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Abstract

Background: Rotavirus NSP4 localizes to multiple intracellular sites and is multifunctional, contributing to RV
morphogenesis, replication and pathogenesis. One function of NSP4 is the induction of early secretory diarrhea by
binding surface receptors to initiate signaling events. The aims of this study were to determine the transport
kinetics of NSP4 to the exofacial plasma membrane (PM), the subsequent release from intact infected cells, and
rebinding to naive and/or neighboring cells in two cell types.

Methods: Transport kinetics was evaluated using surface-specific biotinylation/streptavidin pull-downs and
exofacial exposure of NSP4 was confirmed by antibody binding to intact cells, and fluorescent resonant energy
transfer. Transfected cells similarly were monitored to discern NSP4 movement in the absence of infection or other
viral proteins. Endoglycosidase H digestions, preparation of CY3- or CY5- labeled F(ab), fragments, confocal
imaging, and determination of preferential polarized transport employed standard laboratory techniques. Mock-
infected, mock-biotinylated and non-specific antibodies served as controls.

Results: Only full-length (FL), endoglycosidase-sensitive NSP4 was detected on the exofacial surface of two cell
types, whereas the corresponding cell lysates showed multiple glycosylated forms. The C-terminus of FL NSP4 was
detected on exofacial-membrane surfaces at different times in different cell types prior to its release into culture
media. Transport to the PM was rapid and distinct yet FL. NSP4 was secreted from both cell types at a time similar
to the release of virus. NSP4-containing, clarified media from both cells bound surface molecules of naive cells, and
imaging showed secreted NSP4 from one or more infected cells bound neighboring cell membranes in culture.
Preferential sorting to apical or basolateral membranes also was distinct in different polarized cells.

Conclusions: The intracellular transport of NSP4 to the PM, translocation across the PM, exposure of the C-
terminus on the cell surface and subsequent secretion occurs via an unusual, complex and likely cell-dependent
process. The exofacial exposure of the C-terminus poses several questions and suggests an atypical mechanism by
which NSP4 traverses the PM and interacts with membrane lipids. Mechanistic details of the unconventional
trafficking of NSP4, interactions with host-cell specific molecules and subsequent release require additional study.

Background

Rotaviruses (RV), family reoviridae, are non-enveloped,
triple-layered (VP2, VP6, VP7) virions with a single
spike protein (VP4) and a genome of 11 double-
stranded, RNA segments [1-3]. Six structural and six
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non-structural proteins are encoded by the segmented
RNA genome. RV are the major etiological agent of
severe, life-threatening gastroenteritis affecting 70% of
young children worldwide [4,5]. Induction of RV diar-
rhea is multi-faceted involving several viral and host fac-
tors that contribute to the severity of disease (reviewed
in [6-9]). RV fluid loss has been attributed to both an
early, secretory diarrhea and a subsequent malabsorp-
tive, hyper-secretive diarrhea due to the loss of
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absorptive enterocytes. The early secretory diarrhea
likely is induced by NSP4 [9-12], which binds an integ-
rin receptor and promotes calcium mobilization fol-
lowed by a chloride secretory response [8,10,11,13,14].
Several hypotheses have been posed to explain the inter-
actions of NSP4 with host cell exofacial molecules that
result in fluid loss. The prevailing theory is that NSP4 is
released from infected cells to interact with surface
receptors of neighboring cells to trigger a specific signal-
ing event that results in secretion.

NSP4 is encoded by RV gene 10 and organized into
three N-terminal hydrophobic domains and a single,
extended, C-terminal region. The primary translation
product of 175 amino acids (aa) with an apparent mole-
cular weight (Mr) of 20 kD is co-translationally glycosy-
lated to 29 kD and processed to the mature 28 kD
NSP4 glycoprotein, but oligosaccharide processing does
not proceed past mannose 8 [15,16]. NSP4 traverses the
endoplasmic reticulum (ER) bilayer once (aa 22-44)
such that the N-terminal 21 residues localize to the
lumen of the ER and the remainder of the molecule (aa
45-175) extends into the cell cytosol [17-19]. Two N-
linked, high mannose glycosylation sites are located
within the short ER luminal domain at residues 8 and
18 [17]. These glycan moieties are sensitive to Endo--
N-acetylglucosaminidase H (EndoH) digestion, which
supports the lack of exposure to Golgi enzymes [20,21].
Additional support for the lack of Golgi processing
includes NSP4 insensitivity to brefeldin A [22-24].

Localized within the NSP4 extended cytoplasmic
domain is an amphipathic, a-helical region that folds as
a coiled-coil (aa 93-137) and overlaps the enterotoxic
and oligomerization domains, as well as several cellular
and viral protein binding sites [19,25-30]. Circular
dichroism (CD) and cross-linking analyses show NSP4
primarily oligomerizes into tetramers [19,31,32]. Crystal-
lographic data of NSP4 95-137 confirm a coiled-coil
structure that folds as a homotetramer with a buried
cation, presumably calcium [26]. Relevance of this struc-
ture is not clear, however it has been postulated that the
NSP4 enterotoxic activity is structure-related rather than
sequence-specific [31,33,34].

NSP4 is a multi-functional glycoprotein that contri-
butes to RV morