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Abstract
Background: Reactive astrocytosis and microgliosis are important features of the pathophysiology of hydrocephalus, 
and persistent glial "scars" that form could exacerbate neuroinflammation, impair cerebral perfusion, impede neuronal 
regeneration, and alter biomechanical properties. The purpose of this study was to determine the efficacy of 
minocycline, an antibiotic known for its anti-inflammatory properties, to reduce gliosis in the H-Tx rat model of 
congenital hydrocephalus.

Methods: Minocycline (45 mg/kg/day i.p. in 5% sucrose at a concentration of 5-10 mg/ml) was administered to 
hydrocephalic H-Tx rats from postnatal day 15 to day 21, when ventriculomegaly had reached moderate to severe 
stages. Treated animals were compared to age-matched non-hydrocephalic and untreated hydrocephalic littermates. 
The cerebral cortex (both gray matter laminae and white matter) was processed for immunohistochemistry (glial 
fibrillary acidic protein, GFAP, for astrocytes and ionized calcium binding adaptor molecule, Iba-1, for microglia) and 
analyzed by qualitative and quantitative light microscopy.

Results: The mean number of GFAP-immunoreactive astrocytes was significantly higher in untreated hydrocephalic 
animals compared to both types of controls (p < 0.001). Minocycline treatment of hydrocephalic animals reduced the 
number of GFAP immunoreactive cells significantly (p < 0.001). Likewise, the mean number of Iba-1 immunoreactive 
microglia was significantly higher in untreated hydrocephalic animals compared to both types of controls (p < 0.001). 
Furthermore, no differences in the numbers of GFAP-positive astrocytes or Iba-1-positive microglia were noted 
between control animals receiving no minocycline and control animals receiving minocycline, suggesting that 
minocycline does not produce an effect under non-injury conditions. Additionally, in six out of nine regions sampled, 
hydrocephalic animals that received minocycline injections had significantly thicker cortices when compared to their 
untreated hydrocephalic littermates.

Conclusions: Overall, these data suggest that minocycline treatment is effective in reducing the gliosis that 
accompanies hydrocephalus, and thus may provide an added benefit when used as a supplement to ventricular 
shunting.

Background
Shunt failure continues to be one of the largest problems
facing those who suffer with hydrocephalus. Despite the
initial benefits of shunting, 40% of children with hydro-
cephalus undergo shunt revisions within the first year,
and 50% will have a shunt revision within the first 2 years
of insertion [1]. Shunts fail for numerous reasons; one
likely cause is failure of the shunt valve to actuate prop-
erly due to the changing hydrostatic properties of a stiff,

non-compliant brain [2]. This lack of compliance may be
attributed to a proliferation of glial cells.

Gliosis is an important feature of the pathophysiology
of hydrocephalus [3-10], and persistent glial "scars" that
form in the shunted brain could promote neuroinflam-
mation, impair cerebral perfusion, alter the blood-brain
barrier, prevent repair of damaged neural tissue and
impede neuronal plasticity, and change intracranial com-
pliance which poses additional problems for optimal
shunt function. We have shown previously that gliosis in
the form of reactive astrocytosis and microgliosis
increases significantly in the H-Tx rat model of congeni-
tal hydrocephalus [9,10]. These changes occur in both
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cortical and subcortical regions, and while ventricular
shunting can reduce gliosis in this model, it does not
restore glial parameters to normal levels.

Experimental and clinical studies have demonstrated
that minocycline, a semi-synthetic tetracycline derivative,
inhibits the proliferation of microglial cells after various
types of experimental brain injuries and clinical disor-
ders, and is an effective neuroprotective agent [11-17]
(reviewed recently by Buller et al [18] and Hailer [19]).
Minocycline has also been shown to be effective in reduc-
ing astrogliosis [13]. These promising results support the
hypothesis that gliosis could be reduced or prevented
during the progression of hydrocephalus by the adminis-
tration of minocycline. This study is the first investigation
of minocycline treatment in hydrocephalus-induced glio-
sis and therefore represents a promising new approach in
the treatment of this condition.

