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Background: Despite the effectiveness of highly active antiretroviral therapy (HAART), there remains an urgent
need to develop new human immunodeficiency virus type 1 (HIV-1) inhibitors with better pharmacokinetic
properties that are well tolerated, and that block common drug resistant virus strains.

Methods: Here we screened an in-house small molecule library for novel inhibitors of HIV-1 replication.

Results: An active compound containing a 3-aminoimidazo[1,2-alpyridine scaffold was identified and quantitatively
characterized as a non-nucleoside reverse transcriptase inhibitor (NNRTI).

Conclusions: The potency of this compound coupled with its inexpensive chemical synthesis and tractability for
downstream SAR analysis make this inhibitor a suitable lead candidate for further development as an antiviral drug.

Background

Despite more than 25 years of research, drug treatment
of HIV infection remains a major therapeutic challenge.
The most effective regimen for treating HIV-1 infection
is highly active antiretroviral therapy (HAART) that usu-
ally consists of a non-nucleoside reverse transcriptase in-
hibitor (NNRTI) or protease inhibitor together with two
nucleoside (or nucleotide) reverse transcriptase inhibi-
tors (NRTIs).

Over 50 NNRTIs have been described to date [1]. Five
of these NNRTTs have been approved by the United States
FDA for the clinical treatment of HIV infection and AIDS.
The first generation NNRTIs used are efavirenz, nevira-
pine and delavirdine. However, the rapid emergence of
virus drug-resistant virus limited the effectiveness of these
drugs. The second-generation NNRTIs, etravirine and ril-
pivirine, are more active against both drug-sensitive and
resistant virus strains [1]. However, despite this progress
there is a continued need for the development of novel
NNRTIs which have better pharmacokinetic properties
and inhibit common drug-resistant virus strains [1].
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Here we screened a chemical library to identify novel
inhibitors of HIV-1 replication. We report the identifica-
tion of a lead compound containing a 3-aminoimidazo
[1,2-a]pyridine scaffold that acts as an NNRTI, with in-
herent features that render it attractive for further devel-
opment as an antiviral drug.

Results

The Salk Institute in-house small molecule collection is a
chemically diverse set of synthetic compounds based on
divergent design principles. Fundamental to this com-
pound collection is a Diversity-Oriented Synthesis (DOS)
approach [2] that is pharmacophore or scaffold-centric,
with emphasis on the use of multi-component synthetic
reactions (MCRs) [3] and a variety of post-MCR transfor-
mations or reaction cascades [4]. The diversity criteria are
biased by Lipinski’s ‘Rule of 5 [5], ADME-Tox filtering,
exclusion of reactive substituents [6] and incorporation of
masked functional groups within scaffold side chains to
enable additional chemical manipulations via forward or
reverse chemical genetic screening methodologies [7]. The
synthetic economy realized by such a library design per-
mits the inclusion of rare and exotic building blocks,
which further enhances the chemical diversity of the li-
brary and mitigates the limitations of library size, scope,
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and scale. An additional attribute of the library design, due
in large part to the economics of syntheses, is the ability
to rapidly determine structure-to-activity relationships
(SAR) early in the evaluation of lead compounds. Each
pharmacophore-based library subset can be readily
expanded to further explore the relevant target space, en-
abling both lead optimization and lead evolution (or scaf-
fold hopping) to proceed in parallel.

Four hundred and eighty compounds, constituting a
cross-section of the Salk library, were screened in a
plate-based assay to identify small molecules that inhibit
a single cycle of replication by a VSVg-pseudotyped
HIV-1 vector (pNL4-3LucR+E-) encoding firefly lucifer-
ase [8]. This vector is competent for only the early steps
of retroviral replication leading up to viral DNA integra-
tion and gene expression. Human 293T cells were pre-
treated for 1 hr with 1 pM final concentration of the
individual compounds and then challenged with the
VSVg pseudotyped HIV-1 vector in the continued pres-
ence of that compound. After 24 hrs, the luciferase ac-
tivity of each sample was determined.

