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Influence of a ketogenic diet, fish-oil, and calorie
restriction on plasma metabolites and lipids in
C57BL/6J mice
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Abstract

Background: Diet therapies including calorie restriction, ketogenic diets, and fish-oil supplementation have been
used to improve health and to treat a variety of neurological and non-neurological diseases.

Methods: We investigated the effects of three diets on circulating plasma metabolites (glucose and β-hydroxybutyrate),
hormones (insulin and adiponectin), and lipids over a 32-day period in C57BL/6J mice. The diets evaluated included a
standard rodent diet (SD), a ketogenic diet (KD), and a standard rodent diet supplemented with fish-oil (FO). Each diet
was administered in either unrestricted (UR) or restricted (R) amounts to reduce body weight by 20%.

Results: The KD-UR increased body weight and glucose levels and promoted a hyperlipidemic profile, whereas the
FO-UR decreased body weight and glucose levels and promoted a normolipidemic profile, compared to the SD-UR.
When administered in restricted amounts, all three diets produced a similar plasma metabolite profile, which included
decreased glucose levels and a normolipidemic profile. Linear regression analysis showed that circulating glucose most
strongly predicted body weight and triglyceride levels, whereas calorie intake moderately predicted glucose levels and
strongly predicted ketone body levels.

Conclusions: These results suggest that biomarkers of health can be improved when diets are consumed in restricted
amounts, regardless of macronutrient composition.
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Background
Mounting evidence suggests that dietary intake can influ-
ence the prognosis of a broad range of diseases, including
epilepsy, autism, cancer, Alzheimer’s disease, and cardiovas-
cular disease [1-5]. Popular diets to treat these conditions
include the ketogenic diet, low-glycemic index treatment
diet, fish-oil supplemented diets, and calorie restricted di-
ets. There is continued debate and interest on how dietary
composition and quantity affects body weight, blood lipid
profile, and glycemic control [6-10]. In order to effectively
utilize dietary intervention to treat disease, it is important
to understand how different treatment modalities could
affect plasma metabolites, such as glucose and ketone
bodies, and the overall health and vitality of the subjects.
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Plasma glucose and ketone levels are important prog-
nosticators of dietary efficacy for a variety of neurological
and non-neurological disorders [5,11-16]. In epilepsy, stud-
ies revealed that the efficacy of the restricted ketogenic
diet relies on how well the diet lowers blood glucose and
elevates blood ketone levels [17-19]. Similarly, preclinical
and clinical studies have shown a positive effect of in-
creased circulating ketone levels and reduced glucose
levels in disease outcome in cancer [13,20-22]. In healthy
individuals, however, it is unclear whether reduced glucose
levels and increased ketone levels improves health, though
it may be associated with metabolic disease resistance [23].
Conflicting results on blood lipid and glucose levels

were reported in humans and mice on the ketogenic
diet. In adults on the ketogenic diet, triglyceride levels
remain unchanged or are lowered, whereas cholesterol
levels remain unchanged, are lowered, or are increased
[24-27]. The ketogenic diet increases plasma triglyceride
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and cholesterol levels in children [28]. Fasting glucose in
both adults and children remains unchanged or is low-
ered on the ketogenic diet [27,29-33], whereas the blood
ketones are consistently increased [34]. In mice, the ke-
togenic diet decreases plasma triglyceride levels while in-
creasing cholesterol levels [35,36]. Increased, decreased,
or no change in plasma glucose levels were reported in
mice on the ketogenic diet [13,18,35]. As in children,
plasma ketone levels are consistently elevated in mice on
ketogenic diets [18,35].
Supplementation with fish-oil leads to more consistent

effects on blood lipid and glucose levels, compared to
the ketogenic diet. Blood triglyceride levels decrease,
whereas total cholesterol levels remain unchanged in
humans [37-41]. Fasting glucose levels are unchanged in
non-diabetic individuals, but are increased in type-2 dia-
betic individuals that supplement with fish-oil [39-41].
Blood ketone levels remain unchanged after supplemen-
tation with fish-oil [42]. Fish-oil supplemented and de-
rived diets in mice reduce total plasma cholesterol and
either decrease or have no effect on plasma triglyceride
levels [43-45]. Fasting glucose in mice remains unchanged
or is decreased in mice given fish-oil supplemented or
derived diets [44-46]. Hepatic ketogenesis increased in
rats fed a fish-oil-supplemented diet, due to decreased
lipogenesis and increase in fatty acid oxidation [47].
Calorie restriction is a long-studied dietary modality

