samples in three blotting experiments. Representative blots are
shown within each graph for animals 7 and 4. No significant changes were detected for any of the proteins between neuroma

and control groups.
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Table 3: Locally synthesized proteins identified after S35 methionine labelling of neuromas and control saphenous nerves.

Spot no Protein name Accession no. MOWSE score Est. mass Est.pl % Cov
53 Annexin A5 8i|74142393 172 35787 4.83 56
39 Vimentin i|2078001 127 51590 4.96 52
45 Actin, gamma | pro-peptide i|4501887 86 42108 5.31 33
I Moesin gi|70778915 68 67839 6.22 35
60 Tyrosine 3-monooxygenase/tryptophan 5-monooxygenase gi| 148676868 61 29240 4.71 35

activation protein, zeta polypeptide, isoform C (14-3-3 zeta)
41 Vimentin gi[31982755 57 53712 5.06 22
15 Protein disulfide isomerase associated 3 gi| 112293264 52 57099 5.88 28
92 mTERF domain-containing protein |, mitochondrial precursor gi|81901619 46 47385 6.18 16
25 Unnamed protein product gi|74210074 45 30222 9.34 26
38 Heat shock protein | gi|31981679 45 61089 5.67 37
12 Protein phosphatase 2, regulatory subunit B, delta isoform gi| 148685891 42 33815 6.18 9
50 Creatine kinase gi| 10946574 41 42971 5.4 24
47 Neurofilament-L £i|200038 36 61542 4.63 I
62 Unnamed protein product gi|26352624 40 15849 11.26 7
69 ORMI-like protein | gil81174966 41 17401 9.56 37
73 S100 calcium binding protein G gi| 14789635 41 9150 4.69 57
8 Annexin A6 £i|31981302 42 76294 5.34 22

All proteins were identified by LC-ESI-MS/MS peptide sequencing. NCBI gene identifier (gi|) number, MOWSE score from Mascot searches using
LC-MS/MS data, estimated molecular mass and pl, and the percentage coverage of the protein sequence where matching peptides were found are

given for each protein.

ypentyl)-1'-methylindocarbocyanine halide; BVA: biolog-
ical variation analysis; MS: mass spectrometry; PMF:
peptide mass fingerprinting; MALDI: matrix-assisted laser

Figure 5

Local protein synthesis in neuromas using in vitro S35
methionine labelling. The figure shows merged images of
a CCB-stained neuroma sample (blue), and autoradiographs
of S35-methionine-labelled neuroma (red) and S33-methio-
nine-labelled control sample (green).

desorption/ionization; TOF: time-of-flight; LC: liquid
chromatography; MS/MS: tandem mass spectrometry;
CCB: colloidal Coomassie blue; AmBic: ammonium
bicarbonate; Nav 1.8: Voltage gated sodium channel 1.8;
RabGDI: Rab GDP dissociation inhibitor alpha; UCH-L1:
Ubiquitin carboxyl-terminal hydrolase isozyme L1.
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