A single compound, F2 (mol. wt. 325.83 g/mol), was
identified that decreased luciferase activity by more than
50% under these conditions. F2 originated from a sub-
library representing the 3-aminoimidazo[1,2-a]pyridine
scaffold (Figure 1A) derived from the 3-component
Groebke condensation reaction [9]. F2 was re-synthesized
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and purified at a larger scale for the subsequent experi-
ments described in this report. Luciferase-based infectivity
assays in the presence of increasing concentrations of
F2 yielded dose response curve with a mean ECsq + stand-
ard deviation of 0.387 + 0.046 pM (n = 6) (Figure 1B).
Cytotoxicity for F2 was determined 24 hrs after the com-
pound was added to mock infected cells; the CCsq value
was 34.1 £ 24 pM (n = 3), selectivity index = 88.1.

Because the initial screen was performed by scoring
firefly luciferase reporter gene expression from a VSVg
pseudotyped virus vector, it was possible that the F2
compound inhibited either an early step of HIV-1 repli-
cation, VSVg-mediated cellular entry, or firefly luciferase
reporter activity. To exclude possible effects on VSVg-
specific cellular entry and firefly luciferase activity, F2
was tested for its ability to block infection of CEM-GFP
lymphocytic indicator cells by a replication-competent
HIV-1 vector with a wild-type CXCR4-tropic HIV-1 enve-
lope glycoprotein [10]. In this assay, infection by the wild-
type virus leads to the expression of a GFP reporter gene in
a Tat-deficient HIV-1 provirus that is resident in the CEM-
GFP cell line. The measured ECso in these experiments
(0.862 + 0.088 uM; n = 2) (Figure 1C), was similar to the
value obtained with the VSVg-pseudotyped virus. The CCsq
value obtained with the CEM-GEP cells was 254 + 2.1 pM
(n = 2), selectivity index = 29.5. Similarly, F2 inhibited in-
fection of primary human peripheral blood mononuclear
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Figure 1 The F2 compound blocks an early step of HIV-1 replication. A. Structure of compound F2. B. Dose-response curve of F2 in 293T
cells challenged with the VSVg pseudotyped pNL4-3lucR+E- vector. The effect of the compound on infection was determined by measurement
of virus-encoded firefly luciferase activity. The experiment shown, performed with triplicate samples, is representative of six independent
experiments. C. Dose-response curve of F2 in CEM-GFP cells challenged with the pLai3Luc2 HIV-1 vector [10].The numbers of GFP positive cells
at 2 days post-infection were determined by flow cytometry and the experiment shown, performed with duplicate samples, is representative of
two independent experiments. D. Dose-response curve of F2 in human PBMCs challenged with the NL4-3 Nef+ IRES rluc vector encoding renilla
luciferase activity, measured at 5 days post-infection. The experiment shown was performed with eight replicate samples. The error bars (panels
B-D) represent the standard errors of the mean.
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cells (PBMCs) by a replication-competent HIV-1 vector
(NL4-3 Nef + IRES rluc) with a measured ECs, of 0.865 +
0.222 pM (Figure 1D) in the absence of cell toxicity, up to
10pM of compound tested (data not shown, selectivity
index > 11.6). Taken together, these results suggested that
F2 blocks an early step of HIV-1 replication.