that is often used in conjunction with the ketogenic diet
to treat a variety of neurological disorders [48], and is
used as a prophylactic for cardiovascular disorders and
other pathologies [49-51]. Calorie restriction in humans
leads to consistent reductions in total cholesterol and
triglyceride levels [52-54], while blood glucose levels are
consistently lowered [52,53] and plasma ketone body
levels are increased [55,56]. In mice, calorie restriction
leads to either a decrease or no change in plasma total
cholesterol and triglyceride levels [35,57]. Calorie re-
striction in mice generally leads to a decrease in plasma
glucose levels and increase in plasma ketone body levels
[13,18,57,58], although there are reports showing glu-
cose levels can remain unchanged with calorie restric-
tion [35], and ketone body levels remaining unchanged
or even decreasing with calorie restriction [35,59].
To assess the effects of diet on plasma glucose and ke-

tone levels, along with their effect on hormones and lipids,
we evaluated the influence of a standard mouse chow diet,
a ketogenic diet, and a fish-oil supplemented diet under
ad libitum feeding conditions in the inbred C57BL/6J (B6)
mouse strain. These diets can be used to treat diseases
and disorders, and it remains unclear if the therapeutic ef-
ficacy of the diets is related to their composition or to a
modest calorie reduction [60,61]. The three diets were also
evaluated under calorie-restricted conditions. These diet
types have been used extensively in the literature, with the
ketogenic diet being used to treat epilepsy and other
neurological disorders and the fish-oil supplemented diet
being used to treat cardiovascular dysfunction and inflam-
matory disease [1,62-66]. We found differences in plasma
metabolite profiles between the standard diet, ketogenic
diet, and fish-oil supplemented diet, when fed ad libitum.
However, these differences were mostly minimized when
administered under calorie restriction, which suggests that
biomarkers of health are improved in calorie-restricted
diets regardless of macronutrient composition.

Methods
Mice
The C57BL/6J (B6) mice were obtained originally from
Jackson Laboratory (Bar Harbor, ME). The mice were
maintained in the Boston College Animal Care Facility.
Adult male mice (120 days of age) were used and housed
individually in a temperature-regulated room at 22°C
and kept on a 12-hour light–dark cycle. Food was pro-
vided either ad libitum (AL) or restricted to reduce body
weight by 20% (CR). Water was provided ad libitum to
all mice. All animal procedures were in strict accordance
with the NIH Guide for the Care and Use of Laboratory
Animals and were approved by the Boston College Insti-
tutional Animal Care and Use Committee (IACUC).

Diets
All mice were fed ad libitum with standard rodent chow
(Prolab RMH 3000; PMI LabDiet, Richmond, IN, USA)
during the first seven days of the study (pre-trial period).
This is the standard mouse pellet diet, which contains a
balance of vitamins and minerals. The standard diet (SD)
was prepared by mixing 1 g of powdered standard mouse
diet with 1 mL of water to form a paste. The lard-based
ketogenic diet (KD) was prepared by the manufacturer
(Zeigler Bros. Inc., Gardners, PA, USA), and has a full
complement of vitamins and minerals prepared specific-
ally for rodents. The fish-oil supplemented diet (FO) was
prepared by mixing 3 g of powdered standard mouse diet
with 1 g of CVS Fish Oil to form a crude paste. The com-
position of the diets is given in Table 1. All diets were
placed into 25 mL beakers, which were previously filled
halfway with solid baseplate wax, to allow mice free access
to the food.

Dietary treatment
After the seven-day pre-trial period, mice were assigned
to one of six groups (n = 4 mice/group): 1) standard mouse
chow diet fed AL (SD-UR), 2) standard mouse chow diet
fed CR to achieve a 20% body weight reduction (SD-R), 3)
the lard-based ketogenic diet fed AL (KD-UR), 4) the lard-
based ketogenic diet fed CR to achieve a 20% body weight
reduction (KD-R), 5) the fish-oil supplemented diet fed



Table 1 Composition (%) of standard diet, ketogenic diet,
and fish-oil supplemented diet

Components Standard diet
(SD)

Ketogenic diet
(KD)

Fish-oil diet
(FO)

Carbohydrate 52 1 39

Fat 12 70 34

Protein 23 13 17

Fiber 4 11 3

Ash 6 3 4

Moisture 3 2 3

Metabolizable
Energy (kcal/g)

3.20 6.35 4.65
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AL (FO-UR), and 6) the fish-oil supplemented diet fed CR
to achieve a 20% body weight reduction (FO-R).
Body weights and food intake measurements were

taken daily three hours after lights-on. Based on food in-
take and body weight during the pre-trial period, food in
the CR groups was restricted to achieve a 20% reduction
in body weight. We used body weight as the endpoint
for CR, as we showed previously that body weights are a
more stable and consistent variable than food intake,
which changes significantly on a daily basis in ad libitum
fed mice [18,57,58].
The study period lasted a total of 32 days. After the 7-

