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Abstract

mechanical allodynia was absent in Lparl ™~

Background: Paclitaxel, which is widely used for the treatment of solid tumors, causes neuropathic pain via poorly
understood mechanisms. Previously, we have demonstrated that lysophosphatidic acid (LPA) and its receptors
(LPA; and LPAs) are required for the initiation of peripheral nerve injury-induced neuropathic pain. The present
study aimed to clarify whether LPA and its receptors could mediate paclitaxel-induced neuropathic pain.

Results: Intraperitoneal administration of paclitaxel triggered a marked increase in production of LPA species
(18:1-, 16:0-, and 18:0-LPA) in the spinal dorsal horn. Also, we found significant activations of spinal cytosolic
phospholipase A, and calcium-independent phospholipase A, after the paclitaxel treatment. The paclitaxel-induced LPA
production was completely abolished not only by intrathecal pretreatment with neurokinin 1 (NK1) or N-methyl-p-aspartate
(NMDA) receptor antagonist, but also in LPA; receptor-deficient (Lparl’/’) and LPAs receptor-deficient (Lparj”/’)
mice. In addition, the pharmacological blockade of NK1 or NMDA receptor prevented a reduction in the paw
withdrawal threshold against mechanical stimulation after paclitaxel treatments. Importantly, the paclitaxel-induced
and Lpar3~~ mice.

Conclusions: These results suggest that LPA; and LPA; receptors-mediated amplification of spinal LPA production is
required for the development of paclitaxel-induced neuropathic pain.
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Background

Peripheral neuropathic pain is produced by multiple
etiologies, including physical trauma, metabolic diseases,
viral infections, and chemotherapeutic agents [1,2].
Paclitaxel (Taxol®) is one of the most widely used che-
motherapeutic agents for various types of solid tumors
such as breast, ovarian, and lung cancers. The treatment
with paclitaxel is often accompanied by neuropathic pain,
which is a major dose-limiting adverse effect and impairs
the quality of life in patients [3,4]. The abnormal pain can
be developed as early as day 1 in patients [5] and several
hours in animals [6] after initial treatment, and last for
months to years after repeated administrations [4]. Until
now, there is a lack of effective treatment for paclitaxel-
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induced neuropathic pain owing to the poor understand-
ing of its molecular mechanisms.

Previously, we have clarified that lysophosphatidic acid
receptor (LPA;) signaling initiates peripheral nerve injury-
induced neuropathic pain and its underlying mechanisms,
including demyelination [7]. Also, a single intrathecal
injection of LPA evokes abnormal pain that mimics
nerve injury-induced neuropathic pain, in terms of its
pain phenotype, pharmacological characterization, and
biochemical alterations [7-10]. Regarding the biosynthesis
of LPA in the spinal cord, simultaneous intense stimula-
tion with neurokinin 1 (NK1) and N-methyl-p-aspartate
(NMDA) receptors activates phospholipase A, to produce
lysophosphatidylcholine (LPC), which is then converted to
LPA by extracellular autotaxin enzyme [11]. Interestingly,
intrathecally administrated LPA is capable of causing amp-
lification of spinal LPA production [12,13]. Furthermore,
nerve injury causes amplification of spinal LPA production
via LPA; and LPAj; receptors [13], and, accordingly, nerve
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injury-induced neuropathic pain is absent in mice that are
deficient in LPA; or LPAj receptors [7,13]. These facts
have suggested that LPA; and LPAj; receptors-mediated
amplification of spinal LPA production is required for the
induction of neuropathic pain after nerve injury. However,
whether LPA and its receptors could contribute to dif-
ferent types of peripheral neuropathic pain, including
chemotherapy-induced neuropathic pain, remains to be
determined. The present study showed that paclitaxel
triggered LPA; and LPAj receptors-mediated amplifica-
tion of spinal LPA production, by using matrix-assisted
laser desorption/ionization time-of-flight mass spectrom-
etry (MALDI-TOF-MS) with phosphate-capture molecule,
Phos-tag. Furthermore, we found that paclitaxel-induced
mechanical allodynia was robustly abolished in mice defi-
cient in LPA; or LPA; receptors.

