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Leucine supplementation improves adiponectin
and total cholesterol concentrations despite the
lack of changes in adiposity or glucose homeostasis
in rats previously exposed to a high-fat diet
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Abstract

Background: Studies suggest that leucine supplementation (LS) has a therapeutic potential to prevent obesity and
to promote glucose homeostasis. Furthermore, regular physical exercise is a widely accepted strategy for body
weight maintenance and also for the prevention of obesity. The aim of this study was to determine the effect of
chronic LS alone or combined with endurance training (ET) as potential approaches for reversing the insulin
resistance and obesity induced by a high-fat diet (HFD) in rats.

Methods: Forty-seven rats were randomly divided into two groups. Animals were fed a control diet-low fat (n =
10) or HFD (n = 37). After 15 weeks on HFD, all rats received the control diet-low fat and were randomly divided
according to treatment: reference (REF), LS, ET, and LS+ET (n = 7-8 rats per group). After 6 weeks of treatment, the
animals were sacrificed and body composition, fat cell volume, and serum concentrations of total cholesterol, HDL-
cholesterol, triacylglycerol, glucose, adiponectin, leptin and tumor necrosis factor-alpha (TNF-a) were analyzed.

Results: At the end of the sixth week of treatment, there was no significant difference in body weight between
the REF, LS, ET and LS+ET groups. However, ET increased lean body mass in rats (P = 0.019). In addition, ET was
more effective than LS in reducing adiposity (P = 0.019), serum insulin (P = 0.022) and TNF-a (P = 0.044).
Conversely, LS increased serum adiponectin (P = 0.021) levels and reduced serum total cholesterol concentration (P
= 0.042).

Conclusions: The results showed that LS had no beneficial effects on insulin sensitivity or adiposity in previously
obese rats. On the other hand, LS was effective in increasing adiponectin levels and in reducing total cholesterol
concentration.
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Background
Obesity is associated with a number of health problems
that are often summarized as the metabolic syndrome,
and its etiology may be associated with the consumption
of high energy-dense foods [1]. Excessive intake of diet-
ary fat promotes adipocyte hypertrophy, altering their
normal endocrine function to an inflammatory

pathologic condition that increases the secretion of
tumor necrosis factor-alpha (TNF-a) and interleukin-6
(IL-6), among other proinflammatory cytokines, and
concomitantly reducing adiponectin secretion [2,3].
Previous studies have demonstrated that dietary leu-

cine regulates body weight and glucose homeostasis [4-
10]. Within this context, several studies support the
hypothesis that leucine plays an important role in the
regulation of metabolism and energy balance by directly
affecting peripheral tissues, such as white adipose tissue,
liver, and muscle. For example, leucine has been shown
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to increase the secretion of leptin [11] and adiponectin
[12,13] from adipocytes.
Another important and widely accepted strategy for

the maintenance of body weight and prevention of obe-
sity is regular physical exercise [14,15]. The beneficial
effects of physical exercise on weight loss are attributed
to body fat reduction, maintenance of lean body mass
and improvement of metabolic condition, e.g., increasing
glucose uptake, especially in skeletal muscle [14,15].
Moreover, chronic physical exercise has several effects
secondary to body fat loss, including a reduction in the
synthesis and secretion of proinflammatory adipokines
[16,17] and an increase in circulating levels of adiponec-
tin, the main anti-inflammatory molecule secreted by
adipocytes [18,19]. Physical exercise increases energy
expenditure, exerting a greater effect during a state of
negative energy balance, especially when combined with
a reduction in the consumption of high energy-dense
foods [20].
Within this context, in which the most recommended

lifestyle changes for the treatment of obesity and dia-
betes include an adequate diet and regular physical exer-
cise, leucine supplementation (LS) and physical exercise
may affect the maintenance of body weight and, possi-
bly, the metabolic status. Therefore, the present study
was designed to evaluate the potential therapeutic effect
of these two factors on the treatment of obesity. For this
purpose, adult rats previously treated for 15 weeks with
a high-fat diet (HFD) received chronic LS alone or com-
bined with endurance training (ET). The effects of 6-
week LS on body composition, food intake, adipocyte
volume, and serum levels of several pro- and anti-
inflammatory metabolic markers were assessed.