day pre-trial period, mice were fasted for 16 hrs on day
0, before initiating their respective diets. By day 7 of the
dietary treatment, body weight and food intake stabi-
lized. Therefore, all calculations involving body weight
and food intake were taken from days 7–32 of the study.
Metabolizable energy intake was calculated according to
the manufacturers’ measurements of metabolizable en-
ergy content (Table 1).
Collection of plasma
After a 3-hr fast on day 32 (during the light cycle), mice
were anesthetized with isoflurane, and plasma was ob-
tained by collecting blood into heparinized tubes through
the retro-orbital sinus. Plasma was collected by centrifu-
ging blood at 6,000 × g for 10 minutes at 4°C and was
stored at −80°C until analysis.
Measurement of glucose, β-hydroxybutyrate, and
hormones
Glucose was measured spectrophotometrically using the
Trinder Assay (Sigma-Aldrich, St. Louis, MO, USA).
β-hydroxybutyrate was measured enzymatically using a
modification of the Williamson et al. procedure [67].
Plasma insulin was measured by rat/mouse insulin ELISA
(Millipore, Billerica, MA, USA), and plasma adiponectin
was measured by mouse adiponectin ELISA (Millipore).
Measurement of lipids
We analyzed the plasma content of the triglycerides,
cholesterol, free fatty acids, cholesteryl ester, phosphat-
idylcholine, lyso-phosphatidylcholine, phosphatidyletha-
nolamine, and sphingomyelin, as previously described
[68]. Briefly, lipids were extracted by adding chloroform
(C) and methanol (M) to plasma in a ratio of 30:60:8 (C:
M:plasma by volume). The lipid extract was added to
DEAE-Sephadex (A-25, GE Healthcare, Piscataway, NJ)
to separate the neutral and acidic lipid fractions, as pre-
viously described [69]. Neutral lipids were eluted from
the column with C:M:dH2O at 30:60:8 by volume, and
dried by rotary evaporation. The acidic lipids, which
contain a portion of the free fatty acids, were eluted with
C:M:0.8M sodium acetate at 30:60:8 by volume, and dried
by rotary evaporation.
To quantify the lipids, we spotted an equivalent of 3 μL

of plasma per lane on 10 × 20 cm Silica gel 60 HPTLC
plates (Merck, Darmstadt, Germany) using a Camag
Linomat II auto-TLC spotter (Camag Scientific Inc.,
Wilmington, NC, USA). The plates were developed in
a solvent system that contained C:M:acetic acid:formic
acid:dH2O (70:30:12:4:2 by volume) up to 4.5 cm, and
then run in a second solvent system containing hex-
ane:isopropyl ether:acetic acid (65:35:2 by volume) up
to 10 cm, as previously described [57,69]. Lipid bands
were visualized by charring with 3% cupric acetate in
8% phosphoric acid solution and were scanned using the
Personal Densitometer SI (Molecular Dynamics, Sunnyvale,
CA, USA). The concentration of each individual lipid was
calculated from a standard curve. To measure free fatty
acids, which separate into both neutral and acidic lipid
fractions, an equivalent of 3 μL of plasma from the
neutral and acidic lipid portion was combined and spot-
ted, on a separate plate, as described above.

Statistical analyses
Group size was determined through power analysis
using G*Power 3 statistical software [70]. α error prob-
ability and β error probability were set to a maximum of
0.01, and effect size was conservatively estimated from
previous data [18,35,57]. This yielded an n of 4 mice per
group for six groups, with an actual power of 0.9927 and
a critical F value of 4.248. All other statistical analyses
were performed using SPSS Software (IBM SPSS Statis-
tics, Version 20). All values are presented as mean ±
standard error of the mean (SEM). One-way ANOVA
was used to evaluate differences between dietary groups.
Bivariate linear regression analysis with ANOVA was
used to independently assess the predictive strength of
select independent variables on final body weight, plasma
glucose, β-hydroxybutyrate, and triglycerides, regardless of
dietary treatment. Pearson bivariate correlation analysis
was used to determine the relationship between body
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weight, food intake, plasma glucose, β-hydroxybutyrate,
insulin, adiponectin, and lipid levels.

Results
Dietary modification as a treatment modality is subject
to variability, as investigators often use different ap-
proaches to implement the diets, which hinders study
reproducibility. To improve reproducibility and evaluate
the merits of each diet, we fasted all of the mice for 16
hrs prior to initiating the diets. This allows for a proper
evaluation of the diets, as the mice will have the same
metabolic set point. Also, the influence of the previously
administered standard rodent chow on the animal’s me-
tabolism will be minimized [71]. We have also observed
that fasting mice before initiating diets also serves to limit
the amount of self-restriction that mice impose when
switched to an unfamiliar diet (personal observations).

