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Background: Japanese encephalitis virus (JEV) is a major mosquito-borne pathogen that causes viral encephalitis
throughout Asia. Vaccination with an inactive JEV particle or attenuated virus is an efficient preventative measure
for controlling infection. Flavivirus NS1 protein is a glycoprotein secreted during viral replication that plays multiple
roles in the viral life cycle and pathogenesis. Utilizing JEV NS1 as an antigen in viral vectors induces a limited
protective immune response against infection. Previous studies using E. coli-expressed JEV NST to immunize mice
induced protection against lethal challenge; however, the protection mechanism through cellular and humoral

Results: JEV NST was expressed in and purified from Drosophila S2 cells in a native glycosylated multimeric form,
which induced T-cell and antibody responses in immunized C3H/HeN mice. Mice vaccinated with 1 pug NST with or
without water-in-oil adjuvant were partially protected against viral challenge and higher protection was observed in
mice with higher antibody titers. IgG1 was preferentially elicited by an adjuvanted NS1 protein, whereas a larger
load of IFN-y was produced in splenocytes from mice immunized with aqueous NS1. Mice that passively received
anti-NS1 mouse polyclonal immune sera were protected, and this phenomenon was dose-dependent, whereas
protection was low or delayed after the passive transfer of anti-NS1 MADbs.

Conclusion: The purified NS1 subunit induced protective immunity in relation with anti-NS1 IgG1 antibodies. NS1
protein efficiently stimulated Th1-cell proliferation and IFN-y production. Protection against lethal challenge was
elicited by passive transfer of anti-NS1 antisera, suggesting that anti-NS1 antibodies play a substantial role in anti-
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Introduction

Japanese encephalitis virus (JEV) is one of the most im-
portant mosquito-borne viruses in East and Southeast
Asia, where seasonal outbreaks cause more than 50,000
infections and 10,000 deaths annually [1]. JEV is a
mosquito-borne flavivirus in the family Flaviviridae. The
Flavivirus genus contains more than 70 viruses with
positive-sense, single-stranded RNA genomes (~11 kb)
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that encode a polypeptide (~ 3400 amino acids) consist-
ing of the capsid protein C (core protein), the matrix
protein (envelope protein M), the major envelope pro-
tein E, a number of small non-structural proteins (NS1,
NS2A, NS2B, NS4A and NS4B), a helicase (NS3) and a
RNA-directed polymerase (NS5) that are cleaved and
co- or post-translationally processed by host- or virus-
specific proteases [2]. The first non-structural protein
(NS1) is translocated to the endoplasmic reticulum (ER)
via signal sequences in a trans-membrane C-terminal
stretch of protein E, where it is involved in ER-
associated RNA replication [3]. NS1 is N-glycosylated
then secreted to the extracellular milieu [4]. The patho-
genic role of NSI1 remains largely unknown, but has
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been shown to be associated with Factor H in West Nile
virus (WNV) infection [5] and with C4b in WNV, yellow
fever virus (YFV), and dengue virus (DENV) infections,
where it may modulate complement activation [6,7].
NS1 may use structural mimicry similar to those found
in the endothelial membrane or coagulation factors,
which may elicit the autoimmunity that is deleterious in
DENV hemorrhagic fever [8,9]. However, no such auto-
antibody has yet been found in JEV infection [10]. Its as-
sociation with phospholipids may induce vascular
homeostasis in DENV hemorrhagic fever, which is simi-
lar to that induced by plasma lipoproteins [4].

Prevention of Japanese encephalitis through vaccin-
ation was shown to be efficient when using either a
formalin-inactivated virus produced in mouse brain or
cell culture, or a live attenuated vaccine, SA14-14-2 [11],
which was developed in China and is broadly used for
childhood vaccination in mainland China, India, and
several other Southeast Asian countries [12]. The SA14-
14-2 virus is produced in hamster primary kidney cells
and is widely used in vaccination programs because of
its innocuity, efficiency, and low cost to developing
countries. A JEV vaccine approved by the Food and
Drug Administration was recently produced in Vero
cells, which was purified from SA14-14-2-infected cell
supernatants and inactivated formalin [11].

The immunogenicity and protective immunity of flavi-
virus NS1 has been studied using various vaccine types.
Animals were either immunized with YFV NS1 [13], or
infected with vaccinia viruses or adenoviruses expressing
recombinant NS1 from DENV [14], YFV [15], tick-borne
encephalitis virus (TBEV) [16,17], or WNV [18]. How-
ever, they showed variable protective immune responses.
Vaccinations with flavivirus NS1 DNA were also tested
in NSI-induced immune protection studies against
DENV [19] and TBEV [20]. These studies showed that
the NS1 contributes to the induction of protective im-
munity against flaviviral infections. The anti-NS1 protec-
tion mechanism was partially determined, showing that
passive transfer of anti-YFV NS1 monoclonal antibodies
(MAbs) protected mice or reduced their neuropathology
after YFV challenge [21,22] and that WNV anti-NS1
MAbs protected mice from lethal challenge [23,24].

Mice immunized with JEV NS1 expressed in insect
cells induced low protection [25]. Recombinant viruses
or DNA vaccines expressing JEV E or NS1 genes were
used to vaccinate mice, which resulted in differing levels
of protection [26]. The value of using a vaccine contain-
ing the native hexameric form of a purified flavivirus
NS1 glycoprotein to protect against lethal viral chal-
lenges has yet to be tested in mice. One obstacle in pro-
tection studies is that mice are less susceptible to a viral
challenge by the time a vaccination schedule in im-
munocompetent mice is achieved. A possible surrogate
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for testing protective efficacy is the use of adoptive im-
munity by injecting flavivirus anti-NS1 antibodies into
young mice [14,17,22].