Methods and Procedures
Animals
Male Sprague-Dawley rats (approximately 120 days old)
were obtained from the Animal Laboratory of the
Faculty of Pharmaceutical Sciences at the University of
São Paulo and were kept with food and water ad libi-
tum. The rats were maintained in a room at an ambient
temperature of 22 ± 2°C and a relative humidity of 55 ±
10% under a 12-h light/12-h dark cycle. All animal pro-
cedures were approved by the Ethics Committee for ani-
mal experimentation of the Faculty of Pharmaceutical
Sciences, University of São Paulo, according to the
guidelines of the Brazilian College on Animal
Experimentation.

Diet and experimental design
The experimental diets were prepared according to the
recommendations of the American Institute of Nutrition
for adult rats and are shown in Table 1[21]. After
weight distribution, rats were fed the control diet (CD,

n = 10) or HFD (n = 37) for 15 weeks. At the end of
the first 15 weeks, 10 animals in the CD group and 7
animals in the HFD group were sacrificed in order to
evaluate their metabolic status. After 15 weeks on HFD,
the obese animals were divided into four subgroups of
treatment for 6 weeks: i) reference (REF) group (REF, n
= 7) receiving the CD; ii) LS group (LS, n = 8) receiving
diet supplemented with 5% L-leucine (Ajinomoto Intera-
mericana Indústria e Comércio Ltda, São Paulo, Brazil);
iii) endurance training group (ET, n = 8) receiving the
CD, and iv) LS plus ET group receiving diet supplemen-
ted with 5% L-leucine (LS+ET, n = 7). Other studies
used this leucine dose and no toxic effect was reported
[22,23].
Body weight and food intake were assessed weekly and

final body weight was recorded immediately before
euthanasia. At the end of 21 weeks, rats were fasted for
12 hours, and 72 hours after the last exercise session, the
animals were anesthetized with rodent cocktail [xylazine
hydrochloride (20 mg/mL), ketamine hydrochloride (100
mg/mL), acepromazine (20 mg/mL), and distilled water
(4.5/4.5/1.8/7.2, v/v)]. Trunk blood samples were col-
lected after decapitation and centrifuged and serum was
stored in a freezer at -80°C. The gastrointestinal tract was
completely emptied and washed with saline. Subcuta-
neous (SC), epididymal (EP), and retroperitoneal (RP)
white adipose fat pads were totally excised, weighed, and
processed for adipocyte isolation. Body composition was
determined by chemical analysis of the carcass as pre-
viously described by Donato et al. [5].

Endurance training
The exercise program consisted of continuous swim-
ming in individual tanks filled with water and main-
tained at 28-32°C. Animals were trained for 6 weeks

Table 1 Diet composition1

Control diet High-fat diet + Leucine diet

g/kg diet

Cornstarch 620.6 282.6 570.6

Casein 140.0 140.0 140.0

Sucrose 100.0 100.0 100.0

Soybean oil 40.0 40.0 40.0

Lard - 338.0 -

Cellulose 50.0 50.0 50.0

AIN-93M mineral mixture 35.0 35.0 35.0

AIN-93M vitamin mixture 10.0 10.0 10.0

Choline bitartrate 2.5 2.5 2.5

L-Cystine 1.8 1.8 1.8

tert-Butylhydroquinone 0.008 0.008 0.008

L-Leucine - - 50.0

Total (g) 1.000 1.000 1.000
1Based on AIN-93M (21).
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during 60-min daily sessions, five times a week. All rats
swam with a load of 5% body weight, which was
attached to their tail. This training protocol is already
standardized in our laboratory [24,25].

Adipocyte isolation
Adipocytes were isolated with collagenase as previously
described [26]. The isolated adipocytes (~7 to 8 × 105

cells/mL) were resuspended in EHB buffer (Earle’s salts,
20 mM HEPES, 1% bovine serum albumin, 2 mM
sodium pyruvate, and 4.8 mM sodium bicarbonate), pH
7.4 at 37°C. For morphometric analysis, aliquots of the
cell suspension were used to measure the transverse dia-
meter of 100 isolated adipocytes with a light microscope
equipped with a micrometer. Assuming that the isolated
adipocyte is spherical, this value was used to calculate
the volume and average cell surface area according to
the formulas proposed by Fine & Digirolamo [27]. The
number of adipocytes was determined by the ratio of
total tissue weight (pg) to average adipocyte mass (pg).