Body weight and metabolizable energy intake
All CR mice lost approximately 20% of their initial body
weight (Figure 1, Table 2). All mice tolerated the diets
well and appeared healthy and vigorous at the end of the
study. Activity levels were comparable in all groups, and
lethargy was not present in any mouse.
Body weights stabilized after approximately 7 days fol-

lowing diet implementation (Figure 1), whereas calorie
intake stabilized after 8–10 days (data not shown). While
the SD-UR group maintained body weight throughout
the study, the KD-UR group gained approximately 11%
body weight during the 32-day period, despite consum-
ing approximately 10% less in calculated daily calories
compared to SD-UR (Table 2). The FO-UR group lost
approximately 11% body weight during the 32-day
Figure 1 Influence of dietary regimen on body weight. Weights are ex
after a 16 hour fast. SD-UR, standard diet unrestricted; SD-R, standard diet r
restricted; FO-UR, fish-oil supplemented diet unrestricted; FO-R, fish-oil supp
period, and this occurred with a 12% reduction in cal-
orie intake compared to SD-UR. While body weight
was reduced by 20% in each CR group relative to the
ad libitum control group, the amount of CR necessary
to achieve this weight loss depended on the macronu-
trient composition of the diet. Mice fed the higher-fat
diets (KD-R and FO-R) required a calorie reduction
of approximately 33%, whereas mice fed the normal
chow diet (SD-R) required a 24% calorie reduction to
achieve the 20% body weight loss. The FO-UR group con-
sumed 700 mg of fish oil per day, whereas the FO-R group
consumed 550 mg per day.
Influence of diet on plasma metabolites and hormones
Glucose levels were reduced in all three CR groups com-
pared to the levels in the SD-UR group and in their re-
spective unrestricted diets (Table 3). Glucose levels were
also lower in the FO-UR group than in the SD-UR
group, though this might reflect the differences in body
weights. The blood glucose levels in the FO-UR group
were similar to those in the KD-R group. Blood glucose
levels were significantly higher in the KD-UR group than
in the SD-UR group.
β-hydroxybutyrate (major circulating ketone) levels

were increased in all the CR groups compared to their
respective ad libitum diet groups, with the KD-R group
exhibiting the highest levels of ketones (Table 3). KD-UR
and FO-UR groups had significantly elevated ketone
levels compared to the SD-UR group.
Plasma insulin levels were assessed from the mice after

a 3-hr fast, which along with fasting blood glucose levels
comprise a homeostatic model assessment of insulin re-
sistance (HOMA-IR) value and is indicative of insulin
pressed as means ± SEM. Arrow represents initiation of respective diets
estricted; KD-UR, ketogenic diet unrestricted; KD-R, ketogenic diet
lemented diet restricted.



Table 2 Influence of dietary intake on bodyweight and calorie consumption in C57BL/6J mice

Diet

Standard diet Ketogenic diet Fish-oil diet

UR R UR R UR R

Final Bodyweight (g)a 29.0 ± 0.7 23.6 ± 0.1 32.5 ± 0.7 23.3 ± 0.3 27.9 ± 0.9 23.1 ± 0.2

Bodyweight Change (%) +0.3 ± 1.8 -21.1 ± 1.4 +11.2 ± 2.3 -19.9 ± 0.6 -10.7 ± 2.7 -22.4 ± 1.1

Energy Intake (kcal)b 15.0 ± 0.4 11.3 ± 0.6 13.4 ± 0.3 10.1 ± 0.3 13.1 ± 0.6 10.2 ± 0.2

Calorie Difference (%)c

from UR Diet
0.0 ± 1.3 -24.4 ± 1.1 0.0 ± 1.2 -24.9 ± 2.2 0.0 ± 4.6 -22.3 ± 1.9

Calorie Difference (%)d

from SD-UR
0.0 ± 1.3 -24.4 ± 1.1 -10.5 ± 1.1 -32.8 ± 1.9 -12.2 ± 4.0 -31.8 ± 1.7

aValues are expressed as the mean ± SEM (n = 4 mice per group).
bMean metabolizable energy (kcal) consumed per mouse per day from days 7-31.
cFrom UR diet.
dFrom SD-UR.
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sensitivity [72-74]. Low HOMA-IR values indicate in-
creased insulin sensitivity. Insulin levels were lower in all
CR groups than in their comparable ad libitum groups,
which indicates high insulin sensitivity (Table 3). While in-
sulin levels were similar in the SD-UR and KD-UR groups,
insulin levels were lower in FO-UR group and comparable
to those in the CR groups. The high insulin sensitivity
Table 3 Influence of dietary intake on plasma metabolites, ho