A JEV NS1 protein purified from a Drosophila S2
established cell line supernatant [27] was used to
immunize C3H/HeN (C3H) mice and to test the induc-
tion of cellular and humoral immunity. Protection of
mice by antibodies elicited against NS1 was tested by
JEV infection of mice that were actively or passively
immunized. Our results support the role of anti-NS1
antibodies in protection against flaviviral infection.

Results

Characterization of the NS1 immunogen

In a previous study, we successfully produced and purified
large amounts of extracellular hexameric forms of JEV
NS1 protein [27]. We studied the processing and compos-
ition of carbohydrates of NS1 protein produced in the
supernatant of Drosophila S2 cells. Heat-denatured NS1
was mock-treated or treated with Endo H (Endoglycosi-
dase H) or PNGase F (Peptide: N-Glycosidase F). Endo H
and PNGase F treatment reduced the molecular weight of
extracellular NS1, by 2 kD (Additional file 1: Figure S1A),
indicating that the protein acquired glycans in the
secretory pathway of Drosophila cells. The type of glycans
was identified by lectin affinity. The NS1 protein was
recognized by GNA (Galanthus nivalis agglutinin) which
recognizes terminal mannose, and DSA (Datura stramo-
nium agglutinin) which recognizes Gal-(1-4)N-Acetylglu-
cosamine (GIcNAc) in complex and hybrid N-glycans,
respectively (Additional file 1: Figure S1B), but not by
SNA (Sambucus nigra agglutinin) which recognizes sialic
acid linked (2-6) to galactose and MAA (Maackia amur-
ensis agglutinin) which recognizes sialic acid linked (2-3)
to galactose (data not shown). These results indicated that
the glycoprotein NS1 contained N-glycans with Gal-(1-4)
GlcNAc and a terminal mannose, but apparently not sialic
acid.

Mouse immune responses to NS1 and SA14-14-2
immunization

Four-week-old C3H mice were immunized twice four
weeks apart using a purified NS1 hexamer obtained from
Drosophila S2 cell line supernatants [27], either alone
(aqueous) or adjuvanted with water-in-oil ISA-51-VG.
Serum samples from each group were tested individually
by anti-NS1 antibody titration. NS1 immunization induced
anti-NS1 antibody responses in both groups of mice and
the use of an adjuvant significantly increased the antibody
titer (p < 0.005) (Figure 1). Six mouse sera samples from
each group were pooled to test IgG1 and IgG2a antibodies
against NS1. Immunization with aqueous or adjuvanted
NS1 protein induced both IgGl and IgG2a antibody
responses, with an IgGl titer four to nine times higher
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Figure 1 1gG antibody response of mice immunized with
aqueous and adjuvanted NS1. Four-week-old C3H mice were
immunized with 1 ug of purified NS1. Two weeks after a second
immunization was given at two months of age, mouse sera were
sampled and the IgG titers were tested by indirect ELISA. The data
for immunization with recombinant NS1 are derived from two
independent experiments. Antibodies of 18 mice sera were titrated
for each group and analyzed by Student's t-test.

than that of IgG2a, but a similar titer to IgG2a (Table 1).
SA14-14-2 vaccination mainly induced anti-NS1 IgG2a
antibodies. The proliferation of T-cells and IFN-y secretion
by splenic cells of immunized C3H mice in response to
stimulation with purified JEV NS1 protein were tested.
The T-cell proliferation stimulation index (SI) of the PBS
group was 1, while those of the aqueous NS1 and adju-
vanted NS1 groups were 1.59 and 1.51, respectively, and
these were both significantly higher (p < 0.05) than the SI
of the phosphate buffered saline (PBS) group (Figure 2A).
After vaccination with SA14-14-2 or Dulbecco's modified
Eagle's medium (DMEM), purified NS1 was used for
splenic cell stimulation in vitro. The T-cell proliferation SI
of SA14-14-2 was 2.42, significantly higher than the con-
trol group (SI=1.88; p < 0.05) (Figure 2A). IFN-y produc-
tion by splenic cells was quantified over a period of five
days. IFN-y was detected on day 2 or 3 post-stimulation in
the splenocyte culture supernatants of mice immunized
with aqueous or adjuvanted NS1, SA14-14-2 and complete

Table 1 Determination of antibodies titers and sero-
neutralization of pooled sera from immunized mice

Sero-
neutralization

Immunogen Antibodies Titration
19G 1gG1

IgG2a

Before® After® Before After Before After Before — After
NS1 5000 6400 5000 5000 1200 30000 40
NS1 +adjuvant 15000 18000 15000 15000 1600 3200 0 40
SA14-14-2 1200 1000 300 O 2400 2400 80 80
PBS 0 600 0 0 0 2400 0 40

2 Sera collected two weeks after 2" boost and two weeks before challenge.
b Sera collected four weeks after challenge.
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DMEM. The highest IFN-y load was 3 ng ml™" in the
aqueous NS1 group, 1 ng ml™" in the adjuvanted NS1
group, 1.5 ng ml™" in the SA14-14-2 group and
150 pg ml™* in the complete DMEM group on day 5 post-
stimulation (Figure 2B).

NS1 immunization induced immune responses that
partially protected mice from viral challenge

To determine whether the anti-NS1 immunity observed
in immunized mice was protective, mice were challenged
by an intranasal (i.n.) injection of 10* pfu of JEV SA14
and mortality was recorded over four weeks . This virus
dose corresponded to 100 times the lowest dose killing
the largest number of mice (Additional file 2: Figure
S2B). Mouse challenge by i.n. was chosen rather than i.p.
because the number of deaths and the time before death
were more consistent (Additional file 2: Figure S2A).
The survival rate of the adjuvanted NS1 group was sig-
nificantly higher (83%) when compared with a negative
control group (injection with PBS) that had a 50% sur-
vival rate (p < 0.05) (Figure 3, Table 2). The survival rate
of the aqueous NS1 group was 72%, but the difference
from the survival rate of the negative control group was
not significant (p > 0.05) (Table 2), although a delay in
the time of death was observed in the aqueous NSI-
immunized mice when compared with the PBS mock-
immunized mice (Figure 3).

