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Abstract
There has been intense interest in defining the functions of UCP2 and UCP3 during the nine years
since the cloning of these UCP1 homologues. Current data suggest that both UCP2 and UCP3
proteins share some features with UCP1, such as the ability to reduce mitochondrial membrane
potential, but they also have distinctly different physiological roles. Human genetic studies
consistently demonstrate the effect of UCP2 alleles on type-2 diabetes. Less clear is whether UCP2
alleles influence body weight or body mass index (BMI) with many studies showing a positive effect
while others do not. There is strong evidence that both UCP2 and UCP3 protect against
mitochondrial oxidative damage by reducing the production of reactive oxygen species. The
evidence that UCP2 protein is a negative regulator of insulin secretion by pancreatic β-cells is also
strong: increased UCP2 decreases glucose stimulated insulin secretion ultimately leading to β-cell
dysfunction. UCP2 is also neuroprotective, reducing oxidative stress in neurons. UCP3 may also
transport fatty acids out of mitochondria thereby protecting the mitochondria from fatty acid
anions or peroxides. Current data suggest that UCP2 plays a role in the metabolic syndrome
through down-regulation of insulin secretion and development of type-2 diabetes. However, UCP2
may protect against atherosclerosis through reduction of oxidative stress and both UCP2 and
UCP3 may protect against obesity. Thus, these UCP1 homologues may both contribute to and
protect from the markers of the metabolic syndrome.

Background
The uncoupling proteins 1, 2 and 3 (UCP1, UCP2, and
UCP3) are members of the super family of anion carrier
proteins located in the inner membrane of mitochondria.
UCP1 is found only in brown fat mitochondria of mam-
mals. Studies, beginning in the 1960s, identified the func-
tion of UCP1 in providing heat and decreasing energy
efficiency through dissipation of the proton electrochem-
ical gradient across the inner mitochondrial membrane of
brown adipose tissue without the generation of ATP
(reviewed in [1]). Thus, the function of UCP1 was known

before the gene was cloned. On the other hand, UCP2 [2]
and UCP3 [3,4], were identified in 1997 by reverse clon-
ing, i.e. by 'mining' databases of expressed sequence tags
or from similarity to UCP1 in cDNA libraries (reviewed in
[5]). UCP2 and UCP3 have 59% and 57% identity, respec-
tively, with UCP1, and 73% identity with each other [6].

Since their cloning in 1997 through July 2006, 945 publi-
cations in English, of which 131 are reviews, involving
UCP2 and/or UCP3 are listed in the PubMed database [7],
indicating the interest in and the uncertainty regarding the
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functions of these UCP1 homologues. This brief review
will discuss the tissue distribution, reactions, and physio-
logical functions of UCP2 and UCP3. Finally, regulation
of these UCPs by dietary fat and the relevance of the UCP
proteins to the metabolic syndrome will be discussed. For
greater detail on these topics the reader is referred to the
following recent reviews [5,6,8-11].

Tissue distribution
UCP2 mRNA is widely distributed with greatest amounts
found in spleen, thymus, pancreatic β-cells, heart, lung,
white and brown adipose tissue, stomach, testis, and mac-
rophages, and lesser amounts found in brain, kidney,
liver, and muscle (reviewed in [5,10]). Although UCP2
mRNA is found in most organs of the body, there are two
difficulties in the determination of which tissues translate
UCP2 mRNA into UCP2 protein. First, since UCP2 mRNA
is expressed in macrophages, including resident macro-
phages in several tissues such as brain, liver and lung
(reviewed in [10]), it is difficult to determine if the UCP2
protein is in the macrophages or in the parenchymal cells
of the tissue. Second, many early studies used antibodies
to UCP2 protein whose specificity was not verified in
UCP2 knockout models. Such verification is essential
since most "UCP2" antibodies bind to proteins of the
same molecular weight as UCP2 even in knockout
homozygotes. A few authors have hypothesized, based on
Western blots, that UCP2 protein is much less widely dis-
tributed than is UCP2 mRNA. However, presence or abun-
dance of UCP2 protein have not been assessed by more
sensitive methods. UCP2 protein is clearly found in
parenchymal cells of brain, spleen, white adipose tissue
and β-cells of the pancreas, and in macrophages in brain,
liver and lung but it must be remembered that the amount
of UCP2 mRNA may not necessarily predict the amount
of UCP2 protein in any tissue or under varying conditions
[12].

Both UCP3 mRNA and protein, on the other hand, are
found only in skeletal muscle and in heart. UCP3 mRNA
is also found in brown fat, but whether or not the protein
has been identified there is controversial.