Methods

Animals

Male C57BL/6] mice (TEXAM corporation, Nagasaki,
Japan) and homozygous mutant mice for the LPA; [14]
and LPA; [15] receptor genes (Lparl™~ and Lpar3™")
were used. These mutant mice were kindly provided by
Prof. Jerold Chun (The Scripps Research Institute, La
Jolla, USA). Mice used in this study weighed 20-24 g.
They were kept in a room maintained at 21 +2°C and
55+ 5% relative humidity with a 12 h light/dark cycle,
and had free access to a standard laboratory diet and tap
water. All procedures used in this work were approved
by the Nagasaki University Animal Care Committee, and
complied with the fundamental guidelines for the proper
conduct of animal experiments and related activities in
academic research institutions under the jurisdiction of
the Ministry of Education, Culture, Sports, Science and
Technology, Japan.

Drug treatments

Paclitaxel (Taxol®) was kindly provided by Bristol-Myers
Squibb Co. (NY, USA). This drug was dissolved in
Cremophor EL and ethanol (1:1, v/v), and then diluted
by physiological saline just before administration. A
single or repeated intraperitoneal injection of pacli-
taxel (4 mg/kg) on 4 alternate days (day 0, 2, 4, and 6;
cumulative dose of 16 mg/kg) was carried out. MK-801
was purchased from Sigma-Aldrich Co. (St. Louis, MO,
USA), while CP-99994 was generously provided by Pfizer
Inc. (NY, USA). These two inhibitors were dissolved
in artificial cerebrospinal fluid (aCSF; 125 mM NaCl,
3.8 mM KCl, 1.2 mM KH,PO,, 26 mM NaHCO3;, 10 mM
glucose, pH7.4). CP-99994 (10 nmol/5 ul) and MK-801
(10 nmol/5 pl) were intrathecally administrated 30 min
prior to paclitaxel injection. The intrathecal injection was
given into the space between spinal L5 and L6 segments,
according to the method of Hylden and Wilcox [16].
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Phospholipase A, activity assays

According to the manufacturer’s protocol and our pre-
vious studies [13,17], the activities of cytosolic phospholip-
ase A, (cPLA,) and calcium-independent phospholipase A,
(iPLA,) in the dorsal half of spinal cord were assessed
by using cPLA, assay kit (Cayman Chemicals, Ann
Arbor, MI, USA). To assess cPLA, activity, bromoenol
lactone, a specific iPLA, inhibitor [18], was added to
the assay buffer. To measure the activity of iPLA,, sam-
ple was incubated with the substrate arachidonoyl thio-
phosphorylcholine in modified Ca**-free buffer (4 mM
EGTA, 160 mM HEPES pH 7.4, 300 mM NaCl, 8 mM
Triton X-100, 60% glycerol, 2 mg/ml of bovine serum
albumin). The activity of PLA, was defined as the
percentage of the control activity as follows: paclitaxel-
treated tissues (absorbance/mg of protein)/normal tissues
(absorbance/mg of protein) x 100.

Extraction of LPA and MALDI-TOF-MS analysis

LPA was extracted from the unilateral dorsal half of the
lumber (L4-L6) spinal cord (6.15 mg tissue weight), as
reported previously [13,19,20]. The final sample was dis-
solved in 50 pl of methanol containing 0.1% aqueous
ammonia for MALDI-TOF-MS analysis. One pl sample
was spotted on a MALDI plate (Bruker Daltonics, Inc.,
CA, USA). Immediately, 1 pl of 2}4,6’-trihydroxyaceto-
phenone monohydrate solution (10 mg/ml in aceto-
nitrile) was layered on the mixture as matrix solution.
After drying, the sample was applied to Ultraflex-I_
TOF/TOF systems (Bruker Daltonics, Inc., CA, USA).
Mass spectrometry was performed in the positive mode,
using an accelerating voltage of 25 kV. The laser was
used at energy of 30-50% (3.0-5.0 pJ) and a repetition
rate of 10-Hz. The mass spectra were calibrated externally
using Peptide calibration standard (Bruker Daltonics, Inc.,
CA, USA). Each spectrum was produced by accumulating
data from 150 or 300 consecutive laser shots. Standard
of 18:1-LPA was purchased from Sigma-Aldrich Co. (St.
Louis, MO, USA), while standards of 16:0-, 17:0- and
18:0-LPA were obtained from Doosan Serdary Research
Laboratories (London, ON, Canada).