Sera of mice that had survived the SA14 virus chal-
lenge were titrated by ELISA. SA14 infection did not in-
crease the anti-NS1 IgG2a titers in the SA14-14-2
-vaccinated group, and anti-NS1 IgG1 was not detected
after the challenge. In contrast, SA14 challenge induced
an IgG2a antibody titer increase, but not IgG1, in the
aqueous or adjuvanted NS1 groups (Table 1). Mouse
sera collected before and after challenge were also tested
for seroneutralization to follow seroconversion. Sera
from mice immunized with NS1 reached a TCIDs, titer
of 40 after the challenge. Sera from the SA14-14-2 group
exhibited the same neutralization titer (TCIDs, titer =
80) before and after the challenge (Table 1). These data
suggest that the attenuated virus vaccine, but not NS1,
induced a sterilizing immunity against JEV.

In a previous experiment, sera from mice were pooled
for antibody subtyping and neutralization testing. In
order to verify whether there was any correlation be-
tween anti-NS1 antibody titer elicited by vaccination
with NS1 and challenge protection, ELISA titers of 18
mice were calculated individually before challenge.
Table 3 shows that the total number of surviving aque-
ous NS1-vaccinated mice (66.7%) was not significantly
higher than those receiving PBS (44.4%) (p=0.41);
whereas all mice that had anti-NS1 antibody titers>
2400 were all protected (p=0.008) compared to mice
that had titers <2400 were not protected (33.3%)
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Figure 2 Proliferation and IFN-y secretion of splenic cells from immunized C3H mice in response to inoculation with recombinant JEV
NS1 protein and SA14-14-2. Splenocytes isolated from mice immunized with PBS, aqueous NS1, adjuvanted NS1, DMEM with 3% FBS
(complemented DMEM) and attenuated virus SA14-14-2, were stimulated with purified NS1. A: Splenocyte proliferation. The proliferation
stimulation index (Sl) was defined as the ratio of stimulated cells to unstimulated cells. B: IFN-y secretion. The IFN-y production of splenic cells
was quantified over a period of five days. Three mice were used for each group. The SI and IFN-y concentration were analyzed by Student's t-test.
P < 0.05 was considered to be significant. *, significant difference.

compared to the control (44.4%) (p =1). This result sug-  Passive protection of mice by anti-NS1 antibodies

gests a relationship between anti-NS1 antibody titer and ~ We previously calculated that 20 pfu of JEV SA14 virus

protective immunity against i.n. JEV challenge. could kill 100% of four-week-old i.p.-infected C3H mice
[28] as shown in Additional file 2: figure S2C.

To determine whether the protection of immunized
mice was associated with an anti-NS1 antibody response,
the sera from NSIl-immunized mice with high titers of

( anti-NS1 antibodies (>1:3000) were collected and

ha = I pooled to perform passive transfer tests. One hundred pl
o0 - of NS1 mouse anti-sera injected 1 h prior to challenge
2 ! . provided 100% protection in challenged mice, but de-
£ g0 creasing the dose to 30 pl and 10 ul provided 33% and
® no protection, respectively (Figure 4). While sera from
§ 70 4 LoLo SA14-14-2-vaccinated mice conferred 100% protection,
@ all mice died that were injected with sera from PBS
50 4 mock-immunized mice (Figure 4).
—@&—— PBS
50 4 ——3—4— :gLAdiuvant Characterization of a panel of MAbs against NS1, for
T T A passive protection
0 . : - pa o 53 Eighteen MAbs against NS1 were generated in a previ-
ous study [27] and five had high affinity for NS1 (3E10,
D RastehRIc0ge 4C4, 7C2, 7H5 and 8F1), where they recognized cell
Figure 3 Survival curves of SA14-14-2-vaccinated and NS1- surface-associated and intracellular NS1 (Table 4). MAb
immunized mi.ce after JEV ;hallenge. Groups pf three—month—old 4C4 recognized the N-terminus of NSI; MAb 3E10
SA14-14-2-vaccinated or NS1-immunized C3H mice (see Figure 1) K .
were i.n. challenged with 1 x 10% pfu of JEV SA14. The JEV-infected detected NS1 in an ELISA and IFA, but not in a West-
mice were monitored daily for 28 days. Survival curves of mice ern blot, indicating a probable recognition of a conform-
immunized with recombinant NS1 protein or injected with PBS were ational epitope. Three MAbs recognized the C-terminus
cqnstructed using data .from two experiments, yvith grsups‘ of 6-12 of the protein and cross-reacted with the DENV NS1
mice. JEV-vaccin mice wer n ing ei mice. . e
B T e e e g ST potin (Table 0. These fve MADs were purited and

quantified before being passively transferred at doses of
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Table 2 Survival rate of C3H mice immunized with NS1 and SA14-14-2

Immunogen No. of Survival mice/ No. of Immunized mice (survival rate) p?
NS1 13/18 (72%) 0.195
NS1 + adjuvant 15/18 (83%) 0.024
SA14-14-2 8/8 (100%) 0.021
PBS 9/18 (50%)

@ P value was obtained by log rank test when comparing the survival curve of each group of vaccinated mice with PBS group.

100 pg or 500 pg to four-week-old mice. Mice were
challenged with 20 pfu of SA14 virus 1 h after MAb in-
jection and mortality was recorded for four weeks.
Mouse survival rates after passive transfer of 100 pg of
MADb 3E10, 4C4, and 7C2 were 16%, 33%, and 8%, re-
spectively, whereas no mice survived after injection with
MAbs 7H5 or 8F1, or with the anti-HIV antibody used
as a control (Figure 5, Table 5). However, increasing
7C2, 7H5, and 8F1 MAbs dosages to 500 pug per mouse
enhanced the survival period (Figure 5, Table 5). Calcu-
lation of the x> for the survival rate, the delay until mor-
tality, and the dose of antibody indicated a significant
anti-viral activity with these MAbs (p < 0.05) (Table 5).

