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Abstract

Despite many decades of drug development, effective therapies for neuropathic pain remain
elusive. The recent recognition of spinal cord glia and glial pro-inflammatory cytokines as important
contributors to neuropathic pain suggests an alternative therapeutic strategy; that is, targeting glial
activation or its downstream consequences. While several glial-selective drugs have been successful
in controlling neuropathic pain in animal models, none are optimal for human use. Thus the aim of
the present studies was to explore a novel approach for controlling neuropathic pain. Here, an
adeno-associated viral (serotype Il; AAV2) vector was created that encodes the anti-inflammatory
cytokine, interleukin-10 (IL-10). This anti-inflammatory cytokine is known to suppress the
production of pro-inflammatory cytokines. Upon intrathecal administration, this novel AAV2-IL-10
vector was successful in transiently preventing and reversing neuropathic pain. Intrathecal
administration of an AAV2 vector encoding beta-galactosidase revealed that AAV2 preferentially
infects meningeal cells surrounding the CSF space. Taken together, these data provide initial
support that intrathecal gene therapy to drive the production of IL-10 may prove to be an
efficacious treatment for neuropathic pain.

Background successfully resolve such pain [1-3]. To date, drug thera-
Neuropathic pain is an especially difficult chronic pain  pies developed for human neuropathic pain have targeted
syndrome to treat. No compounds are yet available that = neurons. However, evidence has recently accumulated
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that pathological pain, including neuropathic pain, is
dynamically and dramatically amplified as a result of spi-
nal cord glial activation [4-6]. Spinal cord glia become
activated as a consequence of inflammation and/or
trauma to peripheral nerves [4,6]. This raises the intrigu-
ing possibility that finding ways to target glial activation,
or its downstream consequences, may provide a novel
approach for neuropathic pain control [5,7].

Several glial-selective drugs have been successful in pre-
venting or reversing neuropathic pain in animals, but
none is optimal for clinical applications. For example,
fluorocitrate is a selective astrocyte inhibitor [8,9]. While
effective in blocking the induction of neuropathic pain in
animals [10], fluorocitrate is inappropriate for human use
due to inhibition of glial glutamate uptake and conse-
quent seizures can occur [11]. Similarly, minocycline is a
selective microglial inhibitor [12]. It too is effective in
blocking the induction of neuropathic pain in animals
[13,14]. However, as minocycline fails to affect estab-
lished neuropathic pain [13,14], this compound does not
appear to have therapeutic potential.

Other approaches have focused on the fact that glia are
"immune cell-like". Upon activation, glia and immune
cells each release pro-inflammatory substances, most
notably pro-inflammatory cytokines (interleukin [IL]-1,
tumor necrosis factor [TNF] and IL-6). The release of pro-
inflammatory cytokines by activated spinal cord glia is key
as these cytokines enhance pain and have been implicated
in the initiation and maintenance of neuropathic pain
[10,15,16]. Immunosuppressive (methotrexate) and
immunomodulatory (propentofylline) drugs have been
tested with the aim of suppressing neuropathic pain via
suppression of glial-derived pro-inflammatory cytokines
in spinal cord. While these drugs have proven effective in
reducing enhanced pain responses [17,18], they are not
optimal for chronic use in humans, as their systemic
administration would negatively impact the peripheral
immune system. In addition, although selective pro-
inflammatory cytokine antagonists have proven success-
ful in resolving neuropathic pain [10,15], their lack of
CNS penetration negates systemic administration and
their relatively short duration of action poses problems
for chronic intrathecal administration in humans.

The purpose of the present series of studies was to explore
a new approach to neuropathic pain control; that is,
intrathecal gene therapy using an adeno-associated viral
(serotype II; AAV2) vector to drive the production and
release of interleukin-10 (IL-10), a powerful anti-inflam-
matory cytokine [19]. As IL-10 is known to suppress the
production and release of all 3 pro-inflammatory
cytokines [19], it would be predicted to be efficacious for
the treatment of neuropathic pain. Two animal models of
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neuropathic pain were employed: (a) sciatic inflamma-
tory neuropathy (SIN) induced by localized inflamma-
tion of the sciatic nerve in the absence of frank trauma,
and (b) chronic constriction injury (CCI), a model involv-
ing both trauma to and inflammation of the sciatic nerve.
Depending upon the intensity of sciatic nerve inflamma-
tion induced, the SIN model can produce either an ipsilat-
eral or bilateral mechanical allodynia [20]. This allows
examination of both ipsilateral and mirror-image pain.
CCI was chosen for study both because it is a classic
model of partial nerve injury [21] and because it induces
thermal hyperalgesia in addition to mechanical allodynia
[22-24]. We attempted to prevent and reverse SIN- and
CCl-induced pain changes, respectively. These studies
demonstrate that intrathecal administration of an AAV2
vector that encodes for rat IL-10 (AAV2-1-1L-10) is effective
in transiently resolving neuropathic pain in both models.