Nociception test

The mechanical paw pressure test was carried out, as
described previously [7]. Briefly, mice were placed in a
plexiglass chamber on a 6 x 6 mm wire mesh grid floor
and allowed to acclimatize for a period of 1 h. A mech-
anical stimulus was then delivered onto the middle of
the plantar surface of the animal using a Transducer
Indicator (Model 1601; IITC Inc., Woodland Hills, CA,
USA). The pressure needed to evoke a flexor response
was defined as the pain threshold. A cut-off pressure of
20 g was set to avoid tissue damage.
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Statistical analysis

Statistical analysis was evaluated using the Dunnett’s
test or a one-way ANOVA with Tukey-Kramer multiple
comparison post hoc analysis. The criterion of significance
was set at p <0.05. All results are expressed as mean +
SEM.

Results

Paclitaxel-induced LPA production and activations of
iPLA, an cPLA; enzymes in the spinal dorsal horn

Firstly, we assessed whether paclitaxel could induce LPA
production in the spinal dorsal horn. In order to measure
the levels of LPA species (18:1-, 16:0-, and 18:0-LPA), we
performed quantitative MALDI-TOF-MS method with
phosphate-capture molecule, Phos-tag, as reported pre-
viously [13,19-21]. According to the ratios of ion-peak
intensities with each standard of LPA species to that
with internal standard 17:0 LPA (0.2 nmol), we have
already validated the linearity of each calibration curve
over the concentration range of 0.1-2.0 nmol [13].
Based on the calibration curves, the concentrations of
LPA species were determined by measuring the ion-
signals at m/z 997, 1023, and 1025, corresponding to
16:0-, 18:1-, and 18:0-LPA, respectively. As shown in
Figure 1, the level of 18:1-LPA, which preferentially
activates LPA; and LPAj receptors to initiate nerve
injury-induced neuropathic pain [13], was gradually
increased in the spinal dorsal horn after intraperitoneal
injection of paclitaxel (4 mg/kg) and peaked at 24 h
post-injection, followed by decline at 72 h post-injection.
Similar alterations were also seen in the 16:0- and 18:0-
LPA levels (Figure 1).

Our previous studies have demonstrated that iPLA,
and cPLA, mediate the production of LPC, a precursor
of LPA [11,22,23], in the spinal cord [11,13,17]. Here,
we therefore carried out iPLA, and cPLA, assays to test
whether paclitaxel could activate spinal iPLA, and
cPLA, enzymes. The enzymatic activities of iPLA, and
cPLA, in the spinal dorsal horn were significantly
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elevated at 12 h after the paclitaxel injection, followed
by decline to the control levels at 48 h post-injection
(Figure 2A and B).

Involvement of substance P and glutamate receptors in
paclitaxel-induced LPA production

It has been shown that excitatory neurotransmitters,
substance P (SP) and glutamate, cooperatively evoke LPA
production in the spinal cord [11]. In order to clarify the
involvement of these factors in the paclitaxel-induced LPA
production, mice were intrathecally pretreated with CP-
99994 (10 nmol/5 ul), an NK1 antagonist, or MK-801
(10 nmol/5 pl), an NMDA receptor antagonist, at 30 min
prior to the paclitaxel treatment. MALDI-TOF-MS ana-
lysis revealed that paclitaxel-induced production of 18:1-
LPA was completely blocked by the pretreatment with
CP-99994 or MK-801 (Figure 3A). Similarly, these inhibi-
tors also abolished the paclitaxel-induced increases in
16:0- and 18:0-LPA levels (data not shown).

Paclitaxel-induced amplification of LPA production via
LPA, and LPA; receptors

Our previous studies have shown that LPA itself induces
spinal LPA production [12,13], and the amplification of
LPA biosynthesis after peripheral nerve injury is abol-
ished in Lpar1™" and Lpar3~" mice [13], indicating the
critical involvement of LPA; and LPAj receptors. We
therefore tested whether paclitaxel could trigger LPA; and
LPA; receptors-mediated amplification of LPA production
in the spinal cord. As shown in Figure 3B, paclitaxel-
induced production of 18:1-LPA was absent in Lparl ™~
and Lpar3™~ mice. Also, Lparl™” and Lpar3™~ mice
showed a lack of 16:0- and 18:0-LPA production after
paclitaxel injection (data not shown).