Serum analysis
Serum levels of total cholesterol, high-density lipopro-
tein (HDL)-cholesterol, triacylglycerol (TG), and glucose
were determined by enzymatic methods using commer-
cial kits (Labtest Diagnóstica kit, Glucose PAP Liqui-
form, São Paulo, Brazil). Serum leptin and insulin
concentrations were quantified using radioimmunoassay
kits (Linco Research, Inc., St Charles, MO, USA). Serum
adiponectin level was determined with an enzyme-linked
immunosorbent assay (ELISA) kit (Linco Research, Inc.).
Serum TNF-a d was quantified using the LINCOplex
assay (Linco Research, Inc.). The blood concentration of
amino acids was determined by the methods of White
et al. [28] and Hagen et al. [29]. The homeostasis model
assessment (HOMA) index was calculated as an indica-
tor of insulin resistance: HOMA = (fasting plasma insu-
lin concentration (ng/mL)) × (fasting plasma glucose
(mmol/L))/22.5
The ratio adiponectin/fat pad weight ratio was calcu-

lated by dividing the basal adiponectin for fat pad
weight.

Statistical analysis
Data are expressed as mean ± SEM. The unpaired two-
tailed Student t test was used to evaluate obesity status.
The effect of LS and ET was analyzed by factorial
ANOVA (22) followed by Tukey’s honestly significant
difference test. ANOVA for repeated measures was used
for the comparison of body weight, followed by Dun-
nett’s test when comparing times. Differences were con-
sidered to be significant when P ≤ 0.05. Calculations
were performed and graphs were drawn using the Statis-
tica version 7.1 program (StatSoft).

Results
Characterization of obesity model, hyperglycemia and
hyperinsulinemia
Administration of the HFD for 15 weeks induced a sig-
nificant increase in total adiposity (P = 0.024), including
increases in SC (P = 0.045), EP (P = 0.004) and RP (P
<0.001) fat pads and hypertrophy of SC (P = 0.041) and
EP (P = 0.014) adipocytes when compared to the CD
group (Table 2).
We also observed a significant increase in blood glu-

cose (12%) (P = 0.035), insulin (86%) (P = 0.022), TNF-
a (28%) (P = 0.010), and leptin (130%) (P < 0.001) levels
in the HFD group compared to the CD group. On other
hand, serum adiponectin concentration was significantly
(P = 0.006) reduced (-27%) in the HFD group (Table 2).
Taken together, these results indicate that the HFD
caused obesity and insulin resistance and altered the
blood levels of major adipokines in rats.

LS and ET in the treatment of diet-induced obesity
After induction of obesity with HFD, the groups of rats
started the treatments with a similar initial body weight.
No significant differences in daily energy intake were
observed between groups: REF (90.26 ± 9.37 kcal/day);
LS (97.75 ± 7.51 kcal/day); ET (98.75 ± 10.44 kcal/day);
LS+ET (82.26 ± 11.19 kcal/day); diet (P = 0.655); train-
ing (P = 0.728), and interaction (P = 0.252). During the
fifth week of the experiment, physical training signifi-
cantly (P = 0.045) reduced body weight. However, at
the end of the sixth week of treatment, there was no
significant difference (P > 0.05) in body weight between
the REF, LS, ET and LS+ET groups (Figure 1A). In
addition, leucine exerted a transient effect on the reduc-
tion of body weight in the LS group in the second and
third week (P = 0.002). In parallel, LS+ET caused

Table 2 Obesity state and metabolic parameters in rats
after 15 weeks of dietary treatment

Control diet High-fat diet P

Body fat, % 14.46 ± 1.16 20.94 ± 2.39* 0.024

SC fat pad, g/100 g 2.77 ± 0.17 4.09 ± 0.69* 0.045

EP fat pad, g/100 g 1.98 ± 0,14 2.72 ± 0.17* 0.004

RP fat pad, g/100 g 1.40 ± 0.09 2.29 ± 0.19* 0.000

EP adipocyte volume, pL 350.80 ± 22.42 432.80 ± 14.28* 0.014

SC adipocyte volume, pL 257.90 ± 28.31 359.30 ± 36.55* 0.041

Glucose, mg/dL 132.91 ± 4.73 148.80 ± 3.88* 0.035

Insulin, ng/mL 0.53 ± 0.04 0.99 ± 0.19* 0.022

TNF-a, pg/mL 45.78 ± 2.54 59.05 ± 3.94* 0.010

Leptin, ng/mL 12.70 ± 1.22 25.40 ± 2.78* 0.000

Adiponectin, ng/mL 22.67 ± 1.38 16.38 ± 1.28* 0.006

SC, subcutaneous; EP, epididymal; RP, retroperitoneal

Values are mean ± sem (control group, n = 10; high-fat group, n = 7)