Results

AAYV transgene expression in vitro and in vivo

The plasmid construct containing rat IL-10 cDNA (pTR2-
CB-rIL-10) was transfected into an IB3 cell line to verify
plasmid-induced rat IL-10 release (see Methods). Media
from the transfected cell cultures were collected 18, 36,
and 60 hr later and frozen at -80°C until analyzed for rat
IL-10 by ELISA. Rat IL-10 was readily detected in culture
supernatants of transfected cells versus untransfected con-
trol cultures (see Fig. 2A Inset). This construct was subse-
quently used to create an AAV2 vector for in vivo testing.

Lumbosacral intrathecal injection of adenovirus has been
well characterized as infecting predominantly meningeal
cells surrounding the lower spinal cord CSF space [25]. A
comparable examination of AAV2 spread has not been
previously reported in adult rats following lumbosacral
intrathecal injection. Rats (n = 3) were injected intrathe-
cally with AAV2 (approximately 4.1 x 10°8 infectious par-
ticles in 10 ul) engineered to express beta-galactosidase 8
days prior to tissue fixation for beta-galactosidase histo-
chemistry. Tissues from non-injected control rats (n = 2)
were processed at the same time.

A diffuse and sporadic pattern of beta-galactosidase
expression was observed from the injection site rostral to
spinal cord C2 regions with the most robust staining
observed closest to the injection site. Close inspection of
spinal cord tissue (Fig. 1A) revealed little to no beta-galac-
tosidase expression in control naive tissue. In contrast,
clear beta-galactosidase expression was observed in LacZ
injected rats (Fig. 1B), as indicated by stained cells in the
pial meningeal layer. Beta-galactosidase expression
decreased at more rostral regions (not shown). No beta-
galactosidase expression was observed in the meninges of
ventral spinal cord. The tissue distribution of AAV2-LacZ
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Figure |
Photomicrographs of beta-Galactosidase histochemistry; expression in spinal cord meninges. Spinal cords were

removed from control, non-injected rat (A) or the AAV2-LacZ injected rat (B) 8 days after intrathecal injection. Beta-Galactos-
idase histochemistry was conducted with X-gal staining procedures. No sections are counter stained. Magnification in Panels A
and B are identical, scale bar, 100 microns.

induced beta-galactosidase expression was observed pre-
dominantly in the pial membrane.

Blockade of SIN-induced mechanical allodynia by
intrathecal AAV2-r-IL-10

Sciatic inflammatory neuropathy (SIN) is induced by peri-
sciatic injection of an immune activator, such as zymosan
(yeast cell walls), around one healthy sciatic nerve at mid-
thigh level [10,20]. This procedure creates robust mechan-
ical allodynia, but no thermal hyperalgesia [20]. Mechan-
ical allodynia is restricted to the injected limb when low
doses of zymosan are used. High doses of zymosan induce
allodynia in both the injected hindleg as well as the con-
tralateral (mirror-image) hindleg [10,20]. The zymosan
injection is done in unanesthetized, unrestrained rats via
a pre-implanted peri-sciatic catheter [26]. This allows for
repeated injections of the immune activator across days so
to induce chronic neuropathic pain [10]. Prior to induc-
tion of sciatic inflammatory neuropathy (SIN), rats were
assessed for their responses to low-threshold mechanical
stimuli (0.407 - 15.136 gm) applied to the plantar surface
of their hindpaws (von Frey test). This was done prior to
(baseline; BL) and again on Day 3 after intrathecal AAV2-
r-IL-10 (8.5 x 1078 infectious units in 5 ul; dose based on
pilot studies) or AAV2-GFP (Control; 8.45 x 1078 infec-
tious units in 5 ul; directed the intracellular production of
jellyfish green fluorescent protein; GFP). AAV2-r-IL-10

and AAV2-GFP had no effect on mechanical response
thresholds measured 3 days after virus delivery, compared
to BL (F ; gg= 0.686, p > 0.68) (Fig. 2). Hence neither the
presence of rat IL-10 nor adeno-associated virus had
measurable effects on basal low threshold mechanical
responses.

Immediately upon completion of the Day 3 test, all rats
were peri-sciatically injected with either 4 or 160 ug
zymosan (n = 5-6/group) to induce ipsilateral or bilateral
mechanical allodynia, respectively. Zymosan was re-
administered to maintain allodynia across the testing
period, as previously described [10,20,27]. Behavioral
responses on the von Frey test were reassessed daily
through Day 11 and lastly on Day13 in accordance with
prior studies [10].

