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Background: Glutathione has a wide range of functions; it is an endogenous anti-oxidant and plays a key role in
the maintenance of intracellular redox balance and detoxification of xenobiotics. Several studies have indicated
that children with autism spectrum disorders may have altered glutathione metabolism which could play a key

Methods: A systematic literature review and meta-analysis was conducted of studies examining metabolites,
interventions and/or genes of the glutathione metabolism pathways i.e. the y-glutamyl cycle and trans-sulphuration

Results: Thirty nine studies were included in the review comprising an in vitro study, thirty two metabolite and/or
co-factor studies, six intervention studies and six studies with genetic data as well as eight studies examining

Conclusions: The review found evidence for the involvement of the y-glutamyl cycle and trans-sulphuration
pathway in autistic disorder is sufficiently consistent, particularly with respect to the glutathione redox ratio, to
warrant further investigation to determine the significance in relation to clinical outcomes. Large, well designed
intervention studies that link metabolites, cofactors and genes of the y-glutamyl cycle and trans-sulphuration
pathway with objective behavioural outcomes in children with autism spectrum disorders are required. Future risk
factor analysis should include consideration of multiple nutritional status and metabolite biomarkers of pathways
linked with the y-glutamyl cycle and the interaction of genotype in relation to these factors.

Keywords: y-glutamyl cycle, Trans-sulphuration pathway, Metabolites, Genes, Supplementation, Autism spectrum

Background

Autism spectrum disorders are a heterogeneous group
of neurodevelopmental conditions comprising autistic
disorder which is characterised by impairments in reci-
procal social interaction and communication and the
presence of stereotyped behaviours, Asperger’s Syn-
drome which is distinguished by no significant delay in
early language acquisition or cognitive abilities, and
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pervasive developmental disorder - not otherwise stated
(PDD-NOS) in which individuals do not fully meet the
criteria for autistic disorder or Asperger’s syndrome.
Over the last 30 years the number of diagnosed cases
has increased from 0.4-0.5 to 4.0 per 1000 for autistic
disorder and from 2 to 7.7-9.9 per 1000 for autism spec-
trum disorders [1-3] which is largely attributable to
broadening diagnostic criteria, younger age at diagnosis
and improved case ascertainment [4]. Autism spectrum
disorders are increasingly being recognised as a major
public health issue.
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While the exact cause of autism is unknown, a strong
genetic component has been identified as shown by
family and twin studies which have found concordance
rates of 82-92% in monozygotic twins compared with
1-10% in dizygotic twins, sibling recurrence risk at 6-8%
and heritability estimates of > 90% [5,6]. Recent studies
have shown that autistic disorder is likely to involve mul-
tiple genes [7-9] although a common genetic change is
not seen in all cases suggesting that it is likely to be a
cluster of conditions, each with its own individual and
yet overlapping pathology. Environmental factors such as
heavy metal toxicity [10-12], sub-clinical viral infections
[13] and gastro-intestinal pathology [14,15], as well as
endogenous toxins produced by metabolic processes [16],
hormones (reviewed in [17]) and gastro-intestinal bac-
teria [18,19] have also been suggested as playing a role
in the aetiology of the disorder, although none of these
have been thoroughly investigated. Large, well designed
studies, such as the Childhood Autism Risks from Genet-
ics and Environment (CHARGE) [20], are currently
underway to further elucidate the role of genes and
environment.

Cellular detoxification systems are of critical importance
in providing protection against the effects of endogenous
and exogenous toxins. Glutathione redox and the glu-
tathione-s-transferases reviewed below constitute one such
system.

Glutathione redox and autism spectrum disorders
Glutathione (L-y-glutamyl-L-cysteinyl-glycine) is an intra-
cellular peptide that has a wide range of functions includ-
ing detoxification of xenobiotics and/or their metabolites
[21,22], maintenance of the intracellular redox balance
[23], and is the major endogenous antioxidant produced
to combat free radical insults [24-26]. Other metabolic
functions include cysteine storage [21], signal transduction
[27] and apoptosis [28].

Within the cell, approximately 90% of glutathione is
located in the cytosol, 10% in the mitochondria and a
small percentage in the endoplasmic reticulum [29].
Approximately 85% of total cellular glutathione is free
and unbound whilst the rest is bound to proteins [30].
Glutathione is synthesised in the cytosol in two steps
(Figure 1).

The first step of glutathione synthesis involves the for-
mation of glutamylcysteine from glutamate and cysteine
in an ATP dependent reaction catalysed by glutamate-
cysteine-ligase (GCL) which requires either Mg ** or Mn
** as a cofactor. This is considered to be the rate limiting
step because it is dependent on the bioavailability of
cysteine and the activity of GCL, the latter of which is
modified by competitive inhibition by reduced glu-
tathione (GSH) [31-34]. In the second step, glutathione
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synthetase (GS) adds glycine to glutamyl-cysteine to form
glutathione (y-glutamyl-cysteinyl-glycine).

More than 98% of total glutathione is present as GSH
and the rest is found as the oxidised form, glutathione dis-
ulfide (GSSQG) or a range of glutathione-S-conjugates.
GSH is readily converted to GSSG by the seleno-enzyme
glutathione peroxidase (GPx) during periods of oxidative
stress, and is reverted to the reduced form by glutathione
reductase (GSH-R) [35]. GSH is also important in detoxifi-
cation as it is used to conjugate a wide variety of exogen-
ous compounds including carcinogens, toxins and drugs
and endogenous electrophiles. The glutathione conjugate
is subsequently secreted from the cell [36].

Glutathione degradation takes place in the extracellular
space. Cysteine is released from extracellular glutathione
by y-glutamyl-transferase (GGT) located on the apical
surface of the kidney, intestine and the epithelia of most
transporting ducts, including the liver and bile ducts [37].
Expression of GGT is tissue and developmental stage
specific and its activity may be induced by certain xeno-
biotics [37]. GGT hydrolyses the y-glutamyl bond of glu-
tathione or glutathione-S-conjugates and transfers the
y-glutamyl moiety to an acceptor molecule, often an
amino acid [38]. If the substrate is glutathione, cysteinyl-
glycine is released and subsequently cleaved into cysteine
and glycine by cell surface dipeptidases. The y-glutamyl
amino acid can be transported back into the cell where
y-glutamyl cyclo-transferase (GCT) releases the acceptor
amino acid to form 5-oxo-proline, the latter of which is
converted back to glutamate by oxo-prolinase and used
for GSH synthesis.

About half the cysteine used for glutathione synthesis is
produced by the trans-sulphuration pathway [33]. The
trans-sulphuration pathway involves conversion of
homocysteine to cystathione and ultimately to cysteine in
two vitamin B6 dependent reactions catalysed by
cystathione-B-synthase and cystathione lyase respectively
(Figure 2). The remainder is obtained through the diet
and protein catabolism. The trans-sulphuration pathway
is closely linked to the folate-methionine cycle and is par-
ticularly active in the liver and absent or less active in
other tissues, the foetus, neonates and in patients with
homocysteinemia [39]. Neurones depend on glial cysteine
for glutathione synthesis as they lack the trans-sulphura-
tion pathway which in turn results in them being more
susceptible to oxidative stress [40].