*P <0.05 vs. control diet group.
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weight loss that persisted throughout the experimental
period (P <0.001) (Figure 1A). When body weight varia-
tion was analyzed, both LS (P = 0.028) and ET (P =
0.006) significantly reduced body weight gain. Neverthe-
less, analysis of treatment interaction showed similar
responses in body weight variation for the two treat-
ments (Figure 1B).

ET is more efficient than LS in reducing body adiposity in
previously obese rats
ET reduced (P = 0.019) fat content in the carcass
(Figure 2A). Furthermore, we found higher lean mass in
trained animals compared to sedentary animals (P =
0.019). However, there was no significant difference (P >
0.05) in carcass protein or moisture content in trained

Figure 1 Effect of chronic exercise training and/or leucine supplementation on body weight changes. (A) Body weight. #, effect of
training in fifth week (P = 0.045); + vs week 1 (P < 0.002). (B) Total body weight variation (final - initial body weight). *, effect of diet (P = 0.028);
#, effect of training, (P = 0.006). Experimental groups: control diet (REF), diet supplemented with 5% L-leucine (LS), 6 weeks of endurance training
(ET) plus standard diet, and diet supplemented with 5% L-leucine plus endurance training (LS+ET). Values are mean ± sem (n = 7-8 rats per
group).
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animals supplemented with leucine and no interaction
between these variables was observed (Figure 2A).
EP fat pad weight was significantly (P = 0.033) lower in

the trained group compared to the sedentary group
(Table 3). Conversely, LS was less effective in reducing
body fat as can be seen by the higher (P = 0.030) value
obtained for the sum of fat pads (Table 3). Both LS (P =
0.020) and ET (P = 0.005) induced distinct but significant
effects on EP adipocyte volume (Figure 2B). In parallel,
LS was less effective in reducing adipocyte expansion in
the EP region, whereas ET significantly reduced EP

adipocyte volume. Furthermore, ET increased the num-
ber of EP adipocytes (P = 0.044) (Figure 2C).

LS reduces serum total cholesterol levels in sedentary
animals
Both LS and ET did not induce significant differences in
serum TG (Figure 3A) or HDL-cholesterol levels (Figure
3C). LS reduced serum total cholesterol concentration in
sedentary animals (P = 0.042), but not in trained animals,
since a significant difference was only observed for the
interaction of the two factors (P = 0.018) (Figure 3B).

ET is more efficient than LS in reducing insulin levels and
HOMA index
Serum glucose level was not significantly altered by diet
or ET (Figure 3D). However, only ET significantly
reduced (P = 0.022) serum insulin concentration (Figure
3E). Regarding HOMA index, a strong trend (P = 0.059)
in reducing insulin resistance status was seen in the
trained animals when compared with sedentary groups,
REF (0.29 ± 0.05); LS (0.32 ± 0.06); ET (0.21 ± 0.05); LS
+ET (0.20 ± 0.03); diet (P = 0.872); training (P = 0.059),
and interaction (P = 0.683).

LS and ET differently affect the levels of adipokines
Serum adiponectin level was significantly increased (P =
0.021 for diet factor) after 6 weeks of LS (Figure 4A),
but the same effect was not observed for ratio adiponec-
tin/fat pad weight, REF (3.81 ± 0.43 ng/mL/100 g); LS
(5.56 ± 0.75 ng/mL/100 g); ET (3.66 ± 0.39 ng/mL/100
g); LS+ET (4.08 ± 0.33 ng/mL/100 g); diet (P = 0.041);
training (P = 0.121), and interaction (P = 0.202) and
TNF-a (Figure 4B). ET was effective in significantly
reducing (P = 0.044) TNF-a concentration when com-
pared to the sedentary groups (Figure 4B), whereas
serum leptin concentration was not significantly affected
by either diet or ET (Figure 4C).

