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Abstract

Background: Xenotropic murine leukemia virus (MLV)-related virus (XMRV) is a gammaretrovirus that was
discovered in prostate cancer tissues. Recently, it has been proposed that XMRV is a laboratory contaminant and
may have originated via a rare recombination event. Host restriction factor APOBEC3G (A3G) has been reported to
severely restrict XMRV replication in human peripheral blood mononuclear cells. Interestingly, XMRV infects and
replicates efficiently in prostate cancer cells of epithelial origin. It has been proposed that due to lack off or very
low levels of A3G protein XMRV is able to productively replicate in these cells.

Findings: This report builds on and challenges the published data on the absence of A3G protein in prostate

epithelial cells lines. We demonstrate the presence of A3G in prostate epithelial cell lines (LNCaP and DU145) by
western blot and mass spectrometry. We believe the discrepancy in A3G detection is may be due to selection and
sensitivity of A3G antibodies employed in the prior studies. Our results also indicate that XMRV produced from A3G
expressing LNCaP cells can infect and replicate in target cells. Most importantly our data reveal downregulation of
A3G in XMRV infected LNCaP and DU145 cells.

Conclusions: We propose that XMRV replicates efficiently in prostate epithelial cells by downregulating A3G
expression. Given that XMRV lacks accessory proteins such as HIV-1 Vif that are known to counteract A3G function
in human cells, our data suggest a novel mechanism by which retroviruses can counteract the antiviral effects of

A3G proteins.
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Findings

Xenotropic murine leukemia-virus related virus (XMRV)
is a member of the gammaretrovirus family that was
first detected in human prostate tumors [1]. Although
initial studies supported the presence of XMRYV in pros-
tate cancer tissues [2-4], since then several laboratories
have failed to detect the virus in cohorts of prostate
cancer patients [5-9]. Very recently, Paprotka et al.
(2011) have challenged an association of XMRV with
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human diseases [10]. These authors have reported that
XMRYV may have originated by a rare recombination
event during tumor passaging in mice. Therefore, it has
been proposed that XMRYV is a laboratory contaminant
and not a human pathogen. Nevertheless, being a newly
discovered gammaretrovirus and having the ability to
infect human cells, XMRV may serve as a model gam-
maretrovirus to further our understanding of retroviral
biology.

Apolipoprotein B mRNA-editing enzyme catalytic
polypeptide-like 3 (APOBEC3) proteins, APOBEC3A to
APOBEC3G are a class of cytidine deaminases that has
been reported to restrict retroviral replication in humans
[11]. In case of HIV-1, the restriction by APOBEC3G
(A3G) and APOBEC3F (A3F) are counteracted by Vif
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that degrades A3 proteins via proteosomal degradation
[12]. It has been reported that XMRYV replication can be
inhibited by A3 proteins such as A3G, A3B, A3F, and
murine APOBEC3 (mA3) [13-17]. Although hypermuta-
tion of XMRV genome in A3G/A3F-expressing periph-
eral blood mononuclear cells (PBMCs) severely restrict
XMRYV replication in human blood, infected PBMCs
have been suggested to serve as source of infectious
XMRV [17]. Given that XMRYV is a simple retrovirus
and does not encode accessory proteins that are known
to counteract A3G/A3F, these observations suggest
XMRV cannot survive the restriction of innate immu-
nity for productive infection in humans.

XMRYV replicates efficiently in prostate epithelial cell
lines specifically in LNCaP cells [3,18]. In addition, the
prostate cancer cell line 22Rv1 has been shown to be
chronically infected with XMRV and produces highly
infectious virus [19]. Since host restriction factor A3G is
able to restrict XMRYV, the question is how XMRYV repli-
cates efficiently in these human prostate cell lines. There
are at least three studies that have suggested that XMRV
efficiently replicates in prostate epithelial cancer cell
lines since these cells lack or express undetectable levels
of A3G [13-16]. In this report, we demonstrate that
prostate epithelial cell lines LNCaP and DU-145 express
detectable levels of A3G by western blot analysis. We
confirm the presence of A3G in LNCaP cells by mass
spectrometry. We believe the results described in earlier
reports on the absence of A3G in these cells may be
due to the sensitivity of antibody used in their western
blot analysis.