Glutathione status is an accurate indicator of cell
functionality and viability [41-43]. The ratio of GSH:
GSSG (glutathione redox ratio) is a sensitive index of
oxidative stress, which can lead to a toxic imbalance
between the production and removal of reactive oxygen
species (ROS). A shift in the glutathione redox ratio
towards the oxidised state may lead to decreased cell
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proliferation, DNA damage [44] and increased apoptosis
[45] that could potentially affect neurological develop-
ment in the early stages of life. As a decreased glu-
tathione redox ratio has also been reported in many
studies of individuals with autistic disorder [46-50], it
may be hypothesised that a shift in the glutathione redox
ratio may play a role in the aetiology of autism. This arti-
cle systematically reviews the evidence for a role of glu-
tathione redox in the aetiology of autism spectrum
disorders and considers the research questions:

1) Is there an association between metabolites/co-
factors/genes/enzymes of the y-glutamyl cycle or trans-
sulphuration pathway and autism spectrum disorders?

2) If so, does normalisation of metabolite levels of the
y-glutamyl cycle or trans-sulphuration pathway lead to
clinically significant improved outcomes for children
with autism spectrum disorders?

Methods
Selection of studies for review
The inclusion criteria for studies were defined as:

(a) participants diagnosed with an autism spectrum
disorder using standardised criteria such as the Ameri-
can Psychiatric Association’s Diagnostic and Statistical
Manual of Mental Disorders (DSM)-IV-R [51] or the
Childhood Autism Rating Scale (CARS) scores [52]; and

(b) data for metabolites, co-factors, genes and/or
enzymes associated with the y-glutamyl cycle or the
trans-sulphuration pathway, and/or

(c) interventions using metabolites or cofactors of the
y-glutamyl cycle or the trans-sulphuration pathway.

(d) full text English language articles published
between 1970 and November 2011.

Information retrieval

Information retrieval was performed using the following
electronic databases: Embase, Medline, Cinahl, Scopus,
Web of Science and International Pharmaceutical
Abstracts (search terms in the Supplementary On-line
Material). In addition, studies were identified from the
reference lists of obtained published articles, editorials
and known studies. Authors were contacted if not
enough data was included in the original manuscript for
analysis, for clarification of terms or to confirm whether
the article contained data previously published by the
same research group.

All potential studies identified were independently eval-
uated for inclusion by two primary reviewers. The primary
reviewers were not blinded to the authors, institutions or
source of publication at any time during the selection
process. Disagreements about the inclusion/exclusion of
studies were discussed and consensus achieved. Provision
was made for a third reviewer if consensus was
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unattainable but did not prove necessary. When multiple
papers from a single study had been published, we used
the latest publication and supplemented it with data from
the earlier publication(s).

Data extraction and methodological quality assessment
Data extraction for each included study was performed by
PM and checked by two primary reviewers (MA, CO’D).
Differences were resolved by consensus. The Newcastle
Ottawa Scale [53] for case control studies was modified to
assess the methodological quality of observational articles
for the review (Table 1). The quality of each article was
independently assessed by two primary reviewers (PM and
COD) and assigned a score. Using a similar process, the
risk of bias for intervention trials included in the review
omitting the case report [54] was assessed using the cri-
teria set out in the Cochrane Collaboration Handbook
[55]. In addition, a level of evidence was assigned to each
study using the Australian National Health and Medical
Research Council criteria (Table 2) [56].

Statistical analyses

The kappa coefficient was calculated to assess the level of
agreement for the quality scores between the two coders
[57]. Statistical heterogeneity was assessed for key metabo-
lites of the y-glutamyl cycle, trans-sulphuration pathway
and GSH:GSSG using the Review Manager 5 (RevMan)
statistical software [58]. Duplicated data presented in
more than one publication by the same authors was not
included in the statistical analysis. Meta-analysis was con-
ducted using a random effects model where heterogeneity
was low to moderate (I* = 0-60%). Where possible, the
studies were stratified according to autism spectrum disor-
der. Standard deviation was calculated using StatSak statis-
tical software prior to analysis using the RevMan program
for studies that published the standard error of the mean
rather than the standard deviation [59,60]. Studies are
reported using the MOOSE (Meta-analyses of observa-
tional studies) Statement [61] and the STREGA
(STrengthening the REesporting of Genetic Association
studies) checklists [62].

Results

Sixty six abstracts were identified via the electronic and
hand search strategy. Of these, 24 were ineligible for inclu-
sion. Reasons for exclusion were: 1) the paper did not con-
tain any relevant data; 2) the data was already published in
another article identified in the search; 3) data did not
include the proband with an autism spectrum disorder; 4)
the paper was a review article, conference abstract or com-
ment on a previously published article; 5) the authors did
not separate data for autism spectrum disorders from
other psychological conditions; or 6) they were not English
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Table 1 Modified Newcastle Ottawa Scale

1. Selection

Case definition Yes, with independent validation 2

Yes, record linkage/self report 1

No description 0
Representativeness  Consecutive cases 1
Potential for selection bias/not stated 0
Selection of Community
controls
Hospital/clinic/school 1
Potential for selection bias/not stated 0
Definition of No family history of autism spectrum 2
controls disorder

Healthy/other psych/developmental/ 1
genetic

disorder

Poorly defined/not stated 0

2. Comparability of cases and controls on the basis of the
design

Study controls for age 1

Study controls for gender 1

3. Exposure

Ascertainment of exposure

Laboratory blinded to case/control status 1

Laboratory unblinded/not stated 0

Method of ascertainment same for cases and controls
Yes 1
No 2

4. Additional criteria for genetic studies

a. Consideration of Hardy Weinberg Equilibrium
Yes 1
No 0

b. Power calculations

Yes 1
No 0

c. Correction for multiple comparisons
Yes 1
No 0
d. Adjustment for population stratification
Yes 1
No 0

language articles with the exception of a seminal French
study widely referred to in English language papers [63]
(Figure 3).

Forty two studies were included in the review (41 that
met the inclusion criteria plus the French study). Of
these, one provided data obtained from in vitro models
of y-glutamyl cycle metabolites, twenty nine provided
data on metabolites and/or co-factors of the y-glutamyl
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cycle or trans-sulphuration pathway, six provided the
results of intervention studies, six included genetic data
and eight studies provided data on enzyme activity.

An overview of the studies included in this review is pre-
sented in Table 3. The level of evidence, study size and
ascertainment of cases and controls are indicated along
with a quality assessment score and/or assessment of risk
of bias. Most studies were of the case control design, how-
ever, additionally there were two double blinded [64,65]
and one open labelled randomised controlled trial [49], a
case series [66] and a case report [54].

An assessment of study quality is presented in Tables 4,
5, 6 and 7. The case definition used to include partici-
pants in the studies varied over time. The case definition
for autistic disorder was not standardised until 1980
when it was included in the DSM-III. Asperger’s Syn-
drome and PDD-NOS were added to the DSM-IV in
1994 which broadened the definition to include many
children who were previously undiagnosed. While early
studies centred on cases obtained from institutionalised
psychiatric settings [92,93,98], cases were later recruited
through internal research registers [64], multiple centres
[47,50,64,70,71,88,95,96] or community advertisements
[75]. Although diagnosis was independently confirmed in
several studies [59,60,69,70,72,75,83,85,91,92], most
relied on medical records or parent reports. None of the
studies had used a structured sampling frame for case
ascertainment making them prone to selection bias.
Information about case ascertainment was not provided
for eight studies [48,49,54,59,74,78,81,84].