Standard diet

UR R

Metabolitesa

Glucose (mM) 12.8 ± 0.5 6.1 ± 0.4*

β-Hydroxybutyrate (mM) 0.4 ± 0.0 1.4 ± 02*

Glucose/β-Hydroxybutyrate Ratio 35.4 ± 4.7 4.6 ± 1.0*

Hormonesa

InsuIin (pmoI/L) 182 ± 17 108 ± 3*

Adiponectin (μg/mL) 9.2 ± 04 18.9 ± 3.8*

HOMA-IRb 15.0 ± 1.6 4.1 ± 0.5*

Lipids (mg/dL)a

Triglyceride 31.5 ± 3.2 5.0 ± 0.8*

Cholesterol 28.3 ± 2.0 15.9 ± 2.8*

Free fatty acid 42.7 ± 3.4 64.6 ± 4.5*

Cholesteryl Ester 32.1 ± 0.9 26.7 ± 0.5

Phosphatidylcholine 64.2 ± 3.8 42.2 ± 2.1*

Lyso-phosphatidylcholine 9.3 ± 0.3 5.5 ± 0.5*

Phosphatidylethanolamine 4.0 ± 0.5 2.6 ± 0.4*

Sphingomyelin 6.8 ± 0.3 3.9 ± 2.0*
aValues are expressed as the mean ± SEM (n = 4 mice per group).
bHomeostatic Model Assessment of Insulin Resistance, calculated as (fasted glucose
*Indicates significance from unrestricted diet at p <0.01 as determined by one-way
§Indicates significance from unrestricted standard diet at p <0.01 as determined by
mirrored the lower plasma glucose levels in FO-UR mice.
We found that plasma glucose and insulin levels were
highly correlated across all groups (Table 4). Adiponectin
levels were highest in the CR groups, with SD-R and KD-
R having significantly elevated levels, and FO-R trending
toward increased levels (Table 3). The levels of adiponec-
tin were similar across all unrestricted diets.
rmones, and lipids in C57BL/6J mice

Diet

Ketogenic diet Fish-oil diet

UR R UR R

15.1 ± 0.4§ 8.5 ± 0.5*§ 8.7 ± 0.6§ 6.0 ± 0.1*§

1.1 ± 0.1§ 2.9 ± 0.2*§ 0.9 ± 0.1§ 2.0 ± 0.1*§

13.4 ± 2.5§ 2.9 ± 0.9*§ 10.4 ± 2.2§ 3.0 ± 0.3*§

160 ± 7 110 ± 4*§ 112 ± 1§ 98 ± 2§

11.1 ± 1.2 15.3 ± 0.8 8.7 ± 0.3 13.8 ± 1.0

15.5 ± 0.8 5.7 ± 0.4*§ 6.2 ± 0.4§ 3.6 ± 0.1§

45.5 ± 0.3§ 7.3 ± 0.2*§ 8.4 ± 2.3 7.3 ± 1.0§

45.9 ± 2.6§ 30.3 ± 0.3* 22.8 ± 0.5 26.0 ± 2.8

48.1 ± 3.5 57.1 ± 2.5*§ 41.2 ± 2.4 44.9 ± 0.9

55.8 ± 0.8§ 41.0 ± 1.4§ 31.9 ± 1.3 34.5 ± 3.4

107.9 ± 4.9§ 68.8 ± 2.9* 52.7 ± 2.3§ 59.5 ± 4.4

10.6 ± 0.3 6.7 ± 02 6.6 ± 0.6 5.7 ± 0.7

8.2 ± 0.9§ 5.6 ± 0.1§ 2.2 ± 0.4§ 3.0 ± 0.0

10.3 ± 0.9§ 10.2 ± 0.4§ 6.9 ± 0.1 8.2 ± 0.9

(mM) × fasted insulin (pU/mL)/22.5.
ANOVA.
one-way ANOVA.



Table 4 Pearsons Bivariate Correlations of bodyweight, macronutrient intake and plasma metabolites
Bodyweight Calorie

Intake
Fat

Intake
Carbo-
hydrate
Intake

Glucose Ketone Insulin Adipo-
nectin

Tri-
glyceride

Cholesterol Free
fatty
acids

Cholesteryl
Ester

Phos-
phatidyl-
choline

Lyso-phos-
phatidyl-
choline

Phosphatidyl-
ethanolamine

Calorie Intake .751**

Fat Intake .494* .024

Carbohydrate Intake .004 .496* -.725**

Glucose .922** .707** .601** -.019

Ketone -.610** -.860** .266 -.619** .478*

Insulin .677** .687** .319 .202 .745** -.495*

Adiponectin -.640** -.523** -.318 .107 -.611** .414* -.282

Triglyceride .863** .653** .568** -.006 .940** -.477* .684** -.597**

Cholesterol .654** .262 .837** -.522** .772** -.005 .536** -.469* .811**

Free Fatty Acids -.194 -.265 .099 -.144 -.168 .175 -.077 .123 -.200 -.142

Cholesteryl Ester .560** .079 .922** -.673** .667** .133 .372 -.396 .704** .944** .009

Phosphatidylcholine .358 .117 .437* -.317 .401 .004 .306 .400 .480* .674** -.164 .550**