Effect of LS and ET on the plasma concentration of amino
acids
Plasma leucine concentration was not significantly
altered by diet (P = 0.952) or ET (P = 0.077) in over-
night fasted rats. Moreover, significant differences were
observed for some amino acids after overnight fasting,
with the effects related to supplementation with leucine
[glycine, (P = 0.008) and threonine, (P = 0.015)], ET
[proline, (P = 0.038)] and we found some interactions
[aspartic acid, (P = 0.018), glycine (P = 0.012), histidine
(P = 0.031), threonine (P = 0.005), methionine (P =
0.033) and taurine (P = 0.003)] (Figure 5).

Discussion
Previous studies have demonstrated improvement in the
control of body weight or a reduction of body fat

Figure 2 Chronic exercise is more efficient than leucine
supplementation in reducing adiposity. (A) Body composition
(%). #, effect of training (P < 0.019). (B) Epididymal adipocyte
volume. #, effect of training (P < 0.005); *, effect of diet, (P <0.020).
(C) Epididymal adipocyte number #, effect of training (P < 0.044).
Experimental groups: control diet (REF), diet supplemented with 5%
L-leucine (LS), 6 weeks of endurance training (ET) plus standard diet,
and diet supplemented with 5% L-leucine plus endurance training
(LS+ET). Values are mean ± sem (n = 7-8 rats per group).
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content with leucine or branched-chain amino acid sup-
plementation [5,8,30-32]. However, other studies have
not observed these responses [4,9,33]. In some previous
studies, animals were simultaneously exposed to a HFD
and LS. Thus, these studies investigated the effect of

leucine on the prevention of diet-induced obesity [8,9].
In our study, we first induced obesity, hyperglycemia
and hyperinsulinemia in animals using a HFD. After
establishment of diet-induced obesity, the animals
received a control diet supplemented or not with leucine

Table 3 Effect of chronic (6 weeks) physical training and/or leucine supplementation on fat pad weight

2-Way ANOVA P-values

REF LS ET LS+ET Diet Training Interaction

SC, g/100 g b.w. 2.72 ± 0.20 3.23 ± 0.35 2.59 ± 0.21 2.92 ± 0.18 0.110 0.397 0.717

EP, g/100 g b.w. 1.93 ± 0.16 2.45 ± 0.29 1.70 ± 0.14 1.82 ± 0.07 0.108 0.033* 0.301

RP, g/100 g b.w. 1.36 ± 0.15 1.78 ± 0.23 1.18 ± 0.13 1.41 ± 0.09 0.054 0.095 0.554

∑, g/100 g b.w. 6.01 ± 0.45 7.79 ± 0.82 5.47 ± 0.45 6.14 ± 0.30 0.030* 0.052 0.305

(REF), control diet; (LS), diet supplemented with 5% L-leucine; (ET), endurance training plus control diet; (LS+ET), diet supplemented with 5% leucine plus
endurance training.

SC, subcutaneous; EP, epididymal; RP, retroperitoneal; ∑, sum of fat pad weight.

Values are mean ± sem (n = 7-8 rats per group).

*Effect of diet, P <0.05; #effect of training, P < 0.05.

Figure 3 Leucine supplementation reduces serum total cholesterol levels in sedentary animals. (A) Serum concentration of triacylglycerol.
(B) Serum concentration of cholesterol. *, effect of diet (P <0.042); interaction of the two factors (P = 0.018). (C) Serum concentration of HDL-
cholesterol. (D) Serum concentration of glucose. (E) Serum concentration of Insulin. #, effect of training (P < 0.022). Experimental groups: control
diet (REF), diet supplemented with 5% L-leucine (LS), 6 weeks of endurance training (ET) plus standard diet, and diet supplemented with 5% L-
leucine plus endurance training (LS+ET). Values are mean ± sem (n = 5-8 rats per group).