Reactions
The primary function of UCP1 is to allow a leak of pro-
tons through the inner mitochondrial membrane of
brown fat thereby uncoupling substrate oxidation from
phosphorylation of ADP to ATP resulting in rapid oxygen
consumption, heat production, and energy wastage. This
function of UCP1 is mediated by the sympathetic nervous
system and norepinephrine in brown adipose tissue and
is stimulated by fatty acids and inhibited by purine nucle-
otides. When UCP2 and UCP3 were first cloned, it was
speculated that these proteins would fulfill much the
same function, albeit in tissues other than brown fat.

However, it quickly became evident that the UCP homo-
logues were not thermogenic to the same degree as UCP1
[13]. Expression of UCP2 and UCP3 can be as much as
1000 fold less than expression of UCP1 [12] and there-
fore, the expected rate of proton conductance due to
UCP2 or UCP3 would be much lower than that produced
by UCP1.

Two mechanisms have been proposed to explain the reac-
tions catalyzed by UCP1-3; net proton transport across the
membrane and/or export of fatty acid anions (reviewed in
[6,9]) both of which are generally accepted for UCP1.
UCP2 and UCP3 do, in fact, increase net proton conduct-
ance across the mitochondrial inner membrane, but only
when activated either directly or indirectly by superoxide
or by derivatives of reactive oxygen species; neither UCP2
nor UCP3 appear to catalyze basal proton conductance.
Activation, in turn, requires fatty acids (reviewed in [9]).
Both UCP2 and UCP3, like UCP1, are inhibited by purine
nucleotides.

Physiological functions
These novel uncoupling proteins have several hypothe-
sized functions including thermogenesis in certain tissues,
protection from reactive oxygen species (ROS), mediation
of insulin secretion, neuroprotection and export of fatty
acids. Several of these functions are related to the etiology
of the metabolic syndrome.

Thermogenesis
Energy wastage and protection from obesity were initially
suggested to be significant functions of UCP2 and UCP3
due to their homology to UCP1 and their distribution in
tissues, such as white adipose tissue and muscle, that
could dissipate energy. Gene expression of UCP2 and
UCP3 increases during fasting [14], opposite of what
would be expected for a thermogenic compound, and nei-
ther UCP2 nor UCP3 knockout mice are obese [15,16],
providing evidence against these proteins contributing to
whole body thermogenesis. Transgenic mice over-express-
ing a UCP2/UCP3 construct, however, are leaner than
wildtype [17,18] and those overexpressing only UCP3 in
skeletal muscle are leaner despite hyperphagia [19]. How-
ever, there is a concern that uncoupling in over-expression
studies is an artifact and does not reflect the native func-
tion of the protein in the cell. Thus, caution is appropriate
in ascribing a whole body thermogenic function and pro-
tection against obesity to UCP2 or UCP3 (reviewed in
[8,9]).

Two lines of evidence suggest that, under specific condi-
tions, the UCP homologues can have a thermogenic func-
tion. Higher temperature is co-localized with UCP2
mRNA within certain areas of the brain suggesting that
UCP2 could function as a thermogenic protein in the
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microenvironment of the brain [20,21]. In UCP3 knock-
out mice, the thermogenic response to the drug MDMA
(ecstasy) is significantly reduced, suggesting that UCP3 in
muscle can affect whole body thermogenesis in this non-
physiological condition [22].

Protection from oxidative damage
ROS production occurs to a large extent in mitochondria
and is very sensitive to the mitochondrial membrane
potential. When electron flow through the respiratory
chain is elevated, 'backed up' electrons may react with
oxygen to produce ROS (Figure 1). It is proposed that one
function of both UCP2 and UCP3 is to mildly uncouple
respiration, allowing a more rapid electron flux, thus
reducing membrane potential resulting in reduced ROS
production (Figure 2). Superoxides and derivatives of
ROS are known to activate GDP-sensitive proton conduct-
ance catalyzed by UCP2 or UCP3, thus forming a feedback
loop for control of ROS production. Since even mild
uncoupling has a large effect on reducing ROS produc-
tion, this hypothesis has strong support and is now gener-
ally accepted (reviewed in [6,8,10]. UCP2 knockout mice
have elevated ROS production in macrophages [16] and
pancreatic islet cells [23] and UCP3 knockout mice have
elevated ROS in muscle [24] further supporting the role of
these UCPs in protecting against ROS production and tis-
sue oxidative damage.

Mediation of insulin secretion
It is now well established that UCP2 plays an important
role in regulation of insulin secretion. Pancreatic β-cells
secrete insulin in response to a meal by sensing the ATP/
ADP ratio resulting from glucose metabolism in the cell
(Figure 1). UCP2, by mildly increasing proton leak,
decreases the ATP/ADP ratio of the cell thus reducing the
effect of glucose on insulin secretion (Figure 2) (reviewed
in [6,8,10]). Pancreatic islets from UCP2 knockout mice
(UCP2-/-) have increased insulin secretion in response to
glucose and these mice have higher blood insulin and
lower blood glucose than wildtype supporting the role of
UCP2 as a negative regulator of insulin secretion in the
whole animal [25]. Double mutant Lepob/ob UCP2-/- mice
have improved β-cell function independent of obesity
[25].