Ascertainment and definition of controls also varied
widely. While two studies sourced their controls by com-
munity advertising [75,86], most were sourced from hospi-
tals, clinics or schools [71,72,77,79,83,85,88,92,93] and
fourteen studies did not provide information on the source
of their controls [48,59,60,63,68-70,73,74,76,78,81,84].
With respect to definition of controls, most studies
recruited healthy children with no information about
family history of autism spectrum disorders, although,
four studies did ensure that controls did not have either a
family history or sibling with autism [70,75,77,87] and one
screened for autism traits [59]. At the other end of the
scale, controls for four studies were poorly defined poten-
tially biasing the results [46,47,89,98]. Control values from
one of these studies [47] were used for two later studies
[49,50]. Additionally, three studies relied on laboratory
reference ranges [65,92,93].

Gender is a potential confounder in studies of autistic
disorder because the condition is four times more com-
mon in males than females [99]. Only five studies were
gender matched [60,73,75,83,89], four did not provide the
gender of cases or controls [50,59,71,89] and nine pro-
vided the gender of cases but not controls [46-48,50,70,
73,79,83,91]. Age may also be a potential confounder as
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Table 2 Australian National Health and Medical Research Council Designated Levels of Evidence'

Level of
evidence

Description

I Evidence obtained from a systematic review of all relevant randomised controlled trials.

Il Evidence obtained from at least one properly designed randomised controlled trial.

-1

Evidence obtained from well designed pseudo-randomised controlled trials (alternate allocation or some other method).

-2

Evidence obtained from comparative studies with concurrent controls and allocation not randomised (cohort studies), case

control studies or interrupted time series with control group.

-3

Evidence obtained from comparative studies with historical control, two or more single arm studies, or interrupted time series

without a parallel control group.

\" Evidence obtained from a case series, either post-test or pre-test and post-test.

'Data from reference [53]

serum glutamate was elevated in adults with autistic disor-
der compared to adult controls [75] but was not signifi-
cantly different in children with autistic disorder
compared to child controls [69,70]. In contrast, serum gly-
cine and serine were not significantly different in either
adults [75] or children [69,70] when levels in autistic disor-
der were compared to controls. One study included a
range of participants from childhood to early adulthood,
however, the findings were not stratified according to age
[88].

All studies included in the review treated cases and
controls equally. Laboratory blinding as to case and con-
trol status occurred for only one research group
[65,76,87], although others were blinded to case status
but not controls, for example, where the laboratory pro-
vided the control data [88,90,91] or reference ranges
[65,67,92,93] or where another study was used for con-
trols [49,50]. Most studies did not state whether the
laboratory was blinded.

Genetic studies were assessed for quality using the
Newcastle Ottawa Scale plus additional criteria that
included consideration of Hardy Weinberg equilibrium,
power of the study, population stratification and correc-
tion for multiple comparisons. All except one of the six
genetic studies considered Hardy Weinberg equilibrium
[47,50,94,96,97], two provided power calculations [96,97]
and two adjusted for multiple comparisons [50,97]
(although a footnote indicating that the associations
were no longer statistically significant was not added in
one case) [50]. While population stratification is not
relevant for transmission linkage studies [94-97], neither
of the remaining studies were adjusted for this [47,50].

Both of the double blinded randomised intervention
trials provided information about concealment and the
laboratory was blinded thereby reducing performance
and detection bias [64,65]. Neither provided information
about the randomisation process, complete outcome data
and full reporting of results. While Bertoglio et al. 2010
state that 30 children completed the 12-week trial, closer
inspection of the paper suggests that at least 32 children

started the trial (see Table 1 in Bertoglio et al. 2010),
however, no information on dropout or loss to follow-up
was provided. Furthermore outcome data was only pro-
vided for the ‘responder’ sub-group in a form that was
difficult to interpret. Adams et al. 2009 randomised chil-
dren to receive either topical glutathione or a placebo
before being given one round of a chelating agent with
erythrocyte glutathione tested at baseline and 1-2 months
following the intervention [65]. It is not clear whether it
is a typographical error, however, Table 1 of the study
states that 77 children participated in the first phase of
the study, but baseline data for erythrocyte glutathione is
only provided for 72 children. Although the paper states
that 49 started the second phase of the study and there-
fore, according to the protocol, had a second glutathione
measurement, pre- and post-intervention erythrocyte
glutathione is only provided for 38 participants with no
comparison between the two arms of the study with
levels being compared to an adult reference range pro-
vided by the laboratory. The second phase of the study
involved ‘high excreters’ of urinary metal ions being
given a further 6 rounds of chelation if allocated to the
topical glutathione arm or 6 rounds of placebo if pre-
viously allocated to the topical placebo arm of the study.
Erythrocyte glutathione was not measured at the comple-
tion of the second phase of the study.

The open-label study design used in the remaining
three intervention studies left them at high risk of selec-
tion, performance and detection bias [46,49,65], how-
ever, all studies provided complete outcome data and
full reporting of results.

A kappa score of 0.87 was obtained which indicates a
high level of agreement between raters for the assess-
ment of quality of articles.

In vitro studies of the y-glutamyl cycle

Table 8 summarises the findings of an in vitro study of
y-glutamyl cycle metabolites [80]. Decreased free glu-
tathione (fGSH) and increased GSSG were observed in
both cytosol and mitochondrial extracts obtained from
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Citations identified
from electronic
databases (n=6,768)

Excluded on first

Papers identified by

A 4

hand searching (n=9)

v

Abstracts viewed for
relevance (n=309)

v

pass (n=6,459)

Removal of duplicates

v

Full papers assessed
for inclusion (n=66)

v

(n=253)

Exclusions (n=24):

No relevant data (n=12)

l

> Data previously published
(n=2)

Inclusions (n=41+1) comprising:

Interventions (n=6)
Genes (n=6)
Enzyme activity (n=7+1)

In vitro study (n=1)

Metabolites/co-factors (n=29)

Proband not included (n=2)
Review article (n=2)

Comment on previous
publication (n=2)

Conference abstract (n=1)

Autism not separated from

childhood psychosis (n=1)

Figure 3 Flow diagram of research papers retrieved for potential inclusion in our study.

Not in English (n=2)

lymphoblastoid cell lines derived from children with
autistic disorder compared to unaffected controls result-
ing in a decreased GSH:GSSG. Exposure to physiological
levels of nitrosative stress showed no difference in the
magnitude of GSH:GSSG from cells derived from chil-
dren with autistic disorder compared to healthy con-
trols, however, the baseline GSH:GSSG was significantly
lower (by 30%) in cells from children with autistic
disorder.

Metabolites and cofactors of the y-glutamyl cycle and
trans-sulphuration pathway
Data from key studies of metabolites of the y-glutamyl
cycle and trans-sulphuration pathway is shown in
Figures 4, 5 and 6 and a summary of additional studies
presented in Table 9.