Torres-Leal et al. Nutrition & Metabolism 2011, 8:62
http://www.nutritionandmetabolism.com/content/8/1/62

Page 6 of 10



in order to study the potential of this amino acid in
reverting the obesity, hyperglycemia and hyperinsuline-
mia phenotypes associated with long-term exposure to a
HFD. Furthermore, we evaluated the effects of LS com-
bined with ET, since physical exercise is a recognized
strategy used to improve body weight control and insu-
lin sensitivity. We found that chronic LS in this experi-
mental paradigm did not alter food intake nor did it

reduce fat pad mass or visceral adipocyte volume. We
also showed that LS affected the endocrine function of
adipocytes, increasing the circulating levels of adiponec-
tin. Furthermore, we observed a beneficial effect of LS
on the serum concentrations of total cholesterol. How-
ever, no changes in serum glucose, insulin, leptin, or
TNF-a were seen. In comparison to LS alone, ET was
more effective in attenuating the degree of adiposity,
hyperinsulinemia and circulating levels of TNF-a.
The model of obesity induced by HFD is widely

accepted and has been used alone, or in combination
with other strategies, as an animal model of excess body
fat [1,34,35]. Our results validate the diet employed to
induce obesity, confirming that rats chronically exposed
to a HFD present elevated body fat with hypertrophy of
SC and EP adipocytes, leptin resistance, abnormal glu-
cose homeostasis and a proinflammatory state character-
ized by increased serum TNF-a and reduced serum
adiponectin levels. Therefore, LS was evaluated in ani-
mals already showing indicators of metabolic syndrome
[1,34,35].
The present results indicate at transient effect of LS on

body weight, since we observed a lower body weight at
the beginning of supplementation. However, these ani-
mals recovered their weight later. Under these experi-
mental conditions, leucine is unable to maintain its effect
of reducing body weight for a prolonged period of sup-
plementation. On the other hand, when supplementation
is combined with ET body, weight loss is equally achieved
and maintained during the treatment period.
With regard to adipose mass and adipocyte volume,

we observed independent effects of LS and ET. In this
case, whereas trained animals displayed reduced adipos-
ity, leucine-treated animals had greater fat mass and fat
cell volume. The present results regarding adiposity
agree with the already known heterogeneity of fat pads.
In this respect, LS favored a higher adiposity in the visc-
eral region, irrespective of the fat pad assessed. Interest-
ingly, ET affected the same fat pads, but in opposite
way, favoring fat mass reduction.
This effect on adiposity observed in leucine-treated ani-

mals may be related to mammalian target of rapamycin
(mTOR) activation. Although we did not directly assess
mTOR activation in adipose tissue, our results are consis-
tent with those obtained by Chakrabarti et al. [36]. These
authors showed that activation of mTORC1 signaling in
3T3-L1 adipocytes transcriptionally inhibits the expression
of adipose triglyceride lipase (ATGL) and hormone sensi-
tive lipase (HSL), thus suppressing lipolysis of TG and dia-
cylglycerol in adipose tissue. Moreover, these authors
found that mTORC1 activation in adipocytes promotes de
novo lipogenesis and TG accumulation. Accordingly,
Polak et al. [37] observed that adipocytes from knockout
animals for raptor, a regulatory protein associated with

Figure 4 Leucine supplementation increases adiponectin levels.
(A) Adiponectin. *, effect of diet (P <0.021). (B) TNF-a. #, effect of
training (P < 0.044). (C) Leptin. Experimental groups: control diet
(REF), diet supplemented with 5% L-leucine (LS), 6 weeks of
endurance training (ET) plus standard diet, and diet supplemented
with 5% L-leucine plus endurance training (LS+ET). Values are mean
± sem (n = 6-8 rats per group).
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rapamycin-sensitive mTOR and responsible for mTORC1
activity [38], had lower deposition of TG. In a recent
study, Zeanandin et al. [23] demonstrated that 18-month-
old rats showed hypertrophy and hyperplasia of adipose
tissue after 6 months of LS. These effects were attributed
to an increased phosphorylation of mTOR and increased
mRNA expression of PPARg in adipose tissue. This evi-
dence suggests that mTOR signaling is an important intra-
cellular pathway, directly promoting lipogenic processes in
adipocytes.
Some studies have shown that LS reduces adiposity after