Lyso-phosphatidylcholine .843** .661* .588** -.020 .939** -.437* .772** -.537** .957** .834** -.221 706** .536**

Phosphatidyl-
ethanolamine

.555** .122 .880** -.500* .690** .150 .481* -.303 .734** .916** -.083 .903** .666** .755**

Sphingomyelin .250 -.087 .722** -.691** .405 .377 .324 -.209 .370 .814** -.160 .760** .621** .492* .734**

*p < 0.05, two tailed t test.
**p < 0.01, two tailed t test.
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Influence of diet on plasma lipids
We examined plasma lipid distribution using HPTLC
(Figure 2). The changes in plasma triglyceride levels were
generally correlated with the changes in plasma glucose
levels, with the CR groups exhibiting the lowest levels of
circulating triglycerides and glucose (Table 3). The KD-
UR group had the highest levels of triglycerides, whereas
the FO-UR group exhibited triglyceride levels that were
similar to the levels measured in the CR groups. Total free
cholesterol levels were reduced in the SD-R and KD-R
groups compared to their unrestricted controls, although
cholesterol levels in the KD-R group were similar to those
in the SD-UR group. The cholesterol levels in both fish-oil
groups were similar to those seen in the SD-UR group.
Cholesteryl ester levels follow a similar pattern to free
cholesterol. While cholesteryl ester levels were not signifi-
cantly decreased in the SD-R compared to the SD-UR, the
KD groups had the highest levels of cholesteryl esters,
Figure 2 HPTLC plate of plasma lipids in mice under Standard
Diet (SD), Ketogenic Diet, and Fish-Oil Diet (FO) under both
unrestricted (UR) and restricted (R) feeding conditions. FFA, free
fatty acids; CE, cholesteryl ester; TG, triglycerides; IS, internal standard
(oleyl alcohol); Chol, cholesterol; Cer, ceramide; CB, cerebrosides; PE,
phosphatidylethanolamine; PC, phosphatidylcholine; SM,
sphingomyelin; LPC, lyso-phosphatidylcholine. Lipids were run on
two separate plates (neutral lipids and free fatty acids), as described
in the methods. All lipid values are quantified in Table 3, except for
ceramides and cerebrosides, since there are only trace
amounts present.
with the KD-UR having significantly higher levels com-
pared to the KD-R. Cholesteryl ester levels were un-
changed in the fish-oil groups, and were similar to those
in the SD-UR group. Free fatty acid levels (FFA) were
higher in the SD-R and KD-R groups than in their re-
spective UR groups.
Phosphatidylcholine (PC) levels were reduced in the

SD-R and KD-R groups compared to their respective unre-
stricted diets, but were higher in the KD group. The fish-oil
groups had similar PC levels. Lyso-phosphatidylcholine
(LPC) levels were reduced slightly in the SD-R group, and
were similar across the rest of the groups (Table 3).
Plasma phosphatidylethanolamine (PE) levels were lowest
in the fish-oil groups, and were significantly reduced in
the SD-R and KD-R groups compared to the unrestricted
diets, although the KD groups had the highest overall
levels of PE. Sphingomyelin (SM) levels were highest in
the KD groups, and were significantly reduced in the
SD-R compared to the SD-UR. There was no difference
between the fish-oil groups, and they were comparable
to the levels seen in the SD-UR. Plasma ceramide and
cerebroside levels were also evaluated, however they
were present only in trace amounts and were not quan-
tified (Figure 2).

Major Predictors of body weight, glucose, ketone, and
triglyceride levels
We pooled the dietary groups to independently assess the
predictive strength of independent variables (Figure 3).
The assumptions of bivariate linear regression with
ANOVA were met, according to established criteria [75].
The strongest independent predictor (highest coefficient
of determination) for final body weight, plasma glucose,
ketone, and triglyceride levels is displayed in Figure 3 for
each of the variables assessed. We found that while calo-
ries and ketones moderately predict body weight, blood
glucose level (R2 = 0.850; 95% CI = 1.000 ± 0.186; t22 =
11.157; y = 16.798 + 1.000x) was the strongest predictor of
final body weight during the study. The amount of dietary
fat and dietary carbohydrates consumed were not signifi-
cant indicators of final body weight.
While we found that circulating glucose levels were

the strongest predictor of final body weight, calorie in-
take was the most significant predictor of blood glucose
level (R2 = 0.500; 95% CI = 1.304 ± 0.5777; t22 = 4.687;
y = −6.390 + 1.304x). Dietary fat intake also moderately
predicted plasma glucose levels, whereas dietary carbohy-
drate intake was not a significant predictor of glucose
levels.
The most important predictor of circulating ketones

was reduced calorie intake (R2 = −0.740; 95% CI = −0.399 ±
0.105; t22 = −7.904; y = 6.301-0.399x). While lowering calo-
ries had the greatest effect on increasing ketone levels, low-
ering dietary carbohydrate intake also had a significant, but