AAV2-1-IL-10 and AAV2-GFP had no effect on mechanical
response thresholds measured 3 days after virus delivery,
compared to BL (Fig. 2). Hence neither the presence of rat
IL-10 nor adeno-associated virus had measurable effects
on basal pain responses. As in our previous studies [10],
low dose zymosan induced a unilateral allodynia (Fig.
2A,B) while higher dose zymosan induced a bilateral allo-
dynia (Fig. 2C,D), compared to BL measures. Both ipsilat-
eral (Fig. 2A) and bilateral (Fig. 2C,D) allodynias were
blocked by AAV2-r-IL-10 through Day 11, as von Frey
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Figure 2
Adeno-associated viral IL-10 blocks development of chronic sciatic inflammatory neuropathy (SIN) induced
mechanical allodynia. After baseline (BL) assessment on the von Frey test, all rats received intrathecal AAV2-GFP (Control,
encoding green fluorescent protein) or AAV2-r-IL-10. Behavior was reassessed Day 3 after intrathecal AAV, confirming that
neither AAV2-GFP (Control) nor AAV2-r-IL-10 affected behavior prior to peri-sciatic injections (F ; gg = 0.686, p > 0.68). After
this Day 3 assessment, unilateral peri-sciatic injections of 0 (vehicle control; Panels A, B), 4 ug zymosan (to induce ipsilateral
allodynia; Panels C, D), or 160 ug zymosan (to induce bilateral allodynia; Panels E, F) were delivered, with repeated re-
administration across days to induce a chronic neuropathic state. Repeated measures ANOVA revealed reliable main effects of
peri-sciatic zymosan dose (F | o= 12.093, p < 0.002), IL-10 (F | 4,0 = 69.829, p < 0.0001), and laterality (F | 4= 22.315, p <
0.0001), and interactions between zymosan dose and IL-10 (F | 40 = 6.161, p < 0.02) and between IL-10 and laterality (F | 4o =
15.412, p < 0.001). The construct pTR2-CB-r-IL-10 employed in an AAV vector for behavioral testing induced the production
and release of rat IL-10 from transfected IB3 cells in culture. Increases in rat IL-10 protein were detected in supernatants of
transfected cells versus untransfected vehicle control cultures (Panel A Inset). Neither AAV2-GFP nor AAV2-r-|L-10
affected the behavioral responses of rats receiving chronic peri-sciatic vehicle, as illustrated by data obtained from the hind-
paws ipsilateral (Panel A) or contralateral (Panel B) to the peri-sciatic injections. Allodynia was induced in the ipsilateral
hindpaw of intrathecal AAV2-GFP rats receiving 4 ug peri-sciatic zymosan (Panel C). This allodynia was largely blocked by
AAV2-r-IL-10 (p > 0.045 through Day || compared to BL) with allodynia reappearing on Day |3 after AAV; that is, 10 days
after initiation of chronic zymosan. Again, neither AAV2-GFP nor AAV2-r-IL-10 affected behaviors obtained from the contral-
ateral, non-allodynic hindpaws (Panel D). Allodynia was induced in both the ipsilateral (Panel E) and contralateral (Panel F)
hindpaws of intrathecal AAV2-GFP rats receiving 160 ug peri-sciatic zymosan. These ipsilateral and contralateral allodynias
were largely blocked by AAV2-r-IL-10 (p > 0.15 through Day || compared to BL), until allodynia reappeared on Day |3 after
AAYV; that is, 10 days after initiation of chronic zymosan.
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responses after peri-sciatic zymosan did not differ from
BL. By Day 13, both ipsilateral and bilateral allodynia
returned.

Reversal of chronic constriction injury (CCl) induced
mechanical allodynia and thermal hyperalgesia by
intrathecal AAV2-r-IL-10

Chronic constriction injury (CCI) is a classic model of
neuropathic pain induced by partial nerve injury [21].
Like the SIN model described above, CCI is performed on
one sciatic nerve at mid-thigh level. In contrast to the SIN
model described above, CCI involves both inflammation
of, and trauma to, this nerve, To test whether AAV2-r-IL-
10 could reverse established thermal hyperalgesia or low
threshold mechanical allodynia induced by CCI, the
plantar surface of the rat hindpaws were first assessed for
their responses to low threshold mechanical stimuli (von
Frey test) and radiant heat stimuli (Hargreaves test) prior
to (BL) and again on Days 3 and 10 after surgery. CCI sur-
gery produced reliable ipsilateral thermal hyperalgesia
(Fig. 3) and bilateral mechanical allodynia (Fig. 4) com-
pared to sham surgery, in agreement with our prior
reports [22-24].

Immediately after behavioral testing on Day 10, rats (n =
5-6 /group) received intrathecal AAV2-1-IL-10 (8.5 x 1078
infectious units in 5 ul) or AAV2-GFP (8.45 x 10”8 infec-
tious units in 5 ul). Hargreaves and von Frey tests were
again performed on Days 3, 5,7, 9, 11, 14, 16 and 20 after
viral administration. This corresponds to Days 13, 15, 17,
19, 21, 24, 26, and 30 after CCI or Sham surgery. The data
demonstrate that AAV2-1-IL-10 administration produced
significant reversal of both ipsilateral thermal hyperalge-
sia (Fig. 3) and bilateral allodynia (Fig. 4) induced by CClI,
compared to AAV2-GFP, on Days 13-26 after surgery.

Intrathecal AAV2-r-IL-10 did not permanently reverse
these ongoing pathological pain states. AAV2-r-IL-10
reversal of CCl-induced pathological pain states began
dissipating by Day 26 post-surgery. From Day 26-30,
both thermal hyperalgesia and mechanical allodynia pro-
gressively returned, with pain facilitation reaching pre-
AAV levels by Day 30 (Figs. 3,4). At Day 30, neither behav-
ioral response modality was significantly different from
Day 10 preinjection levels.