Discussion

Japanese encephalitis remains a serious public health
threat in Asia, where more than two billion people are
at risk. The complex JEV zoonotic cycle prevents any
direct action to reduce viral transmission; therefore,
human infection can only be prevented by vaccination
campaigns with children [12]. Apart from the live-
attenuated JEV vaccine SA14-14-2 developed for child-
hood application [11], no affordable JEV vaccine is
recognized for mass vaccination. Several vaccine candi-
dates inducing neutralizing antibodies are under clinical
trial and they may meet the immunogenicity and pro-
tective capacity requirements after a single dose regimen
[11]. However, the use of NS1 protein as an immunogen
to reinforce the immune response to JEV structural pro-
teins has been discussed, although the induction
mechanisms of protective JEV immunity using a NS1
hexameric antigen form have not been investigated.
Drosophila S2 cells have been used for JEV NS1 protein
expression and purification from the cell supernatant
harvested after serum-free cell culture [27]. Previous

recovery of DENV E protein crystals in S2 cells indicated
that this system expressed native-like and well-folded
glycoproteins [29]. More than 50 mg L™ of the hexame-
ric form of NS1 glycosylated protein were expressed in
the cell culture supernatant [27], which was shown in
this study to contain carbohydrates similar to the native
protein produced in infected cells [30] and was suitable
for recombinant vaccine subunit preparation. In this
study, two doses of 1 pg of glycosylated hexameric JEV
NS1 were used to immunize mice. High antibody titers
were detected in the sera of two groups of mice immu-
nized with aqueous or emulsified NS1 with ISA-51-VG
formulations. The adjuvant ISA-51-VG was a mix of
mineral oil and a surfactant, which has been previously
tested for human vaccination [31]. This adjuvant was
tested for its capacity to boost the T-cell response
against NS1 in immunized mice. The titers of IgG1 sub-
class were 4—9 times higher than those of IgG2a in both
groups of mice, while titers of IgG1 in mice immunized
with adjuvanted NS1 were 2—4 times higher when com-
pared with those of mice immunized with aqueous NS1,
whereas IgG2a titers remained low. Similarly, 100 times
higher IgGl1 titers compared with IgG2a were observed
in mice that were immunized with E. coli-expressed JEV
NS1 protein mixed with Freund’s adjuvant [32]. This dif-
ference was presumably due to the use of Freund’s adju-
vant, the high antigen dose and the number of antigen
injections (three instead of two). In vitro splenocyte
stimulation by NS1 elicited T-cell proliferation and IFN-
y secretion, although higher IFN-y secretion was
observed in mice immunized with aqueous NS1. These
results suggested that the NS1 proteins are engulfed by
antigen presenting cells (APCs) in vivo. The peptides
derived from NSI1 digestion are subsequently presented
by MHC class II molecules to T helper cells. The 1gG1

Table 3 Survival rate of three month-old C3H mice immunized with NS1 or PBS

Immunogen Anti-NS1 IgG antibody titer range® No. of Survival mice/No. of Inmunized mice (Survival rate) PP
NS1 0-12800 12/18 (66.7%) 041
NS1 0-2400 3/9 (33.3%) 1

NS1 2400-12800 9/9 (100%) 0.008
PBS 0 4/9 (44.4%)

@ Two weeks before challenge, mouse sera were collected for anti-NS1 IgG antibody titration. The NS1-immunized group of mice (18 mice in total) was divided
into two groups according to anti-NS1 IgG titers: one group with anti-NS1 1gG <2400 (9 mice) and one group with anti-NS1 IgG >2400 (9 mice).
b p value was obtained by log rank test when comparing the survival curve of each group with PBS group.
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Figure 4 Survival of mice passively injected with anti-NS1 antisera and challenged with JEV. Groups of four-week-old C3H mice were
administered with 100 pl, 30 pl and 10 pl of anti-NS1 mouse antisera, or 100 ul sera from PBS-injected mice (negative control) or 100 ul of anti-
SA14-14-2 antisera (anti-JEV), and infected 1 hr later with 20 pfu of JEV SA14. The JEV infected mice were monitored daily for 28 days. The survival
curve was constructed using data from one (100 pl anti-JEV, 30 and 10 pl of anti-NS1 antisera), two (sera from PBS-injected mice) or three (100 pl
of anti-NS1 antisera) experiments. For 100 ul anti-JEV antisera group, 30 and 10 pl of anti-NS1 antisera groups, sera from PBS-injected mice group,
6 mice were used for each experiments. Six to 12 mice were used for 100 pl anti-NS1 antisera groups of each experiment.

subclass antibody response corresponds to Th2 cell acti-
vation, whereas the IgG2a response reflects Thl cell ac-
tivation. The IFN-y produced by Thl cells inhibits Th2
cell proliferation and IgGl production [30]. These
results indicate that NS1 immunization elicited both
Thl and Th2 cell responses and that ISA-51-VG
improved IgG1 production, and reduced Thl activation
and INF-y expression. Mice inoculated with TBE NSI,
which was expressed by a recombinant adenovirus, sti-
mulated in vivo IFN-y production [17]. A previous study
showed that soluble DENV-1 NS1 is a lipoprotein [4]
and was internalized by mouse hepatocytes in vivo and
by cultured cell lines in vitro [33]. We observed that
purified soluble JEV NS1 attached to many types of cell

membranes in vitro and was subsequently internalized
(Li and Deubel, unpublished data). This feature may at
least partially explain why aqueous NSI rapidly stimu-
lated the Thl cell response via APCs, whereas NS1
mixed with ISA-51-VG was slowly released from the
emulsion and preferentially activated a Th2 response
[31,34]. The cell-mediated immune response induced by
SA14-14-2 immunization and NS1 stimulation was also
studied. Compared with the NS1 group, the SA14-14-2
group showed higher cell proliferation SI but lower IFN-
y production. These differences may be due to different
epitope presentation from native protein or replicative
virus cytokine profiles in response to NS1 and SA14-14-
2 immunization, respectively. IL-2 was detected in