Methods
Subjects
All procedures conducted in this study were approved by
the Animal Care and Use Committee of Wayne State Uni-
versity. A colony of H-Tx rats, which develop congenital
hydrocephalus due to a closure of their cerebral aqueduct
between embryonic day 18 and postnatal day 5 [20-25],
was maintained at Wayne State University. Hydrocepha-
lus progresses rapidly in these animals, and by 21 days of
age they become severely hydrocephalic. If these hydro-
cephalic animals are not treated with shunts, they will
eventually die around post-natal day 30. Animals in this
experiment were housed in a cage with their littermates
and parents and were maintained in a humidity and tem-
perature-controlled room on a 12 hour light/dark cycle.
Food and water were provided ad libitum. This model
provides a naturally occurring form of non-communicat-
ing, obstructive hydrocephalus that correlates with third
trimester onset relative to human brain development
[26].

Experimental animal groups
Four groups of animals were examined; n = 5 for all
groups:

Group I - Non-hydrocephalic: These rats did not
develop hydrocephalus (determined by lack of a domed
head on gross examination) and were sacrificed at post-
natal day 21. These animals served as the untreated con-
trol group.

Group II - Minocycline-treated non-hydrocephalic:
These rats were identical to Group I animals except that
they received minocycline from day 15 to 21. This com-
prised the minocycline-treated control group.

Group III - Untreated hydrocephalic: These rats devel-
oped severe hydrocephalus (determined as described for
Group I) and were left untreated. They were sacrificed at
post-natal day 21.

Group IV - Minocycline-treated hydrocephalic: At
postnatal day 15, when hydrocephalus is progressing to a
severe state [9,27], rats received minocycline treatment
for 7 days, ending at sacrifice on day 21 when ventriculo-
megaly had become severe. Hydrocephalus was again
determined using the methods described previously.

Minocycline Treatment
Due to the small size of the young rats used in this study
(20 g body weight vs. 250 g for adults), intravenous injec-
tion was not a practical method of minocycline delivery.
Therefore, intraperitoneal (IP) injections were used
instead. This type of administration has been shown to
provide adequate delivery of minocycline to the brain
across the blood brain barrier as assessed by both serum
and cerebrospinal fluid (CSF) levels [28]. Minocycline-
treated animals received minocycline HCl (Sigma Chemi-
cals, St. Louis, USA) dissolved in 5% sucrose at a concen-
tration of 10 mg/ml at a dose of 45 mg/kg/day for 7 days,
beginning at postnatal day 15 and ending at day 21 with
the termination of the experiment. Injection sites were
rotated between the four abdominal quadrants.

Tissue Processing
At postnatal-day 21, animals were anesthetized with 4%
chloral hydrate and perfused transcardially, first with 500
ml of 0.9% saline to flush the vascular system, followed by
500 ml of 4% paraformaldehyde. After perfusion was
complete, the brain was carefully and rapidly extracted
and post-fixed in 50 ml of 4% paraformaldehyde for 2 h.
Brains were then rinsed and stored in buffered saline at
4°C until paraffin embedding. Prior to embedding, hydro-
cephalic brains were injected with a solution of 4% agar in
dH2O in order to provide support to the dilated and frag-
ile ventricles. Using an 18-gauge needle and syringe,
warm agar was injected through the temporal cortex into
the lateral ventricles. The agar-filled brain was then
placed into a cool bath of buffered saline, allowing the
agar to solidify. All extracted brains from all 3 experimen-
tal groups were cut along 2 coronal planes, separating the
frontal, parietal, and occipital cortices. Parietal and
occipital segments were put in separate, marked embed-
ding trays and placed into the paraffin embedding
machine. Tissue was dehydrated in 50, 70, 95, and 100%
alcohol, cleared in toluene, and embedded in paraffin
wax. Tissue sections were cut in the coronal plane at a
thickness of 20 μm as an optimal dimension for stereol-
ogy (the Optical Fractionator) floated on a warm water
bath, and positioned onto glass slides.