Lastly, 2 groups of rats (n = 10/group) were matched for
body weight prior to receiving intrathecal AAV2-r-1L-10
(8.5 x 1078 infectious units in 5 ul) or AAV2-GFAP (8.45
x 1078 infectious units in 5 ul). As part of an unrelated
study, these rats were weighed Day 7 post-AAV2 just prior
to sacrifice. No difference in the body weight of these 2
groups of animals was found (F ; ;3= 0.181; p > -.67). As
in all prior experiments, no adverse effects of either AAV2-
r-IL-10 or AAV-GFAP were noted. All rats appeared
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healthy, appeared to gain weight normally, and exhibited
typical posture, grooming, and locomotion.

Discussion

The present experiments document the efficacy of AAV2-
r-IL-10 in preventing and reversing neuropathic pain. In
addition, this work provides initial evidence that
intrathecal gene therapy to express anti-inflammatory
cytokines, such as IL-10, may be an approach worth pur-
suing for the treatment of chronic pain. When AAV2-r-IL-
10 was administered intrathecally 3 days prior to chronic
inflammation of the sciatic nerve (SIN), AAV2-r-IL-10 pre-
vented the onset of both ipsilateral and mirror-image
mechanical allodynia, as measured by the von Frey test.
Blockade of these SIN-induced allodynias lasted for 8 days
(11 days after intrathecal AAV2-r-IL-10), with allodynia
developing by day 10 (13 days after intrathecal AAV2-r-IL-
10). In contrast, rats receiving AAV2-GFP (Control) prior
to induction of SIN exhibited strong ipsilateral and mir-
ror-image allodynia throughout the timecourse tested.
Such profound and prolonged allodynia with this chronic
SIN procedure is in agreement with prior studies [10].
Neither AAV2-1-IL-10 nor AAV2-GFP altered mechanical
response thresholds in sham-operated rats. AA2-r-IL-10
was also successful in reversing established CCl-induced
thermal hyperalgesia. Intrathecal AVV2-r-IL-10 adminis-
tered 10 days after CCI surgery returned hindpaw
response latencies to radiant heat (Hargreaves test) to pre-
surgery baseline values. The effect of AAV2-r-IL-10 was
again transient, with complete reversal observed for a
week, from 7 through 14 days after AAV2-r-1L-10. Thermal
hyperalgesia then progressively returned with robust
hyperalgesia recorded 20 days after AAV-r-IL-10. In con-
trast, rats receiving intrathecal AAV2-GFP exhibited stable
ipsilateral thermal hyperalgesia throughout the time-
course tested. Neither AA2-r-IL-10 nor AAV-GFP altered
thermal response thresholds in sham-operated rats. AAV-
2-r-IL-10 attenuated established ipsilateral and mirror-
image mechanical allodynia in these same animals, with
allodynia again becoming fully re-expressed by 16-20
days after AAV2-r-IL-10. Rats receiving intrathecal AAV2-
GFP exhibited marked bilateral mechanical allodynia
throughout the timecourse tested, in agreement with prior
studies [22-24]. Again, neither vector altered response
thresholds of sham-operated rats. AAV2 appears to pre-
dominantly infect meningeal cells surrounding the CSF
space, as indicated by beta-galactosidase staining of spinal
tissues from rats injected with AAV2-LacZ. This pattern of
meningeal staining is in accordance with prior studies of
intrathecal adenovirus administration [25].

IL-10 is only one of many endogenous anti-inflammatory
cytokines. In addition to IL-10, the anti-inflammatory
cytokine family also includes I1L-4, IL-11, and IL-13
[28,29]. Leukemia inhibitory factor, interferon-alpha, IL-
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Adeno-associated viral IL-10 reverses established CCl-induced thermal hyperalgesia. After predrug (baseline; BL)
assessment on the Hargreaves test, sham (Panels A, B) or CC| (Panels C, D) surgery was performed (timing denoted by the
first vertical dotted line). Behavioral assessments were reassessed Days 3 and |0 after surgery to document the lack of thermal
hyperalgesia in sham operated rats and development of unilateral allodynia in CCl groups ipsilateral to sciatic surgery. ANOVA
revealed reliable main effects of CCI (F | 4= 140.740, p < 0.0001) and laterality (F | 33 =48.901, p <0.0001), and an interaction
between CCl and laterality (F | ;o= 104.295, p < 0.0001). After the Day 10 assessment, rats received intrathecal injections of
either AAV2-GFP (Control) or AAV2-r-IL-10 (timing denoted by the second vertical dotted line). Behavioral assessments were
again recorded on Days 13, 15, 17, 19, 21, 24, 26, and 30 after surgery; that is, Days 3, 5,7, 9, 11, 14, 16, and 20 days after
AAV. While neither AAV2-GFP nor AAV2-r-IL-10 exerted marked effects in sham operated animals (Panels A, B) or non-
allodynic hindpaws of CCl-operated animals (Panel D), AAV2-r-IL-10 transiently reversed ipsilateral CCl allodynia compared
to CCl operated AAV2-GFP treated animals (Panel C). For Days 13-26, ANOVA revealed reliable main effects of CCI (F | 59
= 134.036, p < 0.0001), IL-10 (F | 3= 12.047, p < 0.01) and laterality (F | 35 = 66.284, p < 0.0001), and interactions between
CCl and AAV2-r-IL-10 (F | 35 = 24.486, p < 0.0001), CCl and laterality (F | 35 = 91.956, p < 0.0001), and IL-10 and laterality (F
139 = 17.392, p < 0.0001). At Day 30, behavioral responses were not significantly different from Day |0 preinjection levels (F