Figure 3 Linear regression analyses of body weight, glucose, β-hydroxybutyrate, and triglyceride levels in mice. The strongest predictor
(highest coefficient of determination) for each dependent variable is plotted. Irrespective of diet, glucose levels most strongly predict body
weight and triglyceride levels, calories most strongly predict glucose and ketone levels, and dietary fat intake most strongly predicts cholesterol
levels. SD-UR, standard diet unrestricted; SD-R, standard diet restricted; KD-UR, ketogenic diet unrestricted; KD-R, ketogenic diet restricted; FO-UR,
fish-oil supplemented diet unrestricted; FO-R, fish-oil supplemented diet restricted.
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moderate influence (R2 = 0.384; 95% CI = −0.591 ± 0.332;
t22 = −3.700; y = 2.018-0.591x) on ketone levels. Glucose
level was a weak predictor of ketone levels, and surpris-
ingly, dietary fat intake was not a significant predictor of
circulating ketone levels.
Circulating glucose levels strongly predicted circulat-
ing triglyceride levels (R2 = 0.883; 95% CI = 4.223 ± 0.672;
t22 = 12.870; y = −22.631 + 4.233x). Calorie and dietary fat
intake moderately predicted triglyceride levels, whereas
ketone levels were a weak predictor of triglyceride levels.
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Dietary carbohydrate intake was not a predictor of circu-
lating triglyceride levels.

Discussion
We found that the macronutrient composition of a diet
greatly affected the plasma metabolite profile of C57BL/6J
mice when administered ad libitum. A ketogenic diet
administered ad libitum promoted high glucose levels,
weight gain, and a hyperlipidemic profile in mice, whereas
fish-oil supplementation decreased bodyweight, glucose
levels, and yielded a normolipidemic profile. Administra-
tion of these diets under CR led to weight loss, increased
insulin sensitivity, decreased glucose levels, increased ke-
tone levels, and promoted a normolipidemic lipid profile.
When administered under CR, the influence of the com-
position of the diet on the metabolic profiles of the mice
was minimized, yielding similar metabolic profiles across
all groups. Thus, a restriction of total energy intake can
correct weight gain or a hyperlipidemic profile from these
dietary therapies in B6 mice.
We confirmed previous studies that the KD-UR does

not lead to long-term weight loss in mice when they are
fasted prior to diet initiation [13,18,76]. Our work sup-
ports the notion that “a calorie is not a calorie”, as the
KD-UR group gained approximately 10% body weight des-
pite consuming 10% less in metabolizable calorie intake,
compared to the SD-UR. However, our results challenge
the metabolic advantage theory of the KD-UR, which
states that isocaloric diets low in carbohydrates lead to
greater weight loss compared to isocaloric diets of differ-
ent composition [77]. This was unsurprising, given that
dietary fat is metabolized more efficiently than are dietary
carbohydrates and proteins [78]. The seeming discrepancy
between metabolizable calorie intake and body weight is
most likely due to differences in energy utilization be-
tween the different dietary groups, including factors such
as obligatory thermogenesis, microbial fermentation, diet
induced thermogenesis, and basal metabolism (including
energy expenditure) [79].
In addition to the increased body weight under the

KD-UR, the plasma profile of the KD-UR group suggests
that the diet is unhealthy [80-83]. The plasma profile of
the KD-UR mice is similar to a previously published re-
port utilizing a high-fat, high-sucrose diet in the same
strain of mice [35]. The atherogenic lipids triglycerides,
cholesterol, and cholesteryl esters were highest in KD-
UR group. A KD-UR diet also elevated these lipids in
children with epilepsy [28]. The presence of high circu-
lating glucose levels in the KD-UR group, which has also
been reported in other studies of rodents on high-fat,
low-carbohydrate diets [84,85], could further increase
the risk of atherogenesis, as glucose can contribute to
endothelial dysfunction [86,87]. Glucose can be raised in
high-fat diets devoid of carbohydrates with excess calorie
intake through gluconeogenesis, which occurs indirectly
through oxidation of fatty acids to acetyl-CoA [88]. The
KD-UR group also had the highest levels of PC, LPC, PE,
and SM. It has been suggested that a PC to free choles-
terol ratio (mol/mol) of less than 1 is a risk factor for
atherosclerosis [89]. The calculated PC/cholesterol ratios
in all of the groups (both restricted and unrestricted)
were similar, and ranged from 1.5-1.75 (data not shown).
LPC levels have been shown to be positively associated
with obesity [90]. PE levels are suggested to be positively
associated with atherosclerotic complications [91]. SM in
plasma is associated with an increased risk of coronary
artery disease [92,93]. Our data are consistent with the ob-
servations for LPC, PE, and SM. These findings, together
with our observations in B6 mice, indicate that consump-
tion of the KD in unrestricted amounts can have adverse
effects on health-related biomarkers.
Administration of the KD in restricted amounts miti-