Table 4 Monoclonal antibodies characterization and testing of passive protection

MAbs Intracellular® Surface IFA© Affinity MAb % Mice

associated” JEV KD binding survival
Dengue 2 V (nM)d domain® rate’

3E10 + + + - 1.1 unknown 16

4 C4 + + + + 56 NST 143 33

7Q2 + + + + 17 NS1554-352 8

7 H5 + + + + 6.4 NS1554-352 0

8 F1 + + + + 5 NS1554-352 0

*®MAbs were incubated with S2-NS1,_3s, cells permeabilized or untreated (intracellular/surface associate) for fluorescence testing by flow cytometry (FACScan).
€ Immunofluorescence assay (IFA) for testing monoclonal antibodies reactivity against BHK cells infected with JEV, and C6/36 cells infected with Dengue 2 virus.

9 The affinity of MAbs to NS1 tested by surface plasmon resonance (SPR).

€ Reactivity of MAbs for S2- NS1,_;43 or NS1,,4 35, fragments. Cells lysates were tested by Western blotting (WB). “Unknown” means did not react with both of the

NS1 fragments or reduced and boiled NS1.

f Six to twelve mice were administered with 100ug of 3E10, 4 C4, 7 C2 and 8 F1, respectively, and challenged by JEV SA14.
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Figure 5 Survival of mice passively immunized with anti-NS1 monoclonal antibodies. Groups of four-week-old C3H mice were
administered with 100 pg (black dot) or 500 ug (white dot) of purified MAbs 3E10 (A), 4C4 (B), 7C2 (C), 7H5 (D), 8F1 (E) before being challenged
with 20 pfu of SA14. Another group of mice received 100 pg of HIV anti-envelope MAb (black triangle) as a negative control. JEV-infected mice
were monitored daily for 28 days post-challenge. Survival curves were constructed using data from one or two experiments with 6-12 mice in
each group. ¥* values were obtained using a log-rank test by comparing the survival curve of each group with the anti-HIV group.

Days post challenge

SA14-14-2, but not in NS1-immunized mice (data not
shown), confirming a Thl stimulation pathway induced
by replicative viruses. Production of cytotoxic T lympho-
cytes (CTLs) is another protective immune response
induced by NS1 immunogens issued from replicative
viruses [35]. Mice primed with JEV-infected cells [36] or
JEV NS1 expression recombinant viruses [37] stimulated
mice to generate CTLs against JEV. Further study
showed that CTLs recognize peptides derived from NS1

and NS3 [35]. One study showed that NSI1-expressing
DNA immunogen could stimulate CTLs against JEV in
mice, but induced low protection [38]. However, we did
not expect any CTL response since NS1 was not pre-
sented in a replicative system that could stimulate class I
antigen presentation.

The protective immune responses elicited against the
purified JEV NS1 hexameric protein was investigated by
challenging mice with JEV SA14 injected i.n. Immunization
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Table 5 Survival rate of C3H mice passively immunized
with anti-NS1 monoclonal antibodies

MAbs MAb dose No. of survival mice/ p?
(ng) No. of passive transfer mice (survival rate)
3E10 100 1/6 (16.7%) 0.07
500 1/6 (16.7%) 0.05
4C4 100 2/6 (33.3%) 0.02
500 2/6 (33.3%) 0.15
7C2 100 1/12 (8.3%) 0.74
500 1/6 (16.7%) 0.02
7 H5 100 0/6 (0%) 0.08
500 0/6 (0%) 0.02
8 F1 100 0/12 (0%) 0.58
500 0/6 (0%) 0.02
Anti-HIV 100 0/6 (0%)

P value was obtained by log rank test when comparing the survival curve of
each group of mice which received anti-NS1 MAb with anti-HIV group.