139= 7.824,p > 0.10).
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Figure 4

Adeno-associated viral IL-10 attenuates established CCl-induced mechanical allodynia. After predrug (baseline;
BL) assessment on the von Frey test, sham (Panels A, B) or CCl (Panels C, D) surgery was performed (timing denoted by
the first vertical dotted line). Behavioral assessments were reassessed Days 3 and 10 after surgery to document the lack of
allodynia in sham operated rats and development of bilateral allodynia in CCl groups. ANOVA revealed reliable main effects of
CCI (F | 49= 197.446, p < 0.0001) and laterality (F | 4o = 6.356, p < 0.05). After the Day 10 assessment, rats received intrathecal
(i.t.) injections of either AAV2-GFP (Control) or AAV2-r-IL-10 (timing denoted by the second vertical dotted line). Behavioral
assessments were again recorded on Days 13, 15, 17, 19, 21, 24, 26, and 30 after surgery; that is, Days 3,5,7,9, | I, 14, 16, and
20 days after AAV. While neither AAV2-GFP nor AAV2-r-IL- 10 exerted marked effects in sham operated animals (Panels A,

B), AAV2-r-IL-10 transiently attenuated bilateral CCI allodynia compared to CCI operated AAV2-GFP treated animals (Pan-
els C, D). For Days 13-26, ANOVA revealed reliable main effects of CCI (F | ;o= 496.336, p < 0.0001), IL-10 (F | ;o= 59.636,
p <0.0001), and laterality (F | 4= 28.565, p < 0.0001), and interactions between CCl and IL-10 (F | 4, = 72.988, p < 0.0001) and
CCl and laterality (F | 4= 9. 325, p < 0.01). At Day 30, behavioral responses were not significantly different from Day 10 prein-
jection levels (F | 40 =0.696, p > 0.40).
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6, and transforming growth factor-beta are categorized as
either anti-inflammatory or pro-inflammatory cytokines,
under various circumstances [29-32]. Anti-inflammatory
effects are also exerted by a variety of endogenous agents
as well, such as IL-1 receptor antagonist, soluble and
membrane-bound IL-1 decoy receptors, and soluble TNF
decoy receptors [29]. Thus a number of anti-inflammatory
substances exist which may potentially exhibit therapeutic
effects for enhanced pain states.

IL-10 was chosen for the present study for several reasons.
First, it is considered to be the most powerful anti-inflam-
matory cytokine, potently downregulating TNF, IL-1 and
IL-6 production and release [19,29,33]. In addition, IL-10
can upregulate endogenous anti-cytokines and downregu-
late pro-inflammatory cytokine receptors [19,29,33].
Thus, it can counter-regulate production and function of
pro-inflammatory cytokines at multiple levels. Second,
simultaneous suppression of multiple pro-inflammatory
cytokines, rather than targeting a single cytokine, has
advantages for 2 reasons: (a) pro-inflammatory cytokines
are redundant, such that blockade of a single pro-inflam-
matory cytokine results in its functions being taken over
by other pro-inflammatory cytokines [34], and (b) TNF,
IL-1 and IL-6 can vary greatly in their relative magnitude
of production, dependent both upon the inciting stimulus
and time. This has been observed in spinal cord under
conditions of pain facilitation as well [35]. Third, acute
administration of IL-10 protein has been documented in
previous studies to suppress the development of spinally-
mediated pain facilitation in diverse animal models,
including intrathecal dynorphin, peri-sciatic snake venom
phospholipase A2, and spinal cord excitotoxic injury [36-
40]. As IL-10 has a very short half-life (~2 hr) in rat cere-
brospinal fluid (L. He, R. Chavez and K. Johnson, unpub-
lished observations), IL-10 gene therapy may provide an
efficient means of attaining neuropathic pain control
across days. Lastly, evidence to date indicates that spinal
cord neurons do not express receptors for IL-10 under
either basal or inflammatory conditions [41]. Therefore,
in spinal cord, IL-10 may selectively target glia, without
disrupting neuronal function. Indeed, the major reported
effect of IL-10 on neurons is enhancement of neuronal
survival, an effect thought to be indirect via the inhibition
of glially-derived neuroexcitotoxic products, including
pro-inflammatory cytokines [42-45].