Immunohistochemistry
Sections were de-paraffinized, re-hydrated and incubated
in 3% H2O2. Following procedures described previously
[9], astrocytes were detected by the presence of glial
fibrillary acidic protein (GFAP); the primary anti-GFAP
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antibody (DAKO, Carpinteria, USA) was diluted 1:300
and replaced with an anti-rabbit secondary antibody
(Vector Laboratories, Burlingame, USA) diluted 1:200.
An avidin-biotin complex (ABC kit, Vector) was applied
for 30 min and color developed using an un-enhanced
diaminobenzidine (DAB) kit (Vector). Slides were dehy-
drated in increasing concentrations of alcohol, cleared in
xylene and cover-slipped with Permount (Fisher Scien-
tific, Pittsburgh, USA). Microglia were detected as
described previously [29] using ionized calcium binding
adaptor molecule (Iba-1), a marker for both resting and
reactive microglia. The same procedures described for
GFAP were followed with the exception that primary
anti-Iba-1 antibody (Waco, Richmond, VA, USA) was
diluted 1: 500.

Stereological analysis
The full thickness of the cerebral cortex (gray matter lam-
inae and white matter) was examined using light micros-
copy and stereological quantitative analysis. The observer
was blinded to the identity of each animal as well as to the
experimental condition as much as possible; because of
the obvious thinning of the hydrocephalic cortex it is
often impossible to completely blind the analyst. Three
regions (2 occipital and 1 parietal) from each brain were
selected for analysis.

Glial Density: In order to quantify any glial changes,
Stereo Investigator software (MicroBrightField, Inc. Wil-
liston, USA) was utilized to obtain an estimated density
of both GFAP immunoreactive astrocytes and Iba-1
immunoreactive microglia present in the entire cerebral
cortex of treated and untreated hydrocephalic rats. The
combination of cell counting using the optical dissector
with fractionator sampling is defined as the Optical Frac-
tionator [30,31]. One main benefit of this probe is that
data output is not affected by tissue shrinkage which
occurs during the tissue preparation process. Using a
counting frame of 200 × 200 μm, 45 areas of the neocor-
tex were randomly probed (15 frames per coronal section
× 3 sections/animal), marking all immune-labelled cells
(the presence of either a soma or process was recorded as
a positive occurrence). All probing was performed at 400
× using brightfield optics. By systematically sampling a
known fraction of section thickness, along with a known
fraction of a sectional area, it was possible to produce an
unbiased estimate of the total number of astrocytes and
microglia present in a given volume of cortex. Note that
this type of sampling included both gray and white matter
regions of the cerebral cortex and because of the extreme
thinning of white matter in severely hydrocephalic brains,
no attempts were made to evaluate these two regions
individually. Using the estimated area calculated by the
program's planimetry data-generating function, a glial

density volume (glial cells/μm3) was obtained for each
section viewed.

Cortical Thickness: The thickness of the cerebral cortex
(pial to ventricular surface) was measured perpendicular
to the pial surface using the Stereo Investigator "linear
measurement" tool. At 50 × magnification, thickness was
measured at the most dorsal portion of the hemisphere,
the most lateral portion, and the most inferior portion of
the temporal region of each section of brain.

Statistics
Analysis of glial density was carried out by light micro-
scopic examination of three 20 μm thick coronal sections
from each rat, including one parietal and two occipital
sections per animal. The mean value of these three sec-
tions was determined to yield a representative value of
cell density for each animal. Comparisons between
groups were determined by performing an ANOVA test
followed by a Bonferroni correction. No data were
expunged and all values obtained were utilized in the sta-
tistical analyses.

Using the same three sections described above from
each animal, a slightly different method of data analysis
was used for cortical thickness. On each section, three
regions of the cortex were measured for thickness. These
were the dorsal, lateral, and temporal regions of the brain
section, and each was analyzed separately. Data were ana-
lyzed for statistical significance by performing an
ANOVA test followed by a Bonferroni correction.