Blockade of paclitaxel-induced mechanical allodynia by
NK1 and NMDA receptor antagonists

Based on the findings that pharmacological blockade of
NK1 and NMDA receptors inhibited paclitaxel-induced

16:0-LPA

18:0-LPA

18:1-LPA
400+ *
< 350
(=]
_ ® 3001
2s
2 2501
Q.“—
=2 2001
2%
B © 1501
g 1001
8 507

o
L

0o 3

6 12 24 72168 0 3

experiments using 3—-4 mice. *p < 0.05, versus corresponding O h.

6 12 24 72168 0 3
Time after paclitaxel injection (h)

Figure 1 Increase in spinal LPA level after paclitaxel injection. Time courses of 18:1-LPA, 16:0-LPA, and 18:0-LPA levels in the spinal dorsal
horn after the intraperitoneal injection of paclitaxel (4 mg/kg) were assessed by using MALDI-TOF-MS with Phos-tag. Data represent means + SEM from
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Figure 2 Activations of iPLA, and cPLA, enzymes after paclitaxel injection. (A and B) Activations of spinal iPLA, (A) and cPLA, (B) were
measured by using iPLA, and cPLA,; assays at indicated time points after the paclitaxel injection. Data represent means + SEM from experiments
using 3-5 mice. *p < 0.05, versus corresponding 0 h.

spinal LPA production (Figure 3A), we investigated Involvement of LPA; and LPA; receptors in the

whether SP and glutamate could mediate paclitaxel- development of paclitaxel-induced neuropathic pain
induced neuropathic allodynia. The intraperitoneal To test whether LPA receptors could participate in
treatments with paclitaxel (4 mg/kg) on 4 alternate  paclitaxel-induced neuropathic pain, we used mice defi-
days (day 0, 2, 4, and 6; cumulative dose of 16 mg/kg) cient in LPA; or LPAj3 receptors, both of which are
significantly reduced the pain thresholds against mech-  required for the development of peripheral nerve injury-
anical stimuli at day 14 after the initial treatment (Figure 4).  induced neuropathic pain [7,13]. The paclitaxel treatments
The paclitaxel-induced mechanical allodynia was com-  produced mechanical allodynia as early as day 1 after the
pletely blocked by the intrathecal pretreatment with first injection in wild-type animals (Figure 5). Intriguingly,
CP-99994 (10 nmol/5 ul) or MK-801 (10 nmol/5 ul) the paclitaxel-induced mechanical allodynia was absent in
(Figure 4). In contrast, CP-99994 and MK-801 had no  Lparl™~ and Lpar3~~ mice (Figure 5), suggesting the crit-
effects on the mechanical pain thresholds in vehicle- ical contribution of LPA; and LPAj; receptors to the devel-

treated mice (Figure 4). opment of paclitaxel-induced neuropathic pain.
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Figure 3 Blockade of paclitaxel-induced LPA production. Level of 18:1-LPA in the spinal dorsal horn at 24 h after the injection of paclitaxel or
vehicle was measured by using MALDI-TOF-MS with Phos-tag. (A) CP-99994 (10 nmol), MK-801 (10 nmol), or aCSF was intrathecally injected at