with recombinant subunits required several injections, but
the mice were not highly susceptible to JEV at the end of
the immunization schedule. However, the in. method
adopted in this study killed more consistently mice aged
over three months than i.p. inoculation (Additional file 2:
Figure S2A and B). Another approach would have been to
infect mice by an intracerebral or an i.p. route [39], but we
felt these techniques did not simulate a natural transmis-
sion, as they mechanically break the blood brain barrier. In
our study, two doses of 1 pg of hexameric NS1 emulsified
in adjuvant provided significant protection (83%) against
viral challenge when compared with soluble NS1 (72%), as
it reduced morbidity and mortality and increased the sur-
vival period after infection. Anti-NS1 immune responses
were induced by YFV, DENV, TBEV and WNV
immunization with NS1 protein, an NS1-encoding DNA
gene, or viral vectors expressing NS1 [13,14,18]. Mouse
immunization with JEV NS1 produced in Spodoptera frugi-
perda Sf9 insect cells induced little or no protection [25],
whereas NS1 carried by viral vectors induced an antibody
response [26,37], but low protection [26,37]. DNA vaccin-
ation of mice with the NS1 gene [40] induced more than
80% protection, whereas DNA vaccination with the NSI-
NS2A gene protected only 20% of mice against a JEV chal-
lenge [39]. Interestingly, 100 pg of non-folded and non-
glycosylated JEV NS1 was produced in E. coli and injected
three times to induce protective immunity in 87.5% of vac-
cinated mice [32]. Recently, a study using protein E frag-
ments or NS1 produced in E. coli and injected at 50 pg
seven (in.) or five (ip.) times showed better protection
when the proteins were injected in. rather than ip. [41].
Only two much lower doses of the hexameric NS1 form
provided protective effects, which may be due to the elicit-
ation of antibodies that bind to conformational epitopes.
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Higher antibody titers in the mouse group with a higher
survival rate suggested that NS1 had induced an antibody
response that might play an important role in preventing
JEV infection. In order to verify this hypothesis, different
antibody doses induced during mouse immunization were
injected into naive mice. One-month-old mice were used
for the adoptive immunity test, so it was possible to apply
an i.p. challenge in C3H mice, which caused 100% mortality
with a low dose of virus [28]. Passive transfer of 100 ul of
anti-NS1 antisera (titrated 1:3000) to one-month-old mice
protected 100% from morbidity and death, whereas 30 pl
was less protective and 10 pl was not protective, suggesting
that an important NS1 function in JEV pathogenesis could
be inhibited by IgG-NS1 immunocomplexes. However,
anti-NS1 has no neutralizing activity on virus infection
in vitro. The antibody-dependent complement-mediated
cytolysis of JEV-infected cells associated with anti-NS1 anti-
bodies was demonstrated by in vitro experiments [42]. An-
other study showed that the depletion of C3 complement
components in mice did not affect the anti-NS1 passive
protection capacity against YFV [22]. In addition,
immunization with a genetic deletion in C5 using an adeno-
virus expressing NS1 protected mice from a TBEV lethal
challenge [16]. These experiments suggested that antibody-
dependent complement-mediated cytolysis may play a
minor role in antibody-associated immune protection
in vivo. However, WNV anti-NS1 MADb through Fc-y
receptor-dependent and Clq-independent pathways could
be an alternative protection route involving the scavenging
of infected cells by macrophages [23,24]. In our study, five
JEV anti-NS1 MAbs generated in a previous study [27] that
exhibited a high binding affinity against different NS1 epi-
topes were used in a passive protection test. Two MAbs
exhibited no capacity to prevent death, although they sig-
nificantly extended survival by 2—6 days. MAb 3E10 was
directed against a conformational epitope, while MAb 4C4
recognized the NS1 N-terminus and 7C2 recognized the
NS1 C-terminus and provided significant delay and preven-
tion against JEV mortality. However, 500 ug of MAbs 7H5
and 8F1 significantly delayed death after JEV infection in a
dose-dependent manner and were probably directed against
a linear epitope of the C-terminus fraction of NSI that
cross-reacted with DENV NS1 (Tables 4 and 5). Whether
those MAbs recognize the same epitope is not known, but
they presented different NS1 binding affinities. Interestingly,
anti-WNV MAbs that bound to a similar NS1 fragment
also provided mice with up to 90% protective immunity
from a lethal challenge [23]. Identification of the epitope(s)
targeted by the three JEV anti-NS1 MAbs would facilitate
further study of the NS1 antibody interaction and its func-
tion in anti-flaviviral immunity. Further study using a mix-
ture of those MAbs and their possible role in scavenging
NS1-IgG complexes would bring a better understanding of
the function of anti-NS1 antibodies in protective immunity.
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The mechanism by which NS1 contributes to in vivo fla-
viviral pathogenesis is largely unknown, which hinders the
elucidation of the mechanism whereby anti-NS1 provides
protective activity. Anti-NS1 antibodies interact with pro-
tein NS1', an elongated form of NS1 found in flaviviruses
of the JEV serogroup [43], which is involved in neuroinva-
sion by WNV subtype Kunjin [44]. However, the mechan-
ism involved remains unknown. It is likely that, in addition
to interacting with NS1, anti-NS1 antibodies may block the
in vivo deleterious activity of NS1” in WNV and JEV infec-
tions. Understanding this interaction would open up new
research avenues.

NS1 alone cannot induce a sterilizing immunity, but it
contributes to the consolidation of flavivirus neutralizing
immunity that is primarily elicited by protein E. Several vac-
cine candidates are known to provide better protection
when NS1 is included in the vaccine preparation [38,45-
50]. A recent study demonstrated the enhancement of anti-
E antibody neutralization titer by mouse co-immunization
of protein E with NS1, suggesting that NS1 might be use-
fully added to the viral structural components in a JEV
vaccine [51].

A previous study showed that autoantibodies induced
by DENV NS1 recognized coagulation factors including
fibrinogen and platelets, as well as integrin/adhesion
proteins [8]. Binding of anti-DENV NSI1 antibodies to
endothelial cells induced inflammation and apoptosis
[10]. The possibility that other flaviviral NS1 proteins
may elicit autoantibodies when used as components of a
vaccine should not be underestimated. Whether JEV
NS1 induced autoantibodies needs further study. How-
ever, JEV anti-NS1 antibodies did not bind to endothelial
cells like DENYV anti-NS1 antibodies did [10] and JEV in-
fection does not cause hemorrhagic manifestations, min-
imizing the role of NS1-elicited autoantibodies.

In summary, immunization with a hexameric NS1 eli-
cited Th2 and low Th1 cell responses, and induced a par-
tial protective immune response in a mouse model. The
ISA-51-VG adjuvant improved the performance of NS1
immunization by contributing to the production of higher
antibody titers and increased the mouse survival rate. Pas-
sive transfer of sufficient anti-NS1 antibodies provided full
protection to mice from lethal JEV challenge. However,
anti-NS1 MAbs provided poor protection, although they
significantly extended the survival period before death.
These results support the hypothesis that anti-NS1 anti-
bodies participate in immune protection against JEV
infection.

Materials and Methods

Cells and viruses

Baby hamster kidney (BHK-21) cell lines were cultured
in Dulbecco’s modified Eagle’s medium (DMEM, Invitro-
gen, Carlsbad, CA, USA) containing 3% fetal bovine
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serum (FBS), 100 U penicillin, and 100 pg streptomycin
at 37 °C in 5% CO,. The JEV SA14 strain was obtained
from the National Institute for the Control of Pharma-
ceutical and Biological Products (Beijing, China). The
attenuated vaccine strain JEV SA14-14-2 was obtained
from the Chengdu Institute of Biological Products
(Chengdu, China). BHK-21 cells were infected at a
multiplicity of infection of 0.1 pfu cell™. Drosophila S2
cells were purchased from Invitrogen (Carlsbad, CA,
USA) and cultured in Schneider’s Drosophila medium
(Invitrogen) with 10% FBS, 50 U penicillin, and 50 pg
streptomycin, and incubated at 28 °C.