Neuroprotection
A number of studies suggest that UCP2 functions in neu-
roprotection, including following cerebral ischemia or
traumatic injury and prevention of seizures or Parkinson's
disease (reviewed in [10]). UCP2 is found in the inner
mitochondrial membranes in several brain regions and is
often co-expressed with neuropeptides in both rodents
and primates [21,26]. Several mechanisms contributing to
neuronal cell death, including excitotoxicity, mitochon-
dria-mediated cell death and ROS damage are affected by
UCP2 (reviewed in [10]). Exposing the neurons to periods
of sub-lethal ischemia preconditions the cells to survive
ischemic insults that would normally be lethal. This pre-

Insulin secretion during high fatty acid usageFigure 2
Insulin secretion during high fatty acid usage. (figure 
adapted from [6]) When FFA are elevated, such as with a 
high fat intake or during fasting, UCP2 expression is 
increased, the mitochondrial membrane potential is reduced, 
and fewer electrons pass through the electron transport 
chain resulting in reduced ATP production. The lower ATP/
ADP ratio results in diminished insulin secretion.
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Insulin secretion during high glucose usage. (figure 
adapted from [6]) In the normal fed state UCP2 expression is 
low. Metabolism is shifted toward glucose oxidation resulting 
in ROS production and generation of ATP. Insulin secretion 
is stimulated by the resulting high ATP/ADP ratio. Elevated 
ROS levels feed back to increase UCP2 thereby mildly 
uncoupling respiration, reducing membrane potential and 
ROS production.
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conditioning is protein synthesis dependent. UCP2 is
upregulated in the hippocampus following ischemic pre-
conditioning [27], suggesting that UCP2 functions as part
of the response to ischemic and oxidative stress in the
neurons. Since ROS production and oxidative damage are
involved in most neurodegenerative disorders, UCP2
induction was proposed to have a potential therapeutic
effect in the treatment of epilepsy, Parkinson's disease,
Alzheimer's disease, brain hypoxia and stroke [10]. UCP2,
in fact, was shown to have a neuroprotective effect in a
mouse model of Parkinson's disease [28]. Opposed to
increased UCP2 being neuroprotective is a study showing
that UCP2 knockout mice were less sensitive to ischemia
following cerebral artery occlusion than wildtype mice
[29]. These authors propose that UCP2 is not directly
involved in the regulation of ROS production, but rather
is acting through regulation of mitochondrial glutathione
[29].

Export of fatty acids
UCP3 has been proposed as a transporter of fatty acid ani-
ons out of mitochondria [30] by analogy with UCP1. The
fatty acid cycling model, proposed for UCP1 in 1996 [31],
suggests that UCP3, by transporting fatty acids out of
mitochondria, protects the mitochondria from the toxic
effects of fatty acid anions or peroxides [11]. The hypoth-
esis is attractive in that it is consistent with observations
that UCP3 expression is correlated with improved fatty
acid oxidation when fatty acid supplies are high, for exam-
ple with fasting or a high fat diet (reviewed in [6,8,11]).
Also, muscle UCP3 protein levels are increased when rats
are fed a diet high in long chain triglycerides but not a diet
high in medium chain triglycerides which are oxidized via
a different pathway [32], again linking fatty acid oxidation
with UCP3. Results from UCP3 knockout mice are not
consistent, however, some showing reduced rates of fatty
acid oxidation and others no effect (reviewed in [6,8].
Thus the proposal that UCP3 protects against fatty acid
toxicity in the mitochondria remains to be confirmed.

Effect of dietary fat
UCP2 and UCP3 expression is elevated during fasting [33]
or other states, including feeding of high fat diets, where
circulating fatty acid levels are elevated and there is a shift
from carbohydrate to lipid oxidation (Figures 1 and 2).
Most animal models show up-regulation of UCP2 and/or
UCP3 by high fat diets [2,34-37], although this has not
been universally observed. Up-regulation of UCP expres-
sion depends on strain and tissue type: a high fat diet
increased UCP3 mRNA expression in skeletal muscle of
C57BL/6J mice [37] and rats [38] but increased only
slightly UCP2 expression in white adipose tissue of AKR
mice and not at all in C57BL/6J mice [37] or in rats [38].
The up-regulation by a high fat diet of UCP3 protein also
occurs in human skeletal muscle [39].