We detected A3G in LNCaP and DU145 cells (Figure
1A) using a polyclonal antibody (anti-ApoC29) raised
against the 29 amino acid (aa) of the C-terminal end of
A3G protein (NIH AIDS Reagent Program Catalog #
10201). We used lysates of CD4+ T cells and CEM cells
as positive controls and CEM-SS cells as negative con-
trol for A3G expression by western analysis (Figure 1A).
These results contradict the previous reports that were
unable to detect A3G in these cells [13-16]. We realized
that the antibody used in the previous reports was a
polyclonal antibody (anti-ApoC17) raised against the
17aa of the C-terminal of A3G protein (NIH AIDS
Reagent Program Catalog # 9968). Therefore, we
repeated our western analysis using anti-ApoC17 and
similar to the earlier reports we could not detect A3G
in LNCaP and DU-145 cells (Figure 1B). Therefore, we
examined whether the band detected in Figure 1A using
anti-ApoC29 contains A3G protein. To confirm this, we
carried out Electrospray Mass Spectrometry (ESI) analy-
sis by cutting out A3G band from the coommassie
stained gels. After a comparative analysis of the spectra
with purified A3G, we could map more than 85% of
A3G peptides in the A3G band detected in the lysates
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(A)
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Figure 1 Detection of A3G in prostate cancer cells of epithelial
origin A3G was detected using two different polyclonal rabbit
sera obtained from the NIH AIDS Reagent Program. Anti-
ApoC17 was raised against a synthetic peptide comprising of the 17
C-terminal residues of A3G (Cat. No. 10082), while the other was
(Anti-ApoC29) Anti-A3G C-terminal antisera raised against a C-
terminal peptide representing the last 29 amino acids of human
A3G coupled to a hapten (Cat. No 10201). As a loading control B-
actin (Sigma Co., USA) was used. For immunoblot analysis, cell
lysates (5 pg) were subjected to SDS-polyacrylamide gel
electrophoresis and western blot analysis with the appropriate
antibodies. Western blot analysis using, (A) Anti-ApoC29 and (B)
Anti-ApoC17.

of the LNCaP cells (Figure 2). Since the anti-ApoC29
used in our study has been used by several laboratories
to detect A3G, the reason previous reports were unable
to detect A3G in LNCaP cells may be due to the sensi-
tivity of the antibody used in their western analysis. In
addition, it is possible that the epitopes of endogenous
A3G in prostate epithelial cells are not recognized by
the anti-ApoC17. It is important to point out that scan-
ning for m/z peptides from our mass spectrometry data
revealed presence of peptides mapped to A3B, A3D and
A3F. This is not surprising given that A3B, A3D and
A3F have molecular weights similar to A3G. However,
the molecular weights of A3A, A3C and A3H (~23 kDa)
are substantially lower than A3G and detection of A3A/
A3C/A3H in the A3G band are highly unlikely.

Given that XMRYV replicates efficiently in LNCaP and
DU-145 cells [3], we examined the effect of XMRV
infection on the A3G levels in these cells. We used cul-
ture supernatants from chronically infected LNCaP
cells with XMRYV as the source of virus. We infected
LNCaP and DU-145 cells and confirmed infection by
detecting XMRYV p30 in these cells. We used goat poly-
clonal anti-Rauscher MLV p30 Gag (a gift from Dr.
Sandra Ruscetti, NCI-Frederick) that reacts with
XMRYV p30 and its precursor Gag in our experiment
(Figure 3A). Subsequently, we analyzed A3G expression
in these cells by western blot analysis. Intriguingly,
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Figure 2 Proteomic Analysis for detection of A3G in LNCaP cells The cell lysate from LNCaP cells was loaded onto SDS-polyacrylamide
gel (4-12% gradient gel) and resolved through electrophoresis as described in Figure 1. Pure recombinant A3G was also run on a
separate gel. Both the gels were stained with Coomassie brilliant blue. One section of the gel was subjected to immunoblotting using anti-
ApoC29 to assist in A3G identification in the gel for mass spectrometry. The gel bands corresponding to A3G protein were excised and were
subjected to in-gel trypsin digestion based on the manufacturer's protocol (Thermo Scientific). The resulting peptides were analyzed using a
Thermo Finnigan LTQ ion trap instrument ESI. Peptides were separated on a packed capillary tip (Polymicro Technologies, 100 pm X 11 cm) with
Jupiter C18 resin (5 um, 300 A, Phenomenex) using an in-line solid-phase extraction column (100 pm x 6 cm) packed with the same C18 resin.
The total ion chromatogram for the digested pure A3G and A3G from LNCaP cells were compared. The common regions of similar retention
time (=2 minutes) were analyzed to search for m/z peaks corresponding to A3G in the LNCaP sample. The representative peaks were matched
with the m/z peaks corresponding to pure A3G. This search revealed that more than 85% of the sequence could be identified in the spectra in
the A3G band detected in LNCaP cells. (A) Spectra of purified A3G (m/z 800 to 1100); (B) Mass spectra of A3G from LNCaP cell lysate (m/z 800
to 1100); (C) Spectra of purified A3G (m/z 1100 to 1500); and (D) Spectra of A3G from LNCaP cell lysate (m/z 1100 to 1500). The detected
peptides from A3G sequence have been shown in red. The X-axis represents m/z and the Y-axis represents intensity.
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Figure 3 XMRV induced downregulation of A3G in prostate cancer cells We used culture supernatant from chronically infected LNCaP
cells with XMRV as the source of infectious XMRV. Virus infections were performed using cells plated 1 day before infection. Cells were at
50% confluency at the time of infection. On the day of infection, fresh media containing 5 pg/ml polybrene was added to the cells and virus
was layered on the cells and incubated for 6 h to allow virus adsorption. Cells were then washed once with PBS, and fresh media containing
FBS were added. After 1-2 weeks, XMRV infection was confirmed by detecting XMRV p30 protein by using goat polyclonal anti-Rauscher MLV
p30 Gag in uninfected (-) and XMRV infected (+) LNCaP cells (A) and DU-145 cells (B). (C) A3G expression was determined by the protocol
described in Figure 1 using anti-ApoC29. (D) Densitometry of A3G expression as determined by three independent experiments.
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XMRYV infection resulted in a substantial downregula-
tion of A3G expression in both of these cell types (Fig-
ure 3B). Our densitometry analysis revealed that A3G
was downregulated almost 60% in infected LNCaP cells
whereas the downregulation was ~ 40% in infected
DU145 cells (Figure 3C). It is important to point out
that the virus used to infect these cells were produced
from the LNCaP cells that express A3G. It has been
shown that A3G can be efficiently packed into XMRV
virions [25]. Paportka et al. have reported that XMRV
produced from PBMCs with high levels of A3G pro-
teins are infection competent and can infect new cells
[17]. Since we detected robust XMRV p30 bands in our