A quantitative real-time PCR-amplification approach was
used to determine whether F2 treatment blocks viral DNA
synthesis. Total DNA was isolated from cells 24 hrs post
infection and quantified using primers and probes specific
for early and late HIV-1 reverse transcription products
[11]. F2 (5 uM) added 1 hr before infection blocked the
synthesis of both early and late viral DNA products
(Figure 2A), suggesting that this compound might inhibit
HIV-1 reverse transcriptase. To directly test that possibility,
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Figure 2 The F2 compound inhibits HIV-1 reverse transcriptase.
A. Effects of F2 (5 pM) treatment on the synthesis of early and late
viral DNA in human 293T cells challenged with the VSVg-
pseudotyped HIV-1 vector, measured at 24 hours post-infection. AZT
(5 uM) was used as a reference compound. The values represent
amounts of DNA relative to control, untreated cell populations, with
error bars showing standard deviations from three independent real-
time quantitative PCR assays. B. Effect of compound F2 on HIV-1 RT
activity in vitro, determined by measuring the [alpha32P]-dTTP
incorporation. The experiment shown, performed with duplicate
samples, is representative of two independent experiments. with
error bars representing standard errors of the mean.
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an in vitro assay was used to directly test the effect of F2
on recombinant purified HIV-1 reverse transcriptase (RT)
activity. F2 potently inhibited HIV-1 RT activity in vitro in
a dose-dependent manner with an ICs5, = 2.554 + 0.365
UM (n = 2) (Figure 2B). Although the 50% inhibitory con-
centration of the F2 compound was higher in the in vitro
experiment with purified HIV-1 RT than in the cellular in-
fectivity assays, this type of result is seen frequently with
NNRTT inhibitors [12].

The two main classes of existing HIV-1 RT inhibitors
(the NRTIs and NNRTIs) act synergistically, especially
when used at high inhibitory concentrations [13,14]. To
determine whether there is a similar synergy seen with F2,
this compound was tested along with the NRTI 3’-azido-
3’-deoxythymidine (AZT) and with the NNRTI nevirapine
(NVP) in combinations at several fixed molar ratios and
over a range of serial dilutions [13]. The resulting isobolo-
gram plots demonstrated that F2 exhibits synergy with
AZT and additivity with NVP in a cellular infectivity
assays, suggesting that F2 blocks HIV-1 reverse transcript-
ase activity by acting as a NNRTI (Figure 3A).

Since it is desirable for a candidate antiretroviral to be
effective against HIV-1 variants resistant to current
NNRTIs, the resistance profile of F2 was tested against
four commonly encountered NVP-resistant HIV-1 mu-
tant variants (K103N, V106A, Y188L, Y181C) [1]. The
mutant vectors used were based on the HIV-1 NL4-3
strain pseudotyped with VSVg and infection of 293T
cells was monitored using a standard single cycle
luciferase-based cellular infectivity assay. F2 inhibited in-
fection by the mutant viral vectors, albeit at reduced
levels compared to the wild-type virus (ECs, values were
reduced between 8- to more than 120-fold; Table 1).
The resistance profile of F2 was similar to NVP (Table 1),
reinforcing the idea that this compound acts as a
NNRTL

Discussion

In this report we describe a new lead candidate NNRTI
inhibitor that has activity against wild-type and some of
the common drug-resistant variants of HIV-1 reverse
transcriptase. Serendipitously, this new lead scaffold is
structurally isosteric with THR-50, a benzimidazole-
based NNRTI [15] (Figure 3B). The imidazo[1,2-a]pyri-
dine pharmacophore of F2 can be realized by three
instances of bioistosteric replacement on the benzimida-
zole scaffold; (1) N1 nitrogen is converted to carbon, (2)
bridgehead carbon adjacent to C7 is converted to nitro-
gen, and (3) benzylic methylene (CH,) is converted to
NH. These subtle changes in the inhibitor core [15]
slightly enhance the physical properties, create an add-
itional H-bond donor interaction, and greatly simplify
the synthesis of analogs for optimization studies.
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Figure 3 The F2 compound is a NNRTI. A. Isobologram analysis of the effect of combining F2 with either AZT or NVP in human 293T cells
challenged with the VSVg-pseudotyped HIV-1 vector. Depicted are isobologram plots for the 90% inhibitory level (ECq). The dashed line indicates
the values expected for an additive effect. Values below and to the left of the line indicate synergistic effects. FIC, fractional inhibitory
concentration. B. Structure and synthesis of compound F2 compared to THR-50 [15]. Reagents: (a) 0.1 M in 1,2-dichloroethane - 2,2,2-

), 5.0 mol% Sc(OTf)s, rt for 96h or microwaved at 140°C for 5min, >90% vyield; (b) 2,6-F,BzCl, THF/pyridine (5:1), rt for 2h, 55%
yield; (c) Fe, AcOH, reflux, 97% vyield; (d) 2,6-F,BnBr, NaH, THF, rt overnight, 75% vyield.