30 min prior to the paclitaxel injection. Data represent means + SEM from experiments using 3 mice. *p < 0.05, versus aCSF-vehicle-treated mice;
*p < 0,05, versus aCSF-paclitaxel-treated mice. (B) Wild-type (WT), Lpar]’/’, and LparB’/’ mice were used to evaluate LPA level at 24 h after
paclitaxel administration. Data represent means + SEM from experiments using 3-5 mice. *p < 0.05, versus vehicle-treated WT mice; “p < 0.05, versus
paclitaxel-treated WT mice.
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Figure 4 Prevention of paclitaxel-induced mechanical allodynia
by pharmacological blockade of NK1 or NMDA receptor.
Paclitaxel (4 mg/kg) was injected on 4 alternate days (day 0, 2, 4, and 6).
CP-99994 (10 nmol), MK-801 (10 nmol) or aCSF was intrathecally injected
at 30 min prior to the initial injection of paclitaxel. Mechanical paw
withdrawal latencies (PWT, in g) were measured at 14 day after the
initial paclitaxel injection, by using mechanical paw withdrawal
test. Data represent means + SEM from experiments using 6-10
mice. *p < 0.05, versus aCSF-vehicle-treated mice; #p < 0.05, versus
aCSF-paclitaxel-treated mice.
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Figure 5 Absence of paclitaxel-induced mechanical allodynia in
LPA, and LPA; knockout mice. Time course of mechanical paw
withdrawal latencies (PWT, in g) after intraperitoneal injections of
paclitaxel on 4 alternate days (day 0, 2, 4, and 6) in wild-type (WT),
Lpar1™~, and Lpar3™~ mice. Mechanical pain thresholds were
evaluated by using mechanical paw withdrawal test. Data represent
means + SEM from experiments using 4-6 mice. *p < 0.05, versus
vehicle-treated WT mice; “p < 0.05, versus paclitaxel-treated WT mice.
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Discussion

There is emerging evidence that LPA mediates not only
peripheral nerve injury-induced neuropathic pain [7],
but also other chronic pain, such as ischemia-induced
central neuropathic pain [24] and bone cancer pain [25].
Here, we focused on the paclitaxel-induced neuropathic
pain that can be observed in both clinic and animal
studies [3]. The most important finding of the present
study is that paclitaxel-induced spinal LPA production
and the development of neuropathic pain were absent in
Lpar1™~ and Lpar3™~ mice. This suggests, for the first
time, the critical involvement of LPA and its receptors
LPA; and LPAj; in paclitaxel-induced neuropathic pain, a
predictable adverse effect.

Our previous report has shown that peripheral nerve
injury activates spinal iPLA, and cPLA, at 1 h post-injury,
followed by spinal LPA production at 3 h post-injury [17].
Regarding mechanisms for the LPA biosynthesis, simul-
taneous stimuli of excitatory neurotransmitters, SP and
glutamate, are capable of evoking LPA production in the
spinal cord slices [11]. Indeed, pharmacological blockade
of NK1 or NMDA receptor completely inhibits injury-
induced iPLA, and cPLA, activation and LPA production
[13]. In the present study, we found that paclitaxel caused
a significant increase in spinal iPLA, and cPLA, activities
at 12 h post-injection, followed by spinal LPA production
at 24 h post-injection. In addition, the pretreatment with
intrathecal NK1 or NMDA receptor antagonist completely
blocked the paclitaxel-induced LPA production. These
findings prompted us to hypothesize that paclitaxel could
activate spinal iPLA, and cPLA,, possibly via the increase
in SP and glutamate levels, thereby leading to LPA pro-
duction. In this context, paclitaxel, which poorly pene-
trates blood—brain-barrier, is known to accumulate in the
dorsal root ganglion [26-28], indicating that paclitaxel
could alter the functions of primary afferents to cause
peripheral and central sensitization. For instance, there
are reports showing that paclitaxel induces SP release
from cultured primary afferent neurons [29,30]. Moreover,
paclitaxel has been found to cause a down-regulation of
glial transporters, such as glutamate-aspartate transporter
and glutamate transporter-1 in the spinal astrocyte as early
as 4 h after paclitaxel injection [31], indicating that synap-
tic glutamate level would be increased in the spinal dorsal
horn after paclitaxel administration. These mechanisms
might explain the reasons why the paclitaxel-induced
spinal iPLA, and cPLA, activation and subsequent LPA
production are delayed as compared with the case of per-
ipheral nerve injury.