The largest and most comprehensive study to date
provided data for multiple metabolites of the y-glutamyl
cycle and trans-sulphuration pathway [47]. This study
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Table 6 Scores for assessment of quality for genetic studies the Newcastle Ottawa Scale

Bowers et al. Ming et al. Buyske et al. James et al. Rose et al. Serajee Max
2011 2010 2006 2006 2006 2004 Score
1 Selection
Case definition 2 2 1 1 1 2 2
Representativeness 0 0 0 0 0 0 1
Selection of controls trios trios trios 0 0 trios 2
Definition of controls n/a n/a n/a 0 0 n/a 2
2 Comparability
Control for confounding n/a n/a n/a 0 0 n/a n/a
3 Exposure
Ascertainment 0 0 0 0 0 0 1
Method same cases/ 1 1 1 1 1 1 1
controls
4 Genetics
HW equilibrium 1 0 1 1 1 1 1
Power calculations n/a 0 1 0 1 1
Control multiple 0 0 0 0 1 1 1
comparisons
Population stratification n/a n/a 0 n/a 1
Overall score 4 3 4 3 4 6 13

reported significantly lower levels of GSH (by 32%) and
higher levels of GSSG (by 66%) in plasma of children
with autistic disorder compared to controls, together
with significantly lower homocysteine and cysteine
levels, while cystathione levels were significantly higher
and cysteinyl-glycine levels were not significantly differ-
ent [47]. These findings confirm those of an earlier pilot
study by the same researchers with the exception that
cystathione was found to be lower in children with
autistic disorder in the pilot study [46], as well as a later
study by the same research group which focussed on a
subgroup of children with autistic disorder who had
abnormal methylation and/or GSH:GSSG [48].

Plasma homocysteine levels for the above studies [46-48]
showed that there was no statistically significant difference
between children with autistic disorder and controls
which has been replicated by a number of other research
groups for children with autistic disorder [59,60,82], PDD-

NOS and Asperger’s syndrome [60] as well as a mixed
sample of children with autism spectrum disorders [77].
The only study to report a significant increase in plasma
homocysteine in children with autistic disorder [74] was
not replicated by the same research group using a fasted
sample [60]. Examination of statistical heterogeneity
showed low heterogeneity overall (I* = 34%) and no het-
erogeneity between diagnostic subgroups (I* = 0%) (Figure
4). Meta-analysis resulted in a standardised mean differ-
ence (SMD) of -0.18 (95%CI -0.46-0.10) across 199 cases
and 185 controls using a random effects model. Data from
James et al. 2009 was not included in the analysis because
the cases were selected for low methylation ratio or GSH:
GSSG, however, the data is presented in Figure 4.
Similarly, no significant difference was observed in
plasma cystathione from children with autistic disorder,
PDD-NOS, Asperger’s Syndrome or mixed autism spec-
trum disorders [46,60,77], although another study report

Table 7 Scores for assessment of risk of bias for intervention studies

Risk of bias Bertoglio et al. 2011

James et al. 2009

Adams et al. 2009  Rossignol et al. 2007  James et al. 2004

Randomisation Uncertain Open label Uncertain Open label Open label
Concealment of allocation Low risk Open label Low risk Open label Open label
Blinding Low risk Open label Low risk Open label Open label
Incomplete outcome data High risk Low risk High risk Low risk Low risk
Selective reporting High risk Low risk High risk Low risk Low risk
Overall score 5 4 5 4 4

Scoring
Low risk = 2; Uncertain = 1; High risk/open label = 0
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Cases Controls Std. Mean Difference Std. Mean Difference
Study or Subgroup Mean SD Total Mean SD Total Weight IV, Random, 95% CI 1V, Random, 95% CI
5.1.1 Autistic disorder
Adams et al. 2007 5.6 1.65 17 52 16 16 11.6% 0.24 [-0.45, 0.93] T
James et al. 2004 5.8 1 20 64 13 33 15.0% -0.49 [-1.06, 0.07] I
James et al. 2006 57 1.2 80 6 1.3 73 25.9% -0.24 [-0.56, 0.08] =T
James et al. 2009 48 1.8 40 5 12 42 0.0% -0.13 [-0.56, 0.30]
Pasca et al. 2006 9.83 2.75 12 751 0.93 9 7.3% 1.02[0.09, 1.95] -
Pasca et al. 2009 519 1.74 15 586 14 13 10.2% -0.41[-1.16, 0.34] -1
Subtotal (95% ClI) 144 144 70.0% -0.07 [-0.49, 0.34] R
Heterogeneity: Tau? = 0.12; Chi? = 9.52, df = 4 (P = 0.05); I> = 58%
Test for overall effect: Z=0.34 (P = 0.74)
5.1.2 Autism spectrum disorders
Suh et al. 2008 55 22 31 6.7 29 11 11.3% -0.49 [-1.19, 0.20] -1
Subtotal (95% Cl) 31 1 11.3% -0.49 [-1.19, 0.20] i
Heterogeneity: Not applicable
Test for overall effect: Z = 1.38 (P = 0.17)
5.1.3 PDD-NOS
Pasca et al. 2009 6.49 1.56 19 6.88 244 22 13.5% -0.18 [-0.80, 0.43] -
Subtotal (95% ClI) 19 22 13.5% -0.18 [-0.80, 0.43] -
Heterogeneity: Not applicable
Test for overall effect: Z = 0.59 (P = 0.56)
5.1.4 Asperger's syndrome
Pasca et al. 2009 59 19 5 6.72 1.22 8 5.2% -0.51 [-1.65, 0.63] -1
Subtotal (95% CI) 5 8  52% -0.51 [-1.65, 0.63] ——
Heterogeneity: Not applicable
Test for overall effect: Z = 0.87 (P = 0.38)
Total (95% CI) 199 185 100.0% -0.18 [-0.46, 0.10] q
Heterogeneity: Tau? = 0.05; Chiz = 10.57, df = 7 (P = 0.16); I> = 34% 2 1 5 1 2
Test for overall effect: Z = 1.28 (P = 0.20) Cases < controls  Cases > controls
Test for subgroup differences: Chi? = 1.32, df =3 (P = 0.72), I? = 0%
Figure 4 Meta-analysis of studies that compared plasma homocysteine in children with autism spectrum disorders to healthy controls.

it to be significantly higher [47] in children with autistic
disorder than controls (Figure 5). Examination of statis-
tical heterogeneity showed that there was substantial
overall heterogeneity (I* = 70%) with moderate hetero-
geneity between diagnostic subgroups (I* = 41.4%). It is
hard to explain the heterogeneity given that two of the
larger studies were conducted by the same research
group using the same methodology [46,47].

Serine is required for synthesis of cystathione from
homocysteine. Four studies found no significant differ-
ence in serum or plasma serine levels between children
and adults with or without autistic disorder, PDD-
NOS, Asperger’s Syndrome or autism spectrum disor-
ders (mixed sample) [60,69,70,75], one study showed a
trend towards a decrease in children with autistic dis-
order [60] and another reported significantly increased
plasma serine in children with autism spectrum disor-
ders [87] and significantly lower levels of serine were
reported for platelet poor plasma in autism spectrum
disorders [86]. Factors that may have contributed to
the heterogeneity between studies include fasting

status, differing laboratory methods and varied selec-
tion of controls as well as correction for multiple
comparisons.