NS1 expression and purification from Drosophila S2 cells
NS1 protein expression and purification procedures were
conducted according to previously published methods
[27]. Briefly, the JEV Nakayama strain genes encoding the
full-length 352 amino acids of NS1 and its fragments,
containing N-terminus amino acids (1-143) and C-
terminus amino acids (224-352), were amplified by RT-
PCR and inserted into the pMT/Bip/V5-His A plasmid
vector to produce pMT-NS1; 35, pMT-NS1; 143, and
PMT-NS15,4 355, respectively. Drosophila S2 cells were co-
transfected with plasmids pMT-NS1; 355, pMT-NS1;_143, or
PMT-NS15,4 355, and pCoblast (Invitrogen). S2 cells were
selected using blasticidin. To improve NS1 production, cell
populations were cloned by limit dilution to generate an
S2-NS1 cell clone expressing high levels of NS1. Cells were
cultured in Express Five medium (Invitrogen) without FBS
in a Wave Bioreactor™ (GE Amersham, Uppsala, Sweden).
Cell supernatants were collected, filtered, and concentrated,
and the buffer was exchanged. The resultant fluids contain-
ing NS1 were loaded onto a chelating sepharose column
(GE Amersham). The column was washed with binding
buffer and the recombinant protein was eluted. After nickel
ion column chromatography, the protein was applied to a
size exclusion Superdex 200 10/300 column using the
AKTA Purifier System (GE Amersham).

Carbohydrate analysis of JEV NS1 secreted from
Drosophila S2-NS1 cell clone
The NS1 denatured monomeric form was digested by
Endoglycosidase H (Endo H) or Peptide: N-glycosidase F
(PNGase F) (New England BioLabs, Beverley, MA, USA)
according to the manufacturer’s instruction. Briefly, 3 pug
of native or denatured NS1 were mixed with 6,000 units
of Endo H or 7,000 units of PNGase F in reaction buffer,
and incubated at 37 °C for 3 hr. After digestion, the re-
action mixtures were added to equal volumes of 2 times
loading buffer, heated at 95 °C for 5 min, and separated
by 12.5% SDS-polyacrylamide gel electrophoresis (SDS-
PAGE).

Glycosylation differentiation: The DIG glycan differen-
tiation kit (Roche, Mannheim, Germany) was used for
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NS1 glycan differentiation. The NS1 proteins and con-
trol glycoproteins were transferred onto nitrocellulose
membranes after gel electrophoretic separation. The
membranes were incubated in blocking buffer for 1 hr,
washed twice in TBS (Tris buffered saline) and once in
buffer 1 (TBS; 1 mM MgCl2, 1 mM MnCI2, 1 mM
CaCl2, pH 7.5) and incubated each 1 hr with
digoxigenin-labeled GNA, SNA, MAA, and DSA. The
membranes were washed three times with TBS, then
anti-digoxigenin-alkaline phosphatase was added and
incubated for 1 hr. The membranes were washed three
times in distilled water and 1 ml of alkaline phosphatase
substrate (Promega, San Luis Obispo, CA, USA) was
added to each membrane for staining.

Western blotting

The NS1 protein sample was boiled at 95 °C for 5 min
in a reducing SDS loading buffer, then separated by 10%
SDS-PAGE. The protein was transferred to nitrocellulose
membranes that were blocked with 5% non-fat milk in
TBS/Tween-20 before being incubated with a 1:1000 di-
lution of anti-V5 tag or anti-NS1 MAbs. After washing,
the membranes were incubated with a 1:3000 dilution of
alkaline-phosphatase-conjugated secondary antibodies
(Promega). Signals were detected based on the color-
ation of an alkaline phosphatase dark blue substrate
(Promega).

Antibody titration
The anti-NS1 antibody titers were tested by ELISA. One
hundred ng per well of purified NS1 protein was coated
onto 96-well plates (Corning Costar, Lowell, MA, USA)
that were incubated overnight at 4°C. Plates were
washed and blocked with PBS/3% BSA. A series of 1:2
dilutions (from 1:100 to 1:204,800 in PBS/1% BSA) of
mouse serum was added to the wells and incubated for
1 h at room temperature (RT). Plates were washed be-
fore adding horseradish-peroxidase-labeled goat anti-
mouse IgG (H+L), IgG1, IgG2a, (Southern Biotech, Bir-
mingham, AL, USA) that were diluted 5,000-fold. Plates
were then incubated for 1 h at RT. The plates were
washed again before adding ortho-phenyl diamine sub-
strate (Sigma—Aldrich) and incubated for 10 min at RT.
Enzymatic reactions were stopped with 3 M H,SO4 and
absorbance was recorded at 492 nm using an ELISA
plate reader (Molecular Devices, Sunnyvale, CA, USA)
Neutralizing antibody titers were determined in BHK
cells. Pooled sera from each group were subjected to
two fold dilutions in DMEM 2% FBS from 1:20 to 1:320
dilution,and mixed with 150 pfu (corresponding to 10
TCIDs0) of JEV SA14 virus in 96-well plates before incu-
bating for 1 h at 37 °C, after which 6,000 BHK cells were
added. The plates were read after 3 d, and the serum
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dilution that reduced 50% of the virus (TCIDs,) was
recorded.