gated the hyperlipidemic plasma profile of the B6 mice.
In addition to lowering triglycerides, cholesterol, phos-
pholipids (PC, LPC, and PE), and glucose, the KD-R also
lowered fasting insulin levels. Reduced levels of circulat-
ing insulin is antiatherogenic [94]. Plasma ketone levels
were also highest in the KD-R group. Ketones are thera-
peutic against a variety of neurological diseases and cancer
[1,48,95-97]. It is well known that ketones can replace glu-
cose as an energy metabolite and can protect the brain
from hypoglycemia [16,98,99]. Our previous findings, in
conjunction with the results in the present study, suggest
that the therapeutic efficacy of the KD for epilepsy and
brain cancer will likely be best when the diet is adminis-
tered in restricted than unrestricted amounts [13,18,20].
While the KD-UR increased body weight and was asso-

ciated with a hyperlipidemic plasma profile, we were sur-
prised to find that the FO-UR diet caused changes in body
weight and plasma metabolites that were similar to those
seen in the CR groups. We cannot completely rule out
that these results are a consequence of decreased food pal-
atability in the FO-UR group, as the FO-UR group had re-
duced calorie intake compared to the SD-UR. The FO-UR
group, however, consumed a similar number of calories as
the KD-UR group after the fast (16.9 ± 2.3 (FO-UR) calo-
ries versus 17.0 ± 0.3 (KD-UR) calories) and throughout
the study, and did not have observable aversion to the
food. We hypothesized that increased levels of the adipo-
kine adiponectin might be responsible for the increased
insulin sensitivity and decreased body weight in the FO-UR
group despite feeding ad libitum, since supplementation of
fish-oil is associated with increased levels of adiponectin
[100,101]. Interestingly, we found that adiponectin was
not elevated in the FO-UR group, suggesting that adipo-
nectin by itself was not responsible for the increase in in-
sulin sensitivity or the CR-like profile of the FO-UR mice.
Omega-3 fatty acids and their metabolites can produce
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changes in the activity of peroxisome proliferator-activated
receptor (PPAR) α and γ, along with directly binding to and
modulating the activity of sterol receptor element binding
proteins (SREBP), which contribute to modulating lipid
and glucose metabolism [102,103]. Omega-3 fatty acids
and their metabolites (epoxide derivatives, docosanoids,
resolvins, and neuroprotectins) reduce triglyceride levels,
adiposity, and inflammation while improving insulin sensi-
tivity in rodents and humans [104,105]. Thus, the ob-
served plasma profile of the FO-UR mice that mimicked
the CR groups were likely due to a multitude of mecha-
nisms regulated by omega-3 fatty acids that are still not
fully elucidated.
All of the dietary groups were combined in a post-hoc

analysis to examine the relationship among body weight,
dietary intake, and plasma profile. Our findings indicated
that blood glucose was the strongest predictor of body
weight in mice and was highly correlated with body
weight. This observation is consistent with previous stud-
ies in humans, though the human studies did not review
dietary intake [106,107]. We found that intake of specific
macronutrients was not predictive of final bodyweight.
This observation questions the utility of advocating for di-
ets devoid in specific macronutrients to control body
weight [7,108]. In terms of predicting glucose levels, total
calorie intake was only moderately predictive suggesting
that multiple factors modulate blood glucose levels in
mice. Our findings suggest that restriction of total calorie
intake will be more effective for reducing glucose levels
and body weight in mice than will be the restriction of any
particular macronutrient under ad libitum feeding. The
reduction of total calories was strongly predictive of ele-
vated ketone levels. Reduced carbohydrate intake contrib-
uted moderately to increased ketone levels. From a
physiological perspective, given that the body has a large
reservoir of lipid stores and a small reservoir of glycogen
stores, it should not be surprising that restriction of en-
ergy intake and carbohydrates will quickly diminish glyco-
gen stores, leading to beta-oxidation of lipids for energy
[109]. Dietary strategies that promote beta-oxidation of
lipids, through either restriction of overall energy intake
or severe carbohydrate restriction, would promote ketosis.
Since circulating glucose strongly predicted plasma trigly-
ceride levels, dietary strategies that lower blood glucose
levels should have significant effects on promoting cardio-
vascular and overall health [110,111].

Conclusions
The macronutrient composition of various diets plays an
important role when the diet is fed ad libitum, as our
data showed for body weight, hormones, and plasma
metabolites. CR, however, has a dominant and independ-
ent effect on body weight, hormones, and plasma metabo-
lites, compared to macronutrient composition. Our data
suggest that CR may be more appropriate for improving
health outcomes than shifting macronutrient ratios, es-
pecially when using dietary therapy to treat metabolic
diseases [13,18].
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