Studies showing that plasma cysteine is significantly
lower in children with autistic disorder are dominated by
one research group that published three studies (one in
children with abnormal methylation or GSH:GSSQ)
[46-48] and their findings have been replicated by another
research group [60]. The same study found no significant
difference in plasma cysteine levels for children with PDD-
NOS or Asperger’s Syndrome, as did a study comparing
autism spectrum disorders (sample composition
unknown) compared to controls [77]. Plasma cysteine was
significantly lower in a study comprising 28 children with
autistic disorder and 10 children with PDD-NOS [91].
Serum cysteine levels of children with autistic disorder
compared to controls were not significantly different from
controls [69]. Overall statistical heterogeneity for plasma
cysteine was considerable (I* = 92%) and low to moderate
between diagnostic subgroups (I* = 39.8%). Again, factors
that may have led to the high level of heterogeneity
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Cases Controls Std. Mean Difference Std. Mean Difference
Study or Subgroup  Mean SD Total Mean SD Total IV, Random, 95% CI IV, Random, 95% CI
7.1.1 Autistic disorder
James et al. 2004 0.14 0.06 20 0.17 0.05 33 -0.55[-1.11, 0.02] t
James et al. 2006 0.24 0.1 80 0.19 0.1 73 0.50[0.18, 0.82] —
Pasca et al. 2009 0.16 0.08 15 0.16 0.04 13 0.00 [-0.74, 0.74]
7.1.2 ASD
Suh et al. 2008 0.22 0.007 31 0.2 0.08 11 0.49 [-0.21, 1.18] i
7.1.3 PDD-NOS
Pasca et al. 2009 0.14 0.04 19 0.15 0.04 22 -0.25 [-0.86, 0.37] t
7.1.4 Asperger's syndrome
Pasca et al. 2009 0.12 0.03 5 0.16 0.04 8 -1.01 [-2.23, 0.20] t
2 1 0 1 2
Cases < controls Cases > controls
Figure 5 Heterogeneity of studies that compared plasma cystathione in children with autistic spectrum disorder and healthy controls.

between studies include fasting status, differing laboratory
methods and varied selection of controls.

A significant decrease in plasma total glutathione
(tGSH) reported in four studies from the one research
group in children with autistic disorder compared to con-
trols [46-48,50] have been confirmed by another two
research groups with respect to autistic disorder [81,82] as
well as study of low functioning children with autism spec-
trum disorders [85] (Figure 7). Reduced glutathione has
also been reported to be lower in the plasma of children
with autism spectrum disorders [87,91]. In contrast, no
significant difference for plasma tGSH [77] or erythrocyte
tGSH [65] was reported for autism spectrum disorders

(mixed diagnoses). The later study compared cases to an
adult reference range while noting that the paediatric
range is lower. Whole blood tGSH was reported to be
lower in autistic disorder but not significantly different for
PDD-NOS or Asperger’s Disorder [60]. Overall statistical
heterogeneity was substantial for plasma tGSH (I* = 93%)
however there was no statistical heterogeneity between
diagnostic sub-groups (I* = 0%). Varying definition of
cases and controls, laboratory and analytical methods may
account for the range of heterogeneity.

The same major research group published four studies
showing a significant increase in plasma oxidised glu-
tathione in autistic disorder [46-48,50] which has been

Cases Controls Std. Mean Difference Std. Mean Difference
Study or Subgroup Mean SD Total Mean SD Total IV, Random, 95% CI IV, Random, 95% CI
6.1.1 Autistic disorder
James et al. 2004 163 15 20 202 17 33 -2.36[-3.09,-1.63] —
James et al. 2006 165 14 80 207 22 73 -2.29[-2.70, -1.88] =
James et al. 2009 191 24 48 210 18 42 -0.88 [-1.31, -0.45] N
Pasca et al. 2009 181.06 24.8 15 204.76 25.8 13 -0.91 [-1.70, -0.12] —
Visconti et al. 1994 40.56 5.68 19 40.28 12.72 19 0.03 [-0.61, 0.66] .
6.1.2 Autism spectrum disorders
Geier and Geier 2009b 17.8 8.3 38 232 4.2 64 -0.89 [-1.31, -0.47] —
Suh et al. 2008 375.9 61 31 3774 118 11 -0.02 [-0.71, 0.67] I —
6.1.3 PDD-NOS
Pasca et al. 2009 206.1 25.84 19 205.95 31.94 22 0.01 [-0.61, 0.62] .
6.1.4 Aperger's syndrome
Pasca et al. 2009 215 68.91 5 209.5 41.89 8 0.10 [-1.02, 1.21] | E—

2 1 0 1 2
Cases < controls Cases > controls
Figure 6 Heterogeneity of studies that compared plasma cysteine in children with autistic spectrum disorder and healthy controls.
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Case Control Std. Mean Difference Std. Mean Difference
Study or Subgroup Mean SD Total Mean SD Total IV, Random, 95% CI IV, Random, 95% CI
1.1.1 Autistic disorder
Al-Gadani etal. 2009 73.67 26.51 30 101.46 37.6 30 -0.84 [-1.37,-0.31] ==
James et al. 2004 41 05 20 76 14 33 -3.00 [-3.81, -2.19] —+
James et al. 2006 5.1 1.2 80 753 17 73 -1.66 [-2.02, -1.29] +
James et al. 2009 5.4 1.3 40 75 1.8 42 -1.32 [-1.80, -0.84] -+
1.1.2 Autism spectrum disorders
Al-Yaffee et al. 2011 446 0.33 20 8.28 1.03 20 -4.90 [-6.18, -3.61] —
Suh et al. 2008 7.3 2.3 31 7.7 21 11 -0.17 [-0.86, 0.51] =

Figure 7 Heterogeneity of studies that compared tGSH in children with autistic spectrum disorder and healthy controls.

4 2 0 2 4
Cases < controls Cases > controls

replicated by a further two research groups for autism
spectrum disorders [87,91] (Figure 8). Overall statistical
heterogeneity was substantial (I* = 67%), however, there
was no statistical heterogeneity between diagnostic sub-
groups (I* = 0%). Meta-analysis resulted in a SMD of 1.25
(95% CI 0.87 - 1.62) across 203 cases and 184 controls
using a random effects model. As stated above, data from
James et al. 2009 was not included in the analysis but is
included in the tables accompanying the Figure.

The same research group published 5 studies report-
ing significantly lower plasma tGSH:GSSG ratios in chil-
dren with autistic disorder [46-50]. The same controls
were used for three of the studies [47,49,50]. One of
these studies tGSH and tGSH:GSSG were significantly
lower (by 10.7% and 14.9% respectively) in children with
autism who were heterozygous or homozygous for the
delta aminolevulinic acid dehydratase (ALAD) 177 GC
mutation, whereas there was no difference in GSSG
[50]. This polymorphism is found in the heme biosynth-
esis pathway where it has been associated with altered
toxicokinetics of lead levels and elevated blood levels of
lead [100-102]. Three studies have shown that GSH:

GSSG is lower in children with autism spectrum disor-
ders [85,87,91] lending credence to the original findings.
The findings for cysteinyl-glycine, a breakdown pro-
duct of glutathione, were inconsistent. Initially it was
reported that there was no significant difference in
cysteinyl-glycine in children with autistic disorder com-
pared to controls [47]. A later study by the same
research group was limited to children with abnormal
methylation or GSH:GSSG showed that it had a signifi-
cantly lower level in autistic disorder than in controls
[48], however, a subsequent study of children with aut-
ism spectrum disorders showed that it was significantly
higher than in controls [77]. Differences in inclusion cri-
teria, laboratory methods and control of confounding
variables may account for the difference in the findings.
Finally, the relationship between GSH and the
immune system was clearly demonstrated in a large
study which showed that children with autistic disorder
universally have lower natural killer cell activity in per-
ipheral mononuclear cells than those without the disor-
der which correlated with low intracellular levels of
GSH as shown in Table 10 [79]. Furthermore, when