Previously, we have demonstrated that a single intra-
thecal injection of LPA increases spinal LPA level [12,13].
Also, nerve injury-induced production of LPA species is
absent in Lparl™~ and Lpar3™~ mice [13], indicating
the involvement of LPA; and LPAj receptors in self-
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amplification of LPA production. Interestingly, 18:1-LPA,
which preferentially activates LPA; and LPAj; receptors,
induces not only amplification of LPA production but
also neuropathic thermal hyperalgesia [13]. In contrast,
neither 16:0- nor 18:0-LPA triggers LPA production and
neuropathic pain-like behavior [13]. Here, we showed
that paclitaxel evoked a significant production of LPA
species (18:1-, 16:0-, and 18:0-LPA), and such LPA pro-
duction was absent in Lparl™~ and Lpar3™~ mice.
Therefore, it is logical to postulate that activations of
LPA; and LPAj; receptors, possibly by 18:1-LPA, are
required for paclitaxel-induced amplification of LPA
production. LPA can activate primary afferents, thereby
evoking the release of SP from nerve endings via LPA;
receptor [32,33]. Therefore, there is a possibility that
LPA; receptor might be involved in amplification of
LPA production via the release of SP from presynaptic
terminals in the spinal dorsal horn. Alternatively, LPA;
and LPAj; receptors are expressed in microglia [34,35],
indicating microglial LPA; and LPAj; receptors might
induce the release of biological factors that activate iPLA,
and cPLA, to cause LPA production. One such candidate
is interleukin-1p, which mediates LPA-induced LPA pro-
duction via activations of iPLA, and cPLA, [36].

Tatsushima et al. reported that a single intrathecal
injection of NK1 receptor antagonist alleviates the
established mechanical allodynia after repeated treat-
ments with paclitaxel [30], suggesting an involvement of
SP in the maintenance of paclitaxel-induced neuropathic
pain. Although NMDA receptor antagonist reverses the
established mechanical allodynia after paclitaxel injections
[37], inconsistent observation has been reported [38].
Therefore, the authors have mentioned that NMDA
receptor activation is unlikely to have a major role
in the maintenance of paclitaxel-induced neuropathic
pain [37,38]. On the other hand, the present study
clearly showed that the intrathecal pretreatment with NK1
and NMDA receptor antagonists blocked paclitaxel-
induced spinal LPA production and mechanical allodynia,
suggesting that SP and glutamate are key mediators of
the development of paclitaxel-induced neuropathic pain
via causing LPA production. Furthermore, the paclitaxel-
induced spinal LPA production and mechanical allodynia
were absent in Lparl™~ and Lpar3~~ mice. Collectively,
these findings strongly suggest that spinally synthesized
LPA, whose production is amplified via LPA; and LPA3
receptors, participates in the pathogenesis of paclitaxel-
induced neuropathic pain.

Regarding the molecular basis for induction of neuro-
pathic pain, we have demonstrated that LPA evokes
demyelination of sensory fibers in the dorsal root [7]. In
addition, LPA also causes altered expression of pain-
related molecules in the dorsal root ganglion and spinal
dorsal horn [7]. Furthermore, gene profiling analysis has
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clarified that LPA initially up-regulates gene expression of
ephrinB1, which contributes to LPA-induced neuropathic
pain via activation of spinal NMDA receptor [39]. On the
other hand, it has been proposed that multiple mecha-
nisms, including mitochondrial dysfunction, altered gene
expression, and glial activation, are implicated in the
mechanisms for paclitaxel-induced neuropathic pain
[27,40]. Intriguingly, it seems that some of the mecha-
nisms, such as demyelination and up-regulations of
calcium channel a2d-1 subunit, would be commonly
observed in the neuropathic pain caused by paclitaxel
and LPA [7,41,42]. Alternatively, a recent paper by
Wright et al. has shown that phosphatidylinositol 4-
phosphate 5 kinase type 1C has an important role in
LPA-induced neuropathic pain [43], raising possibility
that such lipid kinase might be involved in the LPA
actions underlying paclitaxel-induced neuropathic pain.
Further studies are required for the elucidation of
mechanisms via LPA; and LPAj receptors underlying
paclitaxel-induced neuropathic pain.

Conclusions

The present study demonstrated that LPA; and LPA;
receptors-mediated amplification of spinal LPA pro-
duction is required for the development of paclitaxel-
induced neuropathic pain. The molecular machineries
underlying LPA production might serve as novel potential
therapeutic targets in the prevention of paclitaxel-induced
neuropathic pain.
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