Results
GFAP- immunoreactive astrocyte number
The number of GFAP-immunoreactive astrocytes was
significantly increased in untreated hydrocephalic ani-
mals, but minocycline treatment significantly reduced
this number (Figure 1). The number of GFAP-immunore-
active astrocytes was significantly higher (p < 0.001) in
untreated hydrocephalus (mean 5.43 cells/μm3 +/- 2.04
SD) compared to both types of controls: minocycline
treated mean 1.35 cells/μm3 +/- 0.28 SD and non-mino-
cycline mean 1.05 cells/μm3 +/- 0.22 SD. A statistically
significant decrease in the number of GFAP-immunore-
active astrocytes (p < 0.001) occurred in the minocycline-
treated hydrocephalic group (mean 1.85 cells/μm3 +/-
0.63 SD) and this number was not significantly different
compared to controls. Finally, minocycline treatment
alone had no significant effect in control animals. All cell
counts were multiplied by 10-5 to obtain the cell number
per micrometer squared.

Iba-1- immunoreactive microglial number
Minocycline treatment significantly reduced the number
of Iba-1 immunoreactive microglial cells present in the
hydrocephalic brain (Figure 2). Significant differences (p
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< 0.001) were present between the hydrocephalic animals
receiving minocycline (mean 2.10 cells/μm3 +/- 0.60 SD)
and the untreated hydrocephalic animals (mean 7.27
cells/μm3 +/- 3.21 SD), as well as both control groups.
Likewise, the number of Iba-1 immunoreactive microglia
in untreated hydrocephalic animals was significantly
higher (p < 0.001) than in both control animals receiving
minocycline (mean 2.00 cells/μm3 +/- 0.50 SD) and con-
trol animals not receiving minocycline (mean 1.41 cells/
μm3 +/- 0.22 SD). It is important to note that no signifi-
cant differences were found between the two control

groups. All cell counts were multiplied by 105 to obtain
the number of cells per micrometer squared.

Effect on cortical thickness
Overall, four outcomes were observed with regard to the
thickness of the cerebral cortex (Table 1): (1) Untreated
hydrocephalic animals exhibited a decreased cortical
thickness compared to non-hydrocephalic controls with
and without minocycline (* and + symbols in Table 1);
this effect was almost always statistically significant. (2)
Minocycline treatment in hydrocephalic animals signifi-
cantly increased cortical thickness compared to
untreated hydrocephalic animals in most regions (β sym-
bol in Table 1). (3) This increase restored cortical thick-
ness to control levels in some regions, but six of 9 regions
remained significantly thinner compared to controls with
and without minocycline (# and δ symbols in Table 1). (4)
Finally, minocycline treatment had no effect on cortical
thickness in non-hydrocephalic control animals.

Discussion
The major findings of this study are that systemic treat-
ment with minocycline (1) significantly reduced the num-
bers of cortical GFAP immunoreactive astrocytes and
Iba-1 immunoreactive microglia in hydrocephalic brains,
(2) partially restored cortical mantle thickness to control
levels, and (3) had no effect on control brains. These
effects are impressive because in the cortex of untreated
hydrocephalic brains the numbers of GFAP immunoreac-
tive astrocytes and Iba-1 immunoreactive microglia
increase significantly about 5-fold and the cerebral cortex
is reduced to about 1/3 of its normal thickness. From a
clinical perspective, these results are interesting because
minocycline was administered during relatively late
stages of ventriculomegaly, and thus the treatment effects
apply specifically to astrocytes and microglia in advanced
phases of reactivity.

Role of glia in the pathophysiology of hydrocephalus
In hydrocephalus, gliosis is known to occur, especially in
the periventricular white matter [4,5,7,32-36] but also in
cortical gray matter [10]. Glial scar formation could play a
major role in creating the problems that chronically
plague hydrocephalic children. It has been suggested by
many investigators [37], including ourselves [10], that gli-
osis is a permanent fixture in hydrocephalic brains, even
those that have been shunted successfully. Our previous
studies have shown that GFAP RNA levels increase with
the progression of hydrocephalus in both a congenital
model of rodent hydrocephalus (the H-Tx rat) [9] and a
kaolin model of induced hydrocephalus in kittens [8].
Furthermore, Yoshida found that GFAP-labeled reactive
astrocytes were present surrounding cystic lesions in
severely hydrocephalic H-Tx animals, but was not able to