Replication-defective adeno-associated viral vectors offer
numerous advantages for use in human gene therapy. This
vector rarely inserts into host DNA, thus avoiding inser-
tional effects common to other gene therapy approaches
[46]. In addition, AAV is less inflammatory than other
gene delivery vectors, such as adenovirus [47]. For such
reasons, adeno-associated viruses have recently attracted
attention as vectors for human gene therapy [48].
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However, the present report found the efficacy of AAV2 to
be short-lived upon intrathecal administration. This was
surprising, given the generally accepted long-term persist-
ence of AAV transgene expression. When AAV is adminis-
tered directly into spinal cord tissue or dorsal root ganglia,
AAV-directed gene expression persists for at least 4-8
months [49,50]. Since AAV injection into spinal cord or
dorsal root ganglia requires traumatic surgery to expose
the site, such approaches are not optimal for human
application. Our intent is to explore therapies with poten-
tial use in humans, and therefore an acute intrathecal
injection via percutaneous lumbar puncture route of
administration was used. It is possible that AAVs of differ-
ent serotypes and promoters may produce far more long-
lasting effects following intrathecal administration, as
serotype and promoter tropism of AAV can greatly affect
what cell type(s) are infected and/or express the transgene
[50-53]. Indeed, our ongoing studies suggest that far
longer IL-10 protein expression can be attained by altering
the AAV serotype used for intrathecal gene therapy (T. Liu,
R. Chavez, and K. Johnson, unpublished data). Thus,
while the results with AAV2 reported in the present studies
were transient, they do indicate the potential for intrathe-
cal IL-10 gene therapy for pain.

Conclusion

The conclusions from the present experiments are clear.
First, intrathecal IL-10 gene therapy shows promise for
control of neuropathic pain. This is exciting as it demon-
strates that targeting products of spinal cord glial activa-
tion can produce prolonged suppression of both
mechanical allodynia and thermal hyperalgesia. Second,
neuropathic pain was not only prevented but also
reversed by intrathecal IL-10 gene therapy. This is impor-
tant, as it implies that spinal cord glial activation contrib-
utes to both the initiation and maintenance of
neuropathic pain. Third, intrathecally administered AAV2
targets primarily meningeal cells. This may be advanta-
geous, as infection of meningeal cells avoids retrograde
transport of AAV to distant sites, as has been observed in
brainstem neurons following intra-spinal cord injections
[25]. Lastly, it is anticipated that the duration and potency
of AAV-IL-10 gene therapy can be improved by careful
selection of the optimal AAV serotype.

Methods

Subjects

Pathogen-free adult male Sprague-Dawley rats (300-425
g Harlan Labs) were used in all experiments. Rats were
housed in temperature (23+/-3°C) and light (12:12 light:
dark; lights on at 0700 hr) controlled rooms with stand-
ard rodent chow and water available ad libitum. Behavio-
ral testing was performed during the light cycle. The
Institutional Animal Care and Use Committee of the Uni-
versity of Colorado at Boulder approved all procedures.
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Drugs and adeno-associated viral vectors

Zymosan (yeast cell walls; Sigma Chemical Co., St. Louis,
MO) was made fresh daily by suspension in a vehicle of
incomplete Freund's adjuvant (Sigma Chemical Co., St.
Louis, MO). The final concentrations were 0 (vehicle con-
trol), 0.08, or 3.2 ug/ul delivered peri-sciatically in 50 ul
as described previously [10].

A replication-defective adeno-associated virus (AAV)
expression vector (serotype II) containing the cDNA
encoding for rat IL-10 (r-IL-10) was created, packaged and
purified at the Powell Gene Therapy Center, University of
Florida at Gainesville, as previously described [54].
Briefly, co-transfection was conducted with the proviral
cassette with plasmid (pDG) that provides the AAV rep
and cap genes in trans as well as adenoviral genes E2a, E4
and VA. The Ela and E1b genes were in the complimen-
tary cell line, HEK 293. The vector cassette containing the
¢DNA encoding rat IL-10 (AAV2-r-IL-10) was driven by
the hybrid cytomegalovirus (CMV) enhancer/chicken
beta actin promoter/hybrid intron (pTR2-CB-rIL-10). The
control AAV (AAV2-GFP) was an analogous AAV expres-
sion vector in which the CMV enhancer/chicken beta actin
promoter directs the expression of the reporter gene
encoding jellyfish green fluorescent protein (GFP). Viral
titers were determined by infectious center assay as previ-
ously described [54]. Here, viral titers were approximately
1.7 x 10”11 infectious particles/ml (total dose given was
approximately 8.5 x 10/8 infectious particles in 5 ul) and
1.69 x 10711 infectious particles/ml (total dose given was
8.45 x 1078 infectious particles in 5 ul) for AAV2-1-IL-10
and AAV2-GFP, respectively.