S

While the THR-50 compound is the more potent inhibi-
tor against wild-type and drug-resistant variants of HIV-1
reverse transcriptase, the F2 compound has several distinct
advantages for downstream drug development. Specifically,
F2 features an imidazo[1,2-a]pyridine core scaffold that is
generated in a simple, inexpensive, single chemical trans-
formation that belongs to a special class of diversity gener-
ating chemistries known as Multi-Component Reactions
(MCR), leading to high product yield and purity. By con-
trast, the benzimidazole core scaffold of the NNRTI THR-
50 results from a three-step chemical process (Figure 3B)

resulting in an overall yield of 40% and requiring purifica-
tion operations after each reaction step. Furthermore, the
number of possible analogs to F2, based on commercially
available building blocks, is on the order of 10° compounds,
versus 10 for THR-50. These two molecular structures are
further distinguished by the addition of an H-donating
group (NH) for additional binding interactions as well as
lowering clog P and improving the pharmacological prop-
erties. Therefore, the lead F2 compound is an excellent
candidate for further development as an antiviral drug
through small molecule SAR and structure-guided design.

Table 1 Resistance profile against wild type and RT mutant VSV-G pseudotyped HIV-1 vectors

Inhibitor Antiviral ECs (uM)® P CCsp (UM)©
wt Y188L Y181C V106A K103N
F2 0.165 + 0.039 > 20 1676 £ 0.271 1.275 + 0.357 3233+ 0.127 341 £24
[>121.1] [10.2] [7.71 [19.6]
NVP 0019 + 0,002 > 20 2879 + 0006 1260 + 0.159 0841 + 0.049 > 50
[>1052.6] [151.5] [66.3] [44.2]
AZT 0014 + 0003 0011 + 0005 0006 + 0.0 0015 + 0.001 0014 + 0002 > 50
[08] [04] [1.1] [1.01

@ Values are averages + standard deviations from two independent experiments performed in duplicate in 293T cells.
® The viruses were produced by cotransfection of the pPNLNgoMIV R+E-.luc wild type or RT mutant plasmids and VSVg expressing plasmid. The values in brackets

indicate the fold change in ECs, for mutant relative to wild type.



Elleder et al. Virology Journal 2012, 9:305
http://www.virologyj.com/content/9/1/305

Methods

Chemistry

The Salk Small Molecule Screening Collection was
designed and synthesized in-house using known meth-
ods. The imidazo[1,2-a]pyridines were prepared in a 96
well microplate (Eppendorf, 2.2 ml deepwell, polypropyl-
ene) as a combinatorial matrix where 2-amino pyridine
were dispensed to all wells, aromatic aldehydes were dis-
pensed as row reagents, isonitriles were dispensed as
column reagents, and lewis acid catalyst scadium (III)
triflate was dispensed to all wells. The amine and isoni-
triles were prepared as 0.5 M stock solutions in 1,2
dichloroethane (DCE), and the aldehydes and lewis acid
were prepared as 0.5 M and 0.025 M (respectively) stock
solutions in 2,2,2-trifluorothanol (TFE). For a given well:
200 pl of 0.5M 2-amino pyridine in DCE, 200 pl of 0.5
M aromatic aldehyde in TFE and 200 pl of 0.025 M
scandium (III) triflate in TFE were added and mixed on
a plate shaker for 15 minutes at room temperature. To
this solution was added 200 pl of 0.5 M isonitrile in TFE
and 200 pl of (1:1 v/v) DCE-TFE solvent. Final reaction
volume was 1.0 ml and theoretical concentration was 0.1
M. The plate was sealed (heat seal, foil) and allowed to
shake for 5 days at room temperature. After 5 days, the
crude reaction mixture was evaporated to dryness and
resuspended in 1.0 ml dichloromethane (DCM). This
crude reaction mixture was transferred to a filter plate
charged with a cocktail of scavenging resins (PS-Trisa-
mine, PS-NCO, PS-TsNHNH,) and silica gel and
allowed to gravity filter after 2 hr. Each well was rinsed
with 2.0ml DCM, the fractions combined and were con-
centrated to dryness. Resultant purity-enriched com-
pound was resuspended in 1.0 ml DMSO (100%) for a
theoretical stock solution of 100 mM. From the 100 mM
master (or mother) plate, 10 mM compound in DMSO
daughter plates were generated and distributed for
assays. Analytical quality control was performed via
high-throughput LCMS on an Agilent 1100 HPLC-LC/
MSD Trap XCT MS employing ballistic gradients on
Synergi Fusion RP C18 (Phenomenex) columns and
acetronitrile-water solvent system. Hits were resynthe-
sized on a 1.0 mmol scale, purified by preparative liquid
chromatography and characterized by NMR and LCMS.