A high fat, ketogenic diet increases UCP2 mRNA and pro-
tein levels and reduces ROS production in the brain
[35,40]. Conversely, substitution of a low fat diet to
immature rats reduces UCP2 levels and increases ROS
production and seizure-induced excitotoxicity [41]. Thus,
the ketogenic diet may be neuroprotective by diminishing
ROS production through activation of UCP2 in the brain
[35]. Indeed, UCP2 up-regulation in the brain is proposed
as the mechanism by which a ketogenic diet reduces pedi-
atric seizures.

Relevance to the metabolic syndrome
Features of the metabolic syndrome include central adi-
posity, increased plasma triglycerides and free fatty acids,
insulin resistance, hyperglycemia, increased inflamma-
tion and hypertension, leading to increased risk of type-2
diabetes, atherosclerosis and stroke. Several of these fea-
tures are influenced by UCP2 and/or UCP3.

Genetic association of natural polymorphisms with phe-
notypes in humans provides an independent method to
determine the in vivo functions of UCP2 and UCP3. Thus,
one can demonstrate the influence of UCP2 on type-2 dia-
betes or BMI in an association study even without proving
the underlying biochemical reaction carried out by these
proteins. Indeed, genetic studies can be used to guide bio-
chemical studies towards understanding the biochemistry
of UCP2 and UCP3.

Obesity
A review of human genetic studies examining expression
of UCP2 or UCP3 and the propensity to obesity suggested
that some obesity related phenotypes are significantly
associated with these UCPs. A UCP2 insertion/deletion
variant was associated with BMI in 4 studies and polymor-
phisms of UCP3 were associated with BMI in 2 studies
(reviewed in [42]). These authors concluded that since the
UCP2 insertion/deletion variant association with BMI was
observed in a variety of ethnic groups, the variant itself
underlies the association with BMI [42]. Population stud-
ies showed that a common polymorphism in the UCP2
promoter, -866G/A, was associated with a reduced risk of
obesity in Caucasian Europeans [43,44]. However, the
data suggesting an effect of UCPs on obesity remains
uncertain, with two recent papers reporting no linkage or
association with UCP2 or UCP3 alleles [45,46], while
another reports association of UCP3 alleles with measures
of body composition in women [47].

Type-2 diabetes
As noted above, UCP2 is a regulator of insulin secretion
and it is proposed that increased expression of UCP2 in
pancreatic β-cells results in chronic down-regulation of
glucose stimulated insulin secretion (Figure 2) leading to
β-cell dysfunction and the development of type-2 diabetes
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(reviewed in [6,8,10]). Several population studies now
show that a common functional polymorphism in the
UCP2 promoter (-866G/A, the same polymorphism
found to be associated with resistance to obesity in Cau-
casians) enhances UCP2 transcriptional activity [43] and
increases the risk of developing type-2 diabetes [44]. This
polymorphism is associated with impaired β-cell function
[48], impaired insulin sensitivity [49], and with earlier,
more severe diabetes [50].

Interestingly, the same UCP2 -866G/A polymorphism
and a -55C/T polymorphism in UCP3 are both associated
with significantly reduced prevalence of diabetic neurop-
athy in type-1 diabetics [51]. Presumably these polymor-
phisms prevent mitochondrial mediated neuronal injury
and thus protect against diabetic neuropathy. Another
common polymorphism in UCP2, -55A/V, was examined
in the Coronary Artery Risk Development in Young Adults
(CARDIA) study. The -55V/V genotype was positively
related to diabetes, perhaps through insulin resistance in
individuals with impaired glucose homeostasis [52]. Insu-
lin resistance of type-2 diabetes and obesity involves mus-
cle, liver and adipocytes. UCP2 knockout mice show
increased insulin sensitivity and are protected against die-
tary fat induced insulin resistance [53]. Conversely, data
from in vitro studies in L6 muscle cells suggest that UCP3
functions to facilitate fatty acid oxidation and minimize
mitochondrial ROS production, perhaps thereby reducing
muscle insulin resistance [54].

The data presently available suggest that UCP2 up-regula-
tion has opposing effects on different components of
type-2 diabetes. Increased UCP2 results in β-cell dysfunc-
tion, impaired insulin sensitivity, and earlier, more severe
diabetes, but may protect from diabetic neuropathy. Thus,
UCP2 is proposed as a diabetes gene [55]. Increased UCP3
may, on the other hand, reduce muscle insulin resistance.

Atherosclerosis
UCP2 protects against atherosclerosis in animal models
[56] potentially through inhibition of ROS production in
endothelial cells [57] and inhibition of monocyte accu-
mulation in the artery wall [58]. A common variant in the
UCP2 gene is associated with cardiovascular risk in
healthy men and with oxidative stress in diabetic men
[59].
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