A replication-defective AAV expression vector (serotype II)
containing the cDNA encoding LacZ, driven by the CMV
promoter that directs the expression of beta-galactosidase
was obtained from Avigen (Alameda, CA. USA). Briefly,
HEK 293 cells were co-transfected by the calcium phos-
phate method with pAAV4.6CMV-lacZ (a transgene vector
encoding beta-galactosidase), an adenovirus helper plas-
mid and an AAV plasmid encoding the AAV2 rep and cap
genes as described [55]. For each transfection, 10 ug of
each plasmid was used. The cells were harvested after 48
hrs, centrifuged, and resuspended in Tris-buffered saline
(TBS). Cell lysates were collected after three freeze-thaw
cycles (alternating between dry ice-ethanol and 37°C
baths). The lysates were made free of debris by centrifuga-
tion. This supernatant was precipitated with PEG (8000)
and the AAV pellet was fractionated on a CsCl gradient
overnight. The AAV band containing functional viral par-
ticles was removed and precipitated again. The final mate-
rial was resuspended in a buffer containing TBS and
Pluronic F-68 (0.01%). Viral titers were approximately 4.1
x 10710 vector genomes/ml (total dose given was approx-
imately 4.1 x 10/8 vector genomes in 10 ul)
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Behavioral Measures

von Frey Test

The von Frey test [56] was performed within the sciatic or
saphenous innervation area of the hindpaws as previously
described [20,27,57,58]. Briefly, a logarithmic series of 10
calibrated Semmes-Weinstein monofilaments (von Frey
hairs; Stoelting, Wood Dale, IL) was applied randomly to
the left and right hind paws to determine the stimulus
intensity threshold stiffness required to elicit a paw with-
drawal response. Log stiffness of the hairs is determined
by log,, (milligrams x 10). The 10 stimuli had the follow-
ing log-stiffness values (values in milligrams are given in
parenthesis): 3.61 (407 mg), 3.84 (692 mg), 4.08 (1,202
mg), 4.17 (1,479 mg), 4.31 (2,041 mg), 4.56 (3,630 mg),
4.74 (5,495 mg), 4.93 (8,511 mg), 5.07 (11,749 mg), and
5.18 (15,136 mg). The range of monofilaments used in
these experiments (0.407-15.136 gm) produces a loga-
rithmically graded slope. Interpolated 50% response
threshold data is expressed as stimulus intensity in log,,
(milligrams x 10). Assessments were made prior to (base-
line) and at specific times after peri-sciatic and intrathecal
drug administration, as detailed below for each experi-
ment. Behavioral testing was performed blind with
respect to drug administration. The behavioral responses
were used to calculate the 50% paw withdrawal threshold
(absolute threshold), by fitting a Gaussian integral psy-
chometric function using a maximum-likelihood fitting
method [59,60], as described in detail previously [57,58].
This fitting method allows parametric statistical analyses,
as discussed previously [57,58].

Hargreaves Test

Thresholds for behavioral response to heat stimuli
applied to each hindpaw were assessed using the Har-
greaves test [61], as previously described [58]. Briefly,
baseline (BL) paw withdrawal values were calculated from
an average of 3-6 consecutive withdrawal latencies of
both the left and right hindpaws measured during a 1 hr
period. Voltage to the heat source was adjusted to yield BL
latencies ranging 8-12 sec and a cut off time of 20 sec was
imposed to avoid tissue damage. This procedure was fol-
lowed by intrathecal injections and a timecourse of post-
drug behavioral assessments, as described below. Behav-
ioral testing was performed blind with respect to drug
administration. The order of paw testing varied randomly.

Surgery and microinjections

Acute lumbar punctures

An injection catheter was temporarily inserted under brief
isoflurane anesthesia (1-2% in oxygen). Here, a 25 cm
PE-10 catheter (attached by a 30-gauge sterile needle to a
sterile, 50 ul glass Hamilton syringe) was marked 7.7-7.8
cm from the open end and placed in a sterile, dry con-
tainer until the time of injection. Under light anesthesia,
the dorsal pelvic area was shaved and swabbed with 70%
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alcohol. An 18-gauge sterile needle with the plastic hub
removed was inserted between lumbar vertebrae L5 and
L6. The open end of the PE-10 catheter was inserted via
the 18-gauge needle and threaded to the 7.7 cm mark
allowing for intrathecal PE-10 catheter-tip placement at
the level of the lumbosacral enlargement. Drugs were
injected over 1 min with a 1 ul pre- and post 0.9% sterile,
isotonic saline flush. The PE-10 catheter was immediately
withdrawn and the 18-gauge needle was removed from
the L5-L6 inter-vertebral space. This acute injection
method took 2-3 min to complete, and rats showed full
recovery from anesthesia within 10 min. No abnormal
motor behavior was observed after any injection. Lumbar
puncture injections were only performed by investigators
proven to have a 100% accuracy rate with the identical
procedure using Evans' blue dye for injection confirma-
tion in >12 rats.