dietary intervention, such as LS combined with food
restriction [5,32]. Furthermore, several studies adminis-
tered much lower doses of LS (0.59%) [4,5,33] than that
used in the present study (5%). In addition, the initial
metabolic condition of the animals in our study may have
contributed to a potential lipogenic effect of LS. Thus, our
results suggest that LS has few positive effects on the treat-
ment of obesity, hyperglycemia and hyperinsulinemia
when these conditions are already present. In addition,
our in vivo data confirm in vitro studies [39] suggesting
that, depending on the metabolic condition of the body,
leucine exerts a lipogenic effect, possibly by activating
mTORC1 in adipocytes [36,37].
Similarly, when insulin-resistant adipocytes were incu-

bated in the presence of leucine and insulin, the recov-
ery of lipogenesis and glucose uptake were observed
[39]. From this perspective, these responses support our
hypothesis that in the presence of insulin resistance leu-
cine may retrieve the lipogenic effects of insulin, pro-
moting body fat deposition, as proposed by Hinault et
al. [39].

Based on our results regarding LS in initially hyperin-
sulinemic and hyperglycemic animals, no significant
effects on serum glucose or insulin levels were observed.
These effects agree with data from other studies in
which LS did not affect body composition [4,9]. On the
other hand, leucine-induced changes in hyperglycemia
and hyperinsulinemia have been suggested to depend on
changes in adiposity [8].
With regard to hormonal changes, we observed that

the type of treatment had different effects on serum
TNF-a (ET effect) and adiponectin (LS effect) levels.
Whereas LS caused no changes in TNF-a concentration,
ET reduced serum TNF-a levels. The concentrations of
TNF-a are inversely proportional to the insulin response.
Moreover, the lower serum TNF-a levels might be due
to reduced adiposity in trained animals [40].
In vitro experiments showed that leucine promotes

increased synthesis and secretion of adiponectin in
3T3-L1 adipocytes [12,13], and this effect may be
mTOR-dependent [41]. Adiponectin is directly asso-
ciated with improved glucose uptake by increasing
insulin sensitivity [42]. However, the increased serum
adiponectin level seen in our leucine-supplemented
groups did not improve the glucose homeostasis of
these animals. Studies suggest that increases in adipo-
nectin concentration may be related to the increase of
different isoforms of this adipokine [43], and some of
these isoforms are not related to improvement of glu-
cose metabolism or insulin sensitivity [43]. Thus,
further studies are required to clarify which isoforms
of adiponectin are stimulated by leucine and how this
interferes with insulin sensitivity.

Figure 5 Effect of chronic exercise and/or leucine supplementation on circulating levels of amino acids. #, effect of training (P < 0.05); *,
interaction for amino acids glycine and threonine (P <0.05). Experimental groups: control diet (REF), diet supplemented with 5% L-leucine (LS), 6
weeks of endurance training (ET) plus standard diet, and diet supplemented with 5% L-leucine plus endurance training (LS+ET). Values are mean
± sem (n = 5-4 rats per group).
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Another effect of LS was its ability to reduce the
serum concentration of total cholesterol, and this
response did not depend on changes in body weight or
fat mass. However, leucine was only able to reduce
serum cholesterol levels in sedentary animals since the
same was not seen in the trained group. This response
related to LS agrees with the results of Zhang et al. [8]
who observed that the reduction in cholesterol levels
was largely independent of leucine-induced changes in
adiposity. However, little is known about the molecular
mechanisms activated by LS that are able to change
cholesterol metabolism.
In conclusion, the present study provides further evi-

dence indicating that the effects of leucine on body
composition are highly dependent on the metabolic
state of the animals at the beginning of LS. In this
respect, several studies have shown no change or a
reduction in fat mass when leucine is administered in
situations that improve insulin sensitivity, such as food
restriction [5] or combined with physical exercise (pre-
sent study), or simultaneously with a HFD [8,9,44]. On
the other hand, a lipogenic effect of leucine treatment is
observed when the amino acid is administered to cells
previously exposed to situations that induce insulin
resistance [39]. Therefore, our findings support a poten-
tial lipogenic role of leucine under conditions of preex-
isting hyperglycemia and hyperinsulinemia as suggested
in other studies. The results also showed that ET com-
bined with LS had no additional beneficial effects other
than those seen with either treatment alone. Finally,
although leucine had no beneficial effects on insulin
sensitivity, LS was effective in decreasing the circulating
levels of cholesterol and in increasing serum adiponectin
concentration.
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