Cases Control Std. Mean Difference Std. Mean Difference
Study or Subgroup Mean SD Total Mean SD Total IV, Random, 95% CI IV, Random, 95% CI
2.1.1 Autistic disorder
James et al. 2004 055 0.2 20 032 041 33 1.56 [0.92, 2.19] —t
James et al. 2006 04 0.2 80 0.24 041 73 0.99 [0.66, 1.33] —
James et al. 2009 0.28 0.08 40 0.18 0.07 42 1.32[0.84, 1.80] —t
2.1.2 Autism spectrum disorder
Adams et al. 2011 0447 013 55 0362 01 44 0.72[0.31, 1.13] —
Al-Yaffee et al. 2011 0.54 0.17 20 0.32 0.06 20 1.69 [0.96, 2.42] —
Geier and Geier 2009b 0.48 0.16 28 0.35 005 120 1.57 [1.12, 2.02] .

Figure 8 Meta-analysis of studies that compared GSSG in children with autistic spectrum disorder and healthy controls.

-2 -1 0 1 2
Cases < controls Cases > controls
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Table 10 Correlation between NK cell activity and reduced glutathione in peripheral blood mononuclear cells

obtained from children with autistic disorder

Finding

Study NK Activity ~ GSH (ng/3 x 10° Significance
(LU) PBMCs)

Vojdani et al. ~ 0-10 610 + 286

2008 0.05

[79] 11-20 947 + 458
21-50 1760 + 895
51-100 2280 + 1341

ANOVA F =3.99, P < Direct correlation between cellular levels of reduced glutathione and

NK lytic activity.

NK Natural killer cells LU Lytic units GSH reduced glutathione ng nanograms PBMCs Peripheral blood mononuclear cells ANOVA One way analysis of variance

GSH was added to the culture medium, natural killer
cell activity increased more in lymphocytes obtained
from children with low natural killer cell activity than
those with normal activity. Corresponding data were not
provided for control children.

Glycine and glutamine are key compounds for the bio-
synthesis of glutathione obtained through dietary
sources. Eight studies showed no significant difference
in serum or plasma glycine in children with autistic dis-
order [60,69,70,75], autism spectrum disorders (mixed
diagnoses) [86-88] PDD-NOS or Asperger’s Syndrome
compared to controls [60]. There was no statistical het-
erogeneity overall (I? = 0) or between diagnoses (12 = 0)
for plasma glycine. The data was not pooled because
there were only two studies for plasma and two for
serum with data in a suitable form to combine.

In contrast the findings for glutamine were inconsistent
with two studies reporting no significant difference in
serum glutamine in children with autistic disorder com-
pared with controls [69,89], a later study reporting a sig-
nificant decrease in platelet glutamine in children with
autistic disorder [68] and further studies that reported
serum glutamate to be significantly higher in adults with
autistic disorder [75] and children with autism spectrum
disorders (mixed diagnoses) than controls [87].

Of the six studies that measured co-factors of the y-
glutamyl cycle or trans-sulphuration pathway, five stu-
dies showed elevated levels of vitamin B6 in children
with autistic disorder or autism spectrum disorders
compared to controls [73,76,87,92,93], one showed a
decrease in erythrocyte selenium in children with autis-
tic disorder [78] and another showed no change in
whole blood selenium in children with an autism spec-
trum disorder compared to controls [87].

Intervention studies

The findings of the six studies that report the outcome
of interventions in autism focussed on normalising
abnormalities in y-glutamyl cycle or trans-sulphuration
pathway metabolites [46,48,49,54,64] are presented in
Table 11. An initial pilot study showed that supplemen-
tation of children with autistic disorder with 800 ug foli-
nic acid and 1,000 pg betaine per day for two months

normalised homocysteine levels and improved GSH:
GSSG [46]. The addition of 75 ug/kg methyl-cobalamin
injected twice weekly for one month further normalised
GSH:GSSG. The same researchers conducted a larger
intervention in 42 children with autistic disorder who
had evidence of reduced methylation capacity or GSH:
GSSG in which they were supplemented with folinic
acid and methyl-cobalamin for 3 months [48]. The new
regimen, which used half the dose of folinic acid of that
used in the pilot study, resulted in significant increases
in metabolites of the trans-sulphuration pathway as well
as GSH:GSSG, although they remained below those of
the control children. Objective behavioural measures
showed an improvement, although all participants were
still well below normal (data not published).

Recently, a double blinded randomised controlled trial
was published in which participants were administered
either methyl-cobalamin or placebo for 6 weeks and then
their treatment switched without washout for a further 6
weeks [64]. Overall, there was no significant change in
GSH, GSH:GSSG or behaviour. Thirty percent of partici-
pants, however, showed a significant improvement in
objective behavioural measures which correlated with
improved plasma GSH and GSH:GSSG levels. Interpreta-
tion of the findings is difficult because data was only pro-
vided for the ‘responder’ subgroup and this did not
include standard deviations or units for plasma GSH or
GSH:GSSG, nor did it state whether the GSH values
reported in Figure 4 of their paper represented tGSH or
reduced glutathione. Furthermore, data showing whether
‘responders’ had lower baseline concentrations of GSH or
GSH:GSSG were not provided.

Additionally, a case report of a child with autistic dis-
order and cerebral folate deficiency showed the normali-
sation of low cerebral spinal fluid homocysteine
following 2 weeks supplementation with 0.5 mg folinic
acid/kg/day increasing to 1.0/kg/day for 3 months [54].
Finally, a 40 session trial of hyperbaric oxygen therapy
showed that it has no effect on plasma GSH:GSSG in
children with autistic disorder [49] and, as discussed
above, incomplete data and selective reporting make it
hard to interpret the findings of a randomised trial of
topical glutathione before chelation [65].
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Table 11 In vivo studies involving interventions directed at normalising y-glutamyl cycle or trans-sulfation pathway