Chronic peri-sciatic catheters

Peri-sciatic catheters were constructed and implanted at
mid-thigh level of the left hind leg as previously described
[10,20,27]. This method allowed multi-day recovery from
isoflurane anesthesia prior to unilateral microinjection of
an immune activator or vehicle around the sciatic nerve.
This avoids the deleterious effects of anesthetics on the
function of both immune [62-64] and glial cells [65-68].
In addition, this indwelling catheter method allowed peri-
sciatic immune activation to be either acute (single injec-
tion of an immune activator) or chronic (repeated injec-
tions across weeks) [10]. Both methods were used in the
present experiments in awake, unrestrained rats. These
acute and chronic peri-sciatic microinjections over the left
sciatic nerve were performed as previously described
[10,20]. Catheters were verified at sacrifice by visual
inspection. Data were only analyzed from confirmed sites.

Chronic constriction injury (CCl)

CCI was created at mid-thigh level of the left hindleg as
previously described [21]. Four sterile, absorbable surgical
chromic gut sutures (cuticular 4-0, chromic gut, 27", cut-
ting FS-2; Ethicon, Somerville, NJ) were loosely tied
around the gently isolated sciatic nerve under isoflurane
anesthesia (Phoenix Pharm., St. Joseph, MO). The sciatic
nerves of sham-operated rats were identically exposed but
not ligated. Suture placements were verified at sacrifice by
visual inspection. Data were only analyzed from con-
firmed sites.

Histochemistry for the expression of AAV2 driven beta-
galactosidase

Histochemistry for spinal cord beta-galactosidase was
conducted as previously described [25] with following
changes described here. Briefly, rats were deeply anaesthe-
tized with sodium pentobarbital and transcardially per-
fused with 0.9% saline (5 min) followed by chilled, fresh
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2% paraformaldehyde in 0.1% PBS (5 min). Whole spinal
cords 3 cm rostral and 3.5 cm caudal to the injection site
were collected and post-fixed in 2% paraformaldehyde for
15 min at room temperature. As a first examination of the
spread of AAV2 driven beta-galactosidase, spinal cord was
sectioned into 0.5-1 cm segments, collected into 12-well
plates and washed (30 min each at room temperature
with gentle agitation) 3 times with LacZ wash solution
(0.1 M PBS, 0.1% deoxycholic acid [Sigma-Aldrich, St.
Louis, MO], 0.2% IGEPAL CA-630 [Sigma-Aldrich, St.
Louis, MO] and 2 mM MgCl, in distilled water). Tissues
were transferred to clean 12-well plates containing LacZ
stain solution (5 mM K-ferri/ferrocyanide [Sigma-Aldrich,
St. Louis, MO]J, 10% X-gal [Sigma-Aldrich, St. Louis, MO]
in LacZ wash solution) and incubated in the dark for 3 hr
and 45 min at 37°C followed by overnight incubation at
4°C, post-fixed for 24 hr in 4 % paraformaldehyde at 4°C
and stored in 70% ethanol at 4°C. After inspection of
beta-galactosidase staining in rostro-caudally re-con-
structed spinal cords of AAV2 injected and control rats,
spinal segments (control and LacZ treated) were sliced at
45-micron sections and photomicrographed according to
methods previously described [57]. Briefly, large segments
were cryoprotected (30% sucrose in phosphate buffer
overnight), frozen embedded in OCT compound (Tek,
Ted Pelli Inc, Redding, CA), cryostat-sectioned at 25
microns and thaw- mounted, (0.5% gelatin-treated glass
slides; Fisherbrand Superfrost Plus Slides; Fisher Scien-
tific, Pittsburgh, PA). Spinal cord segments from the injec-
tion site (L3-L6) to 1.5 cm rostral to the injection site, and
at the most caudal area of spinal cord (C2-C4) were col-
lected because these areas best represent the degree of
spread of beta-galactosidase expression from the injection
site. The thaw mounted, cryostat sections (3-4 per slide)
were viewed for beta-galactosidase expression with an
Olympus bright-field microscope (model BX61). Images
were collected with an Olympus Magnafire camera cou-
pled to a Dell computer equipped with Olympus Mag-
naFire SP for windows software.

Data Analysis

All statistical comparisons were computed using Statview
5.0.1 for the Macintosh. Data from the von Frey test were
analyzed as the interpolated 50% threshold (absolute
threshold) in log base 10 of stimulus intensity (monofila-
ment stiffness in milligrams x 10). Baseline measures for
both the von Frey and Hargreaves tests, and dose response
effects of adenovirus, were analyzed by one-way ANOVA.
Timecourse measures for each behavioral test were ana-
lyzed by repeated measures ANOVAs followed by Fisher's
protected least significant difference posthoc compari-
sons, where appropriate.

List of Abbreviations

AAV?2 - adeno-associated virus, serotype II
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AAV2-r-IL-10 - adeno-associated virus (serotype II)
encoding for rat interleukin-10

ANOVA - analysis of variance
BL - baseline

CCI - chronic constriction injury
CMV - cytomegalovirus

CsCl - cesium chloride

CSF - cerebrospinal fluid

GFP - green fluorescent protein
IL - interleukin

PE - polyethylene

SIN - sciatic inflammatory neuropathy
TBS - Tris-buffered saline

TNF - tumor necrosis factor
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