DNA constructs and virus production

The VSVg-pseudotyped HIV-1 vector was generated by
transient transfection of human 293T cells (American
Type Culture Collection No. CRL-11268), with plasmid
pNL4-3LucR+E- [8] and pMD.G plasmid that expresses
the VSVg glycoprotein. The titer was determined by
antibody staining for Gag (p24) expressing cells follow-
ing infection. The LAl-based replication-competent
HIV-1 vector was generated by transient transfection of
human 293T cells with plasmid pLai3Luc2 [10]. The
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NL4-3 Nef+ IRES rluc vector encoding renilla luciferase
was derived from NL4-3 Nef+ IRES eGFP vector [16] by
replacement of the eGFP open reading frame with renilla
luciferase (kindly provided by the Chanda laboratory,
Sanford-Burnham Medical Institute, La Jolla). The set of
vectors harboring the RT mutations and corresponding
wild type form (pNLNgoMIV R+E-.luc) were based on
the HIV-1 NL4-3 strain; the RT region of these vectors
was derived from the BH10 isolate [17]. The vectors
were pseudotyped with VSVg by cotransfection with
pMD.G plasmid in 293T cells. To generate the cells that
express luciferase from established HIV proviral DNA,
293T cells were infected with the VSVG pseudotyped
HIV-1 pNL4-3LucR+E- vector and passaged for two
weeks to remove any remaining unintegrated viral DNA.

Tissue culture-based infectivity assays

Ten thousand human 293T cells were plated in 80 pl
medium in each well of 96-well tissue culture plate. Next
day, 10 pl of each diluted compound was added to reach
the desired concentration and incubated at 37°C for 1
hour. A 10 pl aliquot of medium containing the VSVG
pseudotyped HIV-1 vector (multiplicity of infection of 0.1-
0.5) was then added to each well. Twenty-four hours after
viral challenge, the medium was carefully removed and
60 pl of the Bright-Glo reagent (Promega, Madison, WI)
diluted 1:1 in PBS was added to lyse the cells and provide
the luciferin substrate for virus-encoded firefly luciferase.
After several minutes the luminescence associated with
each sample was measured, and served as readout to quan-
tify virus infectivity in each well. The best fitted curves and
ECso values were calculated using Prism 4 software
(GraphPad Software, San Diego). The degree of synergism
between screen compounds and AZT (Sigma, St. Louis,
MO) were determined by testing the compounds in the in-
fectivity assay individually and in combinations at a fixed
molar ratio over a range of serial dilutions [13]. The data
were then analyzed by the isobologram technique, which
evaluates the compound interactions by a dose-oriented
geometric method [13,14]. Cytotoxicity of the compounds
was measured 24 hours after treatment of mock-infected
cells by adding an equal volume of CellTiter-Glo (Promega,
Madison, WI) and reading luminescence.