metabolites
Study Intervention Dose & duration Study size Findings Comments
Interventions involving folate cycle metabolites
Bertoglio  Methyl- 64.5 pg/kg methyl-cobalamin or 32+ cases  Overall, no significant difference in  Primary outcome behavioural
et al. cobalamin placebo injected every third day  started the  GSH, GSH: GSSG or response. Findings for GSH and
2010 [64] 6 wks washout period). trial of behaviouraloutcomes. 1 GSH, tGSH:GSSG presented as bar charts
which 30 1GSH:GSSG and improved for responder group only.
finished. behavioural outcomes in 9/30 Dispersion and units not provided.
children.
James et Folinic acid 400 pg folinic acid bd + 75 pg/ 48 cases 1 homocysteine, 1 cystathione 1 Excluded 26% of cases because
al. 2009 + methyl- kg methyl-cobalamin injected selected for cysteine, 1 tGSH & TtGSH: GSSG.  normal SAM: SAH and/or tGSH:
[48] cobalamin every third day 3 mo. low SAM: GSSG. Following the intervention,
SAH or tGSH:GSSG was still significantly
GSH: GSSG. lower in cases than controls. There
was no change in SAM or SAH
levels.
James et Folinic acid 800 g folinic acid + 1,000 g 8 cases 1 homocysteine, 1 cystathione 1 Improved but did not normalise
al. 2004 + betaine betaine bd 3 mo. cysteine, T tGSH, TtGSH: GSSG, tGSH and GSSH.
[46] ISAH & |adenosine
Folinic acid ~ As above + 75 pg/kg methyl- 8 cases 1 homocysteine, Normalised tGSH & tGSH:
+ betaine +
methyl- cobalamin injected twice weekly teystathionine, Tcysteine, 1 tGSH,  GSSG. Improved but did not
cobalamin 1 mo. TtGSH: GSSG, |GSSG normalise GSSG.
Moretti et Folinic acid 0.5 mg/kg/d folinic acid for 2 wk, 1 case Normalised () cerebral spinal
al. 2005 1.0 mg/kg/d thereafter 3 mo. fluid homocysteine.
[54]
Other interventions
Adams et Chelation Glutathione (180 mg) or placebo 64 cases Significantly | variance in Topical glutathione had no effect
al. 2009 therapy cream daily for 7 days followed erythrocyte glutathione levels 1-2  on erythrocyte glutathione.
[65,67] by 10 mg/kg DMSA in 3 doses/ months after one round of DMSA  Behavioural instruments not
day for 3 days to screen for high treatment. validated
urinary
excretion of metal ions. ‘High 26 DMSA No data provided for for measurement of autism
excreters’ from the topical 15 placebo  post intervention gluta- severity. ADOS(diagnostic
glutathione arm given a further thione. test) administered pre and
6 rounds of DMSA and those post second intervention,
from the topical placebo arm but not at baseline.
given 6 rounds of a placebo.
Rossignol  Hyperbaric 13atm(h=12)or 1.5atm (n= 18 cases No significant difference in plasma
et al. oxygen 6) for 45 mins x 40 sessions (ie tGSH:GSSG before or after either
2007 [49]  therapy 4.6 times/wk x 9 wk) intervention.
(HBOT)

SAM s-adenosyl-methionine SAH s-adenosyl-homocysteine tGSH total glutathione GSSH Oxidised glutathione bd twice daily DMSA dimercaptosuccinic acid ADOS

autism diagnostic observation schedule

Genetic studies of the y-glutamyl cycle and trans-
sulphuration pathway

The six studies that presented data on genetic poly-
morphisms of the y-glutamyl cycle or trans-sulphuration
pathway are summarised in Table 12. The best powered
of these studies examined genetic variation in 42 genes
(308 single nucleotide polymorphisms (SNPs)) related to
glutathione, including those coding for enzymes that use
glutathione as a co-factor (not included in this review),
in 318 families from the Autism Genetic Resource
Exchange repository [87]. Several SNPs located in the
genes for cystathionine y-ligase (CTH), alcohol dehydro-
genase 5, GCL and glutaredoxin showed significant or

suggestive associations with autism spectrum disorders.
Interaction models confirmed a significant association
between CTH, glutaredoxin and glutaredoxin 3 and aut-
ism (OR = 3.78 (95% CI 2.36-6.04).

The study found no association between any of the
GST genes and autism [94]. This is in contrast to a pre-
vious study of case parent trios that found that homozy-
gote cases for the GST-M*1 gene deletion (GST-M1*0)
showed increased risk of autistic disorder [96] and a later
case control study that reported a borderline association
between the GST-M*1 gene deletion (GST-M1%0) and
autistic disorder and a significant interaction between the
GST-M1%0 deletion and the reduced folate carrier 80A >
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G [47]. Previous studies failed to find an association
between GST-T1 [47] or GST-P1 and autism [97].

Ming et al. 2010 Found that a polyalanine repeat poly-
morphism in the GPx gene (GPx-1) was associated with
autistic disorder [95]. Under-transmission of the varia-
tion encoding six alanine residues (ALA6) was observed
in the families with autistic disorder, suggesting that this
allele may be protective. The authors acknowledge that
their interpretation is limited by inadequate knowledge
of the function of the ALA alleles of GPx-1 gene.

Studies of glutathione related enzyme activity

As shown in Table 13 GPx-1 activity has been the sub-
ject of seven studies [63,71,72,74,81,83,84]. The findings
were inconsistent in plasma where two studies reported
higher activity in cases than controls [72,81] and two
reported lower activity [71,83]. A further four studies
examined GPx-1 activity in erythrocytes. Of these, two
reported lower activity [63,71] and two reported no sig-
nificant difference between cases and controls [74,84].
No significant difference between cases and controls
was reported for GPx-1 activity in platelets [63]. In addi-
tion, a recently published study showed that glu-
tathione-S-transferase activity was significantly reduced
in children with low functioning autism spectrum disor-
ders and there was a trend towards lower activity of glu-
tathione reductase [85].

Discussion

The findings of this systematic review support the asser-
tion that children with autism spectrum disorders are
more likely to have significantly lower tGSH and GSH
and significantly increased GSSG, resulting in a signifi-
cantly lower GSH:GSSG than children without autism.
Our review show that although serum homocysteine
and cystathione levels are not significantly different in
children with autism spectrum disorders compared to
those without, serum cysteine is significantly lower in
autistic disorder (Figures 4, 5 and 6) which supports the
assertion that cysteine production may be the rate limit-
ing step in glutathione synthesis [31-34]. The lack of an
association in other forms of autism spectrum disorders
suggests that low cysteine may be associated with autism
severity [60,77].

As no significant differences in serum homocysteine,
cystathionine (Figures 4 and 5) or serine levels [60,69,70,75]
were observed in children with autistic disorder compared
to those without, it can be inferred that the low levels of
cysteine may be caused by decreased cystathione lyase
activity and/or increased utilisation of sulphate and/or taur-
ine and/or lower dietary intake or absorption of cysteine
in children with autistic disorder. An exploration of the
functional significance of several SNPs in the gene for
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cystathione lyase associated with autistic disorder may shed
light on this putative relationship [94].

It is worth noting that a reduction in total glutathione
implies a problem with synthesis of glutathione, whereas a
decrease in GSH implies an anomaly in GSH:GSSG. Both
have been observed in autism spectrum disorders
[46-48,50,77,81,82,85,87,91]. As the bioavailability of
cysteine is the rate limiting factor for synthesis of GSH
[31-34], the lower cysteine levels detected in serum of chil-
dren with autistic disorder could be an important factor
leading to the lower levels of GSH observed in many chil-
dren with this condition [46-48,50,81,82]. While several
studies examined GPx activity [63,71,72,74,81,83,84] or its
polymorphisms [94,95], only one examined glutathione
reductase or glutathione-S-transferase activity [85].

The higher level of GSSG observed in the serum of
many children with autism spectrum disorders [46-48,
50,85,87,91] is likely to truly reflect increased oxidative
stress as there is no significant difference in GPx-1
activity in serum or platelets [63,84] and GPx-1 is signif-
icantly lower in the erythrocytes of children with autistic
disorder compared to controls. As cysteine itself may
have strong anti-oxidant properties, its lower concentra-
tion in children with autistic disorder may contribute to
increased oxidation of GSH [47].