Figure 1 Astrocyte density (cells/μm3) in minocycline treated and 
untreated animals. The number of GFAP-immunoreactive cells was 
significantly higher (stars) in untreated hydrocephalic animals com-
pared to both types of control (p < 0.001). Minocycline treatment sig-
nificantly reduced the number of immunoreactive cells in 
hydrocephalic animals (p < 0.001). No significant differences were 
found between the control animals receiving minocycline and those 
that did not receive the drug, suggesting that minocycline has no ef-
fect on the normal brain. Data are mean ± SD, n = 5, cell counts were 
multiplied by 105 to get the actual cell number per μm3.

Figure 2 Microglia density (cells/μm3) in minocycline treated and 
untreated animals. The number of immunoreactive microglia in un-
treated hydrocephalic animals was significantly higher than in the mi-
nocycline-treated hydrocephalic group (p < 0.001). Minocycline 
treatment had no effect on control brains. There was a statistically sig-
nificant increase between both control groups compared to the un-
treated hydrocephalic animals (p < 0.001). Data are mean ± SD, n = 5, 
cell counts were multiplied by 10-5 to get the actual cell number per 
per μm3.
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detect a significant increase in GFAP labeled astrocytes in
the white matter surrounding the ventricles [38,39]. Clin-
ically, increased levels of GFAP protein have been found
in the CSF of patients with normal pressure hydrocepha-
lus, and patients who developed secondary hydrocepha-
lus due to subarachnoid hemorrhage [40-43], and the
possibility of using GFAP protein levels as a diagnostic
tool for hydrocephalus is currently being explored
[44,45]. Finally, previous studies in our laboratory on a
kitten model of kaolin-induced hydrocephalus demon-
strated that shunting could reduce the amount of GFAP
protein and RNA present in the cerebral cortex, but the
results were quite variable and GFAP levels began to rise
over time (unpublished observations).

Microglia play a major role in the response to brain
injury (reviewed in [46-50]), including hydrocephalus
[9,10,51-54]. Mangano et al [10] illustrated that micro-
glial cell proliferation and activation increased in regions
of the sensorimotor cortex and auditory cortex during the
progression of hydrocephalus in moderately affected H-
Tx rats. When assessing microglial changes in pediatric
hydrocephalus, it is important to remember that normal
microglia change morphology during differentiation. The
typical maturation process of a microglial cell in rats has
been demonstrated impressively by Orlowski et al. [55],

and these features were used for maturation comparisons
in the current study. Immature microglia have an amoe-
boid shape with large somata and very few short pro-
cesses with growth-cone-like varicosities, but as these
cells mature cellular processes become longer and more
numerous and by postnatal day 30 in rats, cells have
acquired the fully ramified fine long processes with
extensive branching typical of resting microglia.

It is also important to note that while the present study
involved counts of GFAP- and Iba-1-immunoreactive
cells, the analysis does not measure proliferation of astro-
cytes and microglia directly. Since it is possible that less
reactive cells expressing low or undetectable levels of
GFAP and Iba-1 would not be counted, a more definitive
labeling study with BrdU or Ki67 should be performed to
assess cellular proliferation.

The role of minocycline
Minocycline, a derivative of the well-known antibiotic
tetracycline, has recently shown promise as a specific
inhibitor of microglial cells, one of the main elements of
glial scar formation in hydrocephalus. Although its
mechanism of action is still unknown [18,56-60], minocy-
cline's promise as a neuroprotective agent is illustrated by
the recent initiation of clinical trials in Parkinson's dis-

Table 1: Cortical thickness of all regions (parietal, occipital 1 and occipital 2) and locations (dorsal, lateral and temporal) in 
the four groups of experimental animals (n = 5 for all groups).

Mean cortical thickness in mm ± SD

Cortical Region Control no 
minocycline

Control with 
minocycline

Untreated 
hydrocephalic

Minocycline-treated 
hydrocephalic

Parietal

Dorsal 1.44 ± 0.13 1.32 ± 0.27 0.55 ± 0.27 +++ 0.76 ± 0.34 ββ, #, δδ

Lateral 1.78 ± 0.11 1.41 ± 0.14 0.71 ± 0.32 1.12 ± 0.67

Temporal 1.59 ± 0.21 1.79 ± 0.53 0.33 ± 0.16 +++ 0.58 ± 0.37 βββ, ###, δδδ

Occipital 1

Dorsal 1.26 ± 0.13 1.25 ± 0.18 0.34 ± 0.09** 0.61 ± 0.15 βββ, ###,δδδ

Lateral 1.29 ± 0.11 1.23 ± 0.12 0.35 ± 0.12 *, +++ 0.74 ± 0.28

Temporal 1.24 ± 0.14 1.17 ± 0.30 0.21 ± 0.12 **, +++ 0.59 ± 0.24

Occipital 2

Dorsal 2.04 ± 0.27 1.04 ± 0.15 0.33 ± 0.09 *, +++ 0.45 ± 0.11 ββ, ##, δδ

Lateral 3.60 ± 0.78 1.29 ± 0.42 0.28 ± 0.14 +++ 0.48 ± 0.24 βββ, ###, δδδ

Temporal 3.47 ± 0.31 1.31 ± 0.64 0.31 ± 0.11 ++ 0.48 ± 0.23 ββ, ###, δδ

*, **, p < 0.05 and 0.01; Untreated hydrocephalic compared to control no minocycline.
++, +++, p < 0.01 and 0.001; Untreated hydrocephalics compared to control with minocycline.
ββ, βββ, p < 0.01 and 0.001; Minocycline-treated hydrocephalic compared to untreated hydrocephalic.
#, ##, ###, p < 0.05, 0.01 and 0.001; Minocycline-treated hydrocephalic compared to control no minocycline.
δ δ, δ δ δ, p < 0.01 and 0.001; Minocycline-treated hydrocephalic compared to control with minocycline.
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ease [61]. Since its initial demonstration as an anti-
inflammatory agent [62], minocycline has been shown to
have multiple benefits in brain injury (reviewed in Buller
et al [18]). Minocycline can inhibit microglial activation,
prevent glutamate toxicity, prevent caspase-1 and cas-
pase-3 activated apoptosis, decrease the activity of induc-
ible nitric oxide synthetase and p-38 mitogen activated
protein kinase, inhibit matrix metalloproteinase-2 activ-
ity, and impair cytokine production. Additionally, the
mechanism of action for minocycline involves not only
microglia directly but also T cells and their subsequent
activation of microglia. These actions of minocycline
appear to be responsible for reducing brain injury in ani-
mal models of Parkinson's disease, Huntington's disease,
amyotrophic lateral sclerosis, traumatic brain injury, exci-
totoxicity, intracerebral hemorrhage, spinal cord injury,
focal and global cerebral ischemia, and hypoxia.

The potential use of minocycline in hydrocephalus
To date, one study has attempted to protect the hydro-
cephalic brain by infusion of nimodipine, a calcium chan-
nel antagonist, into the ventricles of juvenile
hydrocephalic rats in order to reduce white matter dam-
age. Unfortunately, these interventions have produced
only limited short-term success [63-65]. Another study
has demonstrated that GFAP can be reduced in the
hydrocephalic brain by administration of magnesium sul-
phate [66]. Thus the current study represents a relatively
novel effort that, based on the previous successes
achieved in other brain injury models, has a strong likeli-
hood of promoting supplemental treatments for hydro-
cephalus.

One important caveat is worth noting: tetracycline
(from which minocycline is a derivative) administration
can impair bone and tooth development, as well as cause
discoloration of teeth [18] in children. Whether minocy-
cline also exerts these effects is not known, but this
potential problem must be taken into consideration
before clinical applications can be adopted.

Conclusions
Our data suggest that minocycline treatment is effective
in reducing the gliosis that accompanies ventriculomeg-
aly, and thus may provide an added benefit when used as
a supplement to ventricular shunting. With additional
pre-clinical data, one would anticipate that this new ave-
nue of research would eventually culminate in a clinical
study using minocycline as a supplemental treatment to
shunting in human patients.
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