In the assays employing the replication-competent
pLai3Luc2 HIV-1 vector, CEM-GFP lymphocytic indica-
tor cells [18] were pretreated with F2 for 1 hr in 24-well
plates, challenged with the virus by spinoculation at
1,200 x g for 1 hr and the number of GEP positive cells
was determined by flow cytometry two days later using
FACScan (Becton-Dickinson, Franklin Lakes, NJ).

Human PBMCs from an uninfected individual were
obtained from the UCSD Center for AIDS Research.
Samples were collected with written informed consent
under Salk Institutional Review Board Protocol # 10—
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004. PBMCs were activated in PBMC Growth Medium
(RPMI 1640 with 15% FBS, Pen/Strep, 25 mM HEPES,
100 U/ml IL-2) supplemented with 5 pg/ml PHA-P.
Two days after activation, the PBMC’s were maintained
in the same medium (without PHA-P) for 3 more days.
Aliquots of 2x10* PBMCs were then plated in 80 pl
PBMC Growth Medium in each well of white 96 well
plates (CoStar) and returned to the incubator overnight.
Serial 3-fold dilutions of compound F2, ranging from
100 pM to 1.37 puM in concentration, were made up in
10% DMSO. Eight replicate samples were then set up,
with 10 pl aliquots of the serially-diluted compounds
added to the cells, and preincubated at 37°C for one
hour prior to virus challenge. The cells were then chal-
lenged with 10 pl per well of the NL4-3 Nef+ IRES rluc
virus vector bringing the total volume in each well
to 100 pl final. The plates were incubated at 37°C for
five days and then viral infection was monitored by add-
ing 100 pl per well of Renilla-Glo Luciferase Reagent
(Promega) and measuring the resultant luciferase activ-
ities using a Topcount-HTS (PerkinElmer). Cell toxicity
was assessed on a duplicate plate of samples by adding
100 pl Cell-Titer Glo Reagent (Promega) and reading on
a Topcount-HTS.

Real-time PCR quantitation of viral DNA

Total cellular DNA was harvested 24 hours post infection
with the AccuPrep genomic DNA extraction kit (Bioneer
Life Science Corp., Rockville, MD). The amount of viral
DNA products was quantified by real-time PCR on ABI
Prism 7900 Sequence Detection System (Applied Biosys-
tems, Foster City, CA) with the following primers and
probes: early HIV-1 reverse transcripts with primers ert2f,
ert2r, probe ERT?2, late HIV-1 reverse transcripts with pri-
mers MH531, MH532, probe LRT-P [11]. To normalize
for the number of cellular DNA equivalents in the sam-
ples, a single-copy locus in the PBGD gene was amplified
with primers PBGD1 (5-AAGGGATTCACTCAGGC
TCTTTC), PBGD2 (5-GGCATGTTCAAGCTCCTTGG)
and probe PBGD-P (5-VIC-CCGGCAGATTGGAGAGA
AAAGCCTGT-MGBNEQ).

HIV-1 RT in vitro enzyme assay

The assay was adapted from references [14,19]. HIV-1 RT
(0.5 units; Ambion, Austin, TX) was incubated with differ-
ent concentrations of the F2 compound for 5 minutes at
room temperature. A template-primer mixture was then
added to a final concentration of 5 pg/ml oligo(dT)o, 10
pg/ml poly(rA), 1.25 uM [a-32P]dTTP and 10 uM dTTP.
The sample was incubated at 37°C for 60 minutes. Ali-
quots of the reaction were spotted on DEAE paper,
washed twice with 2xSSC buffer (300 mM NaCl, 30 mM
sodium citrate) and once with 95% ethanol, dried and
exposed to a PhosporImager screen (Molecular Dynamics,
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Sunnyvale, CA). The screens were scanned by a FLA-5100
instrument (Fujifilm Life Science, Stamford, CT) and the
amount of incorporated labeled phosphate was used to
quantify the RT activity. The best fitted curves and ICsq
values were calculated using Prism 4 software (GraphPad
Software, San Diego).
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