Glutathione synthesis also requires dietary glutamate
and glycine. No difference in serum levels of glutamate
has been reported between children with autistic disorder
and controls [69,70], however, it was significantly higher
in adults with autistic disorder [75], the level being posi-
tively correlated with social functioning as measured by
the autism diagnostic interview (ADI-R) [103] which is
commonly used to evaluate the core symptoms of autism
which may shed light on the significantly higher level
detected in mixed samples of children with autism spec-
trum disorders [86,87]. In contrast, platelet glutamic acid
was significantly lower in children with autistic disorder
[68]. Platelet glutamate receptors have been shown to
have heightened sensitivity in major depression, schizo-
phrenia and other psychoses [104-106]. This relationship
has not, however, been examined in autism spectrum dis-
orders to date.

Serum and plasma glycine does not differ between
children [60,69,70,86,87] or adults [107] with and with-
out autism spectrum disorders. As glycine acts as a
powerful inhibitory neurotransmitter in the brain and
spinal chord [108] and glycine transporters are differen-
tially expressed throughout the CNS [109], it may be
relevant for future studies of children with autism spec-
trum disorders to examine whether there are abnormal-
ities in expression of glycine transporters in the CNS or
in glycine transport across the choroid plexus in chil-
dren with autism spectrum disorders.
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Vitamin B6, in the form of pyridoxal-5’-phosphate, is
the cofactor for 5 enzymes in the y-glutamyl cycle and
trans-sulphuration pathway: cystathionine p-synthase,
cystathione y-lyase, cytoplasmic and mitochondrial ser-
ine hydroxymethyltransferase and glycine decarboxylase
in the mitochondria. The significant increase in plasma
vitamin B6 in many children with autism spectrum dis-
orders [73,76,87,92,93] could potentially reflect dimin-
ished cellular uptake or inefficiency of cells to retain or
store B6. Impaired bioavailability of vitamin B6 may
affect the nervous system because it is required for the
synthesis of neurotransmitters including serotonin,
dopamine and taurine [110]. There is clearly a need to
test whether cellular vitamin B6 is diminished in autism
spectrum disorders. In addition, erythrocyte selenium
was shown to be significantly lower in one study of chil-
dren with autistic disorder [78] although there was no
significant difference in GPx activity which contains
selenium in its active site. These observations coupled
with the findings of the intervention studies [46,47] sug-
gest that future studies should examine multiple nutri-
tional status biomarkers of pathways linked with the vy-
glutamyl cycle (e.g. cysteine, folate, vitamin B12, vitamin
B6) to determine more effective and accurate risk factor
analysis.

The association between the genes of the y-glutamyl
cycle and autistic disorder is not well studied, although
recently a relatively large study using a pathway approach
showed a three-SNP joint interaction effect for glutare-
doxin, glutaredoxin 3 and cystathione lyase (OR = 3.78,
95% CI: 2.36, 6.04) as well as marginal associations for
cystathione lyase, the gamma-glutamylcysteine synthe-
tase, catalytic subunit and glutaredoxin 3 suggesting that
variation in genes involved in counterbalancing oxidative
stress may contribute to autism [94]. The clinical signifi-
cance of the borderline association between the GST-
M*1 gene deletion (GST-M1%0) and autistic disorder
[47,96] and the interaction between the GST-M1*0 dele-
tion and the reduced folate carrier 80A > G [47] has yet
to be established. GST-M1*0Frequencies range from 42-
60% in Caucasians [111] and GST-MI1*0 appears to be
associated with social behavioural changes in mice com-
pared to wild type [112]. No significant associations were
found for GST-T*1 [47]. Although no association
between GST-P1 has been shown in children with autism
[94,97], the GSTPI*A haplotype was over-transmitted

to mothers of children with autistic disorder (OR 2.67
95% confidence interval, 1.39- 5.13) [113]. Bowers et al
2011 did not find an association with autistic disorder
and other members of the two GST super-families,
many of which have GPx activity [22].

The observation that cytostolic and mitochondrial glu-
tathione redox ratios are significantly lower in lympho-
blastoid cell lines obtained from children with autistic
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disorder than their non-autistic siblings [80] coupled
with a positive correlation between low natural killer
cell activity and reduced glutathione levels in children
with autistic disorder [79] suggests that these cells may
be more GSH dependent. It is reasonable to hypothesise
that children with autistic disorder could benefit from
supplementation with glutathione or its precursors. Stu-
dies are needed to establish the relationship between
extracellular and intracellular glutathione in its oxidised
and reduced form because intracellular may ultimately
be a better biomarker to study cellular effects proposed
in theoretical models.

Finally, phenotypic approaches have been taken to
study resistance to environmental or endogenous stres-
sors that are thought to be causative agents for other
diseases (e.g. cancer) using lymphocytes or fibroblasts
[114-118]. This approach has the advantage that it inte-
grates the effect of both genetic background and nutri-
tional status of the cells in evaluating disease
susceptibility. The only published study applying this
approach to date in autistic disorder found that the
GSH:GSSG was significantly lower in whole cell extracts
and mitochondria from lymphoblastoid cells obtained
from children with autistic disorder compared to con-
trols but there was no difference in response to nitrosa-
tive stress as measured by GSH:GSSG in mitochondria
[80].

The consistent observations indicating a role for glu-
tathione metabolism in autism spectrum disorders high-
light the potential role of glutathione in them.
Replication of these results by other research groups in
a wider range of populations is required, however,
before definite conclusions can be made. Meta-analyses
of observational studies are subject to confounding and
selection bias which can distort the findings to produce
spurious results [119]. We have been careful not to
make our meta-analyses a prominent component of the
review, but rather to use the data to identify the extent
of confounding and selection biases and to examine pos-
sible sources of heterogeneity between the results of
individual observational studies.

Common challenges for any systematic review of studies
investigating autism spectrum disorders include changes
in the criteria for diagnosis and laboratory methodology,
the emphasis of early studies on individual metabolites
rather than metabolic systems (e.g. one carbon metabo-
lism), and low statistical power. Only a few studies
matched cases and controls for age [60,68,74,75,83] and/or
gender [48,60,75,83,89] despite the acknowledged differ-
ence in prevalence between genders [99], and most did
not state the source of controls [48,59,60,63,68-70,
73,74,76,78,81,84].

Only two of the reviewed studies corrected for multiple
comparisons (e.g. Bonferroni or Nyholt correction)
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[86,97]. The few studies that matched cases with controls
did not use a paired method of analysis such as McNe-
mar’s test which biases the results towards null. Further,
we were unable to replicate the p values for three studies
[46,47,87].

Conclusions

This review of published studies indicates that evidence
for the involvement of the y-glutamyl cycle and trans-
sulphuration pathway in autism spectrum disorders
should be further explored with higher quality and
lower risk bias studies to in order to ascertain the signif-
icance of these pathways with respect to clinical out-
comes. Trends noted from currently published studies
include decreased total glutathione and increased GSSG
in children with autism spectrum disorders with no
association found between homocysteine or cystathione
in these children. There is a trend for cysteine to be
lower in children with autistic disorder but not in other
autism spectrum disorders. There is a need for large,
well designed studies that link metabolites, co-factors
and genes of the y-glutamyl cycle and trans-sulphuration
pathway with objective behavioural outcomes to be con-
ducted in children with autism spectrum disorders.
Future risk factor analysis of autism spectrum disorders
should include consideration of multiple biomarkers of
nutrients involved in pathways linked with the y-gluta-
myl cycle and the interaction of genotype with nutri-
tional status.
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