Lymphocyte proliferation and IFN-y secretion
Two weeks after the 2nd inoculation of NS1, PBS, or six
weeks after the inoculation of SA14-14-2, DMEM with
3% FBS (complete DMEM medium), three mice were
killed from each group. Mouse spleens were isolated and
crushed in cell strainers (Becton, Dickinson and Com-
pany, Franklin Lakes, NY, USA) to prepare splenocyte
suspensions. Erythrocytes were lysed with red blood cell
lysis solution (155 mM NH4Cl, 1 mM KHCO;, and
0.01 mM EDTA-2Na) and centrifuged at 500 x g, for five
min, the cell pellet was washed three times then re-
suspended in cell culture medium. The cell concentra-
tion of each mouse was counted and diluted to 4 x 10°
cells mI™" in RPMI 1640 medium with 10% heat-
inactivated FBS to be used for lymphocyte proliferation
and cytokine production assays [52]. Mouse splenocytes
were cultured with 5 pug ml™ of JEV NS1 protein. T-cell
proliferation was quantified using the Cell Titer 96
Aqueous Non-Radioactive Cell Proliferation Assay (Pro-
mega), according to the manufacturer’s instructions. T-
lymphocyte proliferation was measured using a stimula-
tion index, which was expressed as the ODs;q ratio of
NS1-stimulated wells to that of wells without NS1 [53].
Splenocyte suspensions (0.5 ml) were dispensed into
the wells of a 24-well cell culture plate. An equal volume
of NS1 (10 pg ml™") in medium was also added. Cells
were incubated for 5 d. Cell culture supernatants were
harvested and stored at —-80°C before analysis. IFN-y
production was tested using a Mouse IFN-y ELISA Kit
(BD Pharmingen, San Diego, CA, USA), according to
the manufacturers’ instructions [52].

Anti-NS1 MAb preparation and characterization

Anti-JEV MAD preparation followed a previously pub-
lished method [27]. Briefly, MAbs were purified from
hybridoma cultured supernatants or from mouse ascitic
fluid using Protein A or Protein G columns (GE Amer-
sham). Antibodies were characterized by flow cytometry
to determine cell surface and intracellular NS1 recogni-
tion. Epitope mapping was performed using an ELISA or
Western blotting with full-length, and N-terminus
(amino acids 1-143) and C-terminus (amino acids 224—
352) NS1 fragments [27].

Mouse immunization and challenge

The mouse experimental protocol was approved by the
Institut Pasteur of Shanghai Ethics Committee for Ani-
mal Care (ID# 01-2006) and was conducted in the Insti-
tut Pasteur animal facility following the European
directive 2010/63/EU on the protection of animals used
for scientific purposes.
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Four-week-old female C3H/HeN mice were purchased
from Vital River, the Chinese representative of Charles River
Laboratories (Vital River Lab Animal Technology Co., Ltd,
Beijing, China). Mice were separated into four groups: a
negative control group that received 200 pl of PBS ip; a
positive control group that received one dose of 10* pfu JEV
SA14-14-2 vaccine ip.; an NS1 group that was injected with
1 pg of NS1 in 200 ul of PBS (aqueous NS1); and a group
injected with 1 pg of NS1 emulsified with water-in-oil adju-
vant by mixing NS1 in 100 pl of PBS with an equal volume
of Montanide oil (ISA-51-VG, SEPPIC SA, Puteaux, France)
in a latex-free syringe. All groups were immunized by the i
p. route with two doses of antigen four weeks apart. Mouse
sera were collected two weeks after the second inoculation.
Four weeks after the second inoculation, mice were trans-
ferred in isolators to a biosafety level 2 animal facility, where
they were challenged by in. inoculation of 10 pl containing
10* pfu of SA14 virus in each nostril. Surviving mice sera
were collected for antibody titration.

Mouse passive protection

Four-week-old mice were treated by ip. transfer of 100 pl,
30ul, 10pl of pooled anti-NS1 mouse sera obtained from
NS1-immunized mice containing an anti-NS1 antibody
titer > 1:3000, or 100 pg or 500 pg of anti-NS1 MAbs. An
HIV anti-envelop IgG1 MAD (a generous gift from Pr. Paul
Zhou, Institut Pasteur of Shanghai) was used as an isotype
control. Passive transfer of pooled anti-JEV antisera
obtained from mice vaccinated with SA14-14-2 was used as
a positive control. All sera were pre-incubated at 56°C for
30 min. One hour after the sera injection, mice were chal-
lenged with an injection of 20 pfu of JEV SA14. Mouse sur-
vival rates were calculated four weeks after the challenge.

Statistics

Cell proliferation, cytokine, and antibody titer data were
analyzed by Excel and expressed as the mean + SD. Sur-
vival analysis curves were analyzed using the log-rank
test calculated by STATA version 11.1 (StataCorp, Col-
lege Station, TX, USA). Figures were created using Sig-
maplot (Systat Software, Inc., San Jose, CA, USA).

Additional Files

Additional file 1: Figure S1. Characterization of carbohydrates of S2
cells expressing NS1. A: Purified NS1 protein was denatured and mock-
treated (lane 1) or incubated with Endo H (lane 2) and PNGase F (lane 3)
and the products were separated by SDS-PAGE. B: After electrophoresis,
the GNA recognition control glycoprotein carboxypeptidase Y (arrow,
lane 1), the DSA recognition control glycoprotein asialofetuin (lane 3),
and NS1 protein (arrows, lanes 2 and 4) were transferred to a
nitrocellulose membrane and incubated with digoxigenin-labeled GNA
(lanes 1 and 2) or DSA (lanes 3 and 4) and further incubated with anti-
digoxigenin alkaline phosphatase-labeled antibodies and with alkaline
phosphatase substrate.
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Additional file 2: Figure S2. Susceptibility of C3H mice to JEV SA14
infection. Groups of six C3H mice infected with JEV SA14 were monitored
daily for 28 days. Two groups of three-month-old C3H mice were
infected with different doses of JEV SA14 by intraperitoneal (A) or
intranasal (B) route. One group of one-month-old C3H mice was infected
with different doses of JEV SA14 by intraperitoneal route (C).
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