infection experiments (Figure 3B), our data suggest
XMRYV produced from A3G containing cells have the
ability to productively infect and replicate in target
cells. Therefore our findings challenge the notion that
the prostate epithelial cell lines were able to produce
infectious XMRYV because these cells do not express
A3G. Given that our results demonstrate downregula-
tion of A3G in XMRYV infected prostate cancer cells,
we believe XMRYV has the ability to counteract A3G
antiviral function in prostate cancer cells. These results
are highly significant given that XMRV is a simple ret-
rovirus and does not encode accessory proteins that
are known to degrade A3G.
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In the absence of Vif-like accessory proteins, retro-
viruses such as Human T cell lymphoma virus (HTLV)
and Murine leukemia virus (MLV) have developed
alternative mechanisms to evade host restriction by A3
proteins. A motif of HTLV nucleocapsid (NC) prevents
packaging of A3G into the virion [20]. Therefore
exclusion of A3G has been proposed to be a common
mechanism for Vif-deficient retroviruses to counteract
A3G restriction. MLV virions have also been reported
to exclude mA3 [21]. XMRV has been demonstrated to
package A3G [16], therefore a role for exclusion
mechanism is unlikely. XMRV produced from LNCaP
cells show signatures of hypermutation that are charac-
teristics of A3F [15,17]. Therefore, it is plausible
XMRYV is somehow resistant to A3G restriction in
these cell types. XMRV may achieve this either by
downregulating A3G levels or by evading A3G restric-
tion. Given that MLV has been reported to inactivate
mA3 by viral protease [22], a similar mechanism for
XMRYV cannot be ruled out. Furthermore, certain poly-
morphic alleles of A3G have been reported to increase
the susceptibility to HIV infection [23]. Therefore, we
are investigating whether A3G produced from prostate
epithelial cells have mutations that can be assigned for
cell specific susceptibility to XMRYV infection. The
other mechanism that could possibly explain our
results is that A3G remains as high-molecular-mass
(HMM) ribonucleoprotein complex in prostate epithe-
lial cells. It has been reported that A3G in resting CD4
+ cells and monocytes are predominantly in its low-
molecular-mass (LMM) active form making these cells
refractory to HIV-1 infection [24,25]. Conversion of
LMM to the inactive HMM complex, when the CD4+
cells are activated or monocytes are differentiated into
macrophages, makes these cells prone to HIV infec-
tion. Since HMM forms of A3G are reported to be
enzymatically inactive, if A3G remains in HMM com-
plex in prostate epithelial cells, it may not be able to
restrict XMRV replication.

In summary, this report demonstrates the presence of
A3G in prostate epithelial cell lines (LNCaP and
DU145) that support efficient XMRYV replication. Since
XMRYV packages A3G in its virions and lacks Vif-like
accessory proteins, our findings on XMRV-induced
downregulation of A3G may represent a new pathway
by which retroviruses counteract antiviral effects of A3
proteins in human cells. Our data warrants further stu-
dies to decipher the mechanism by which XMRV may
counteract restriction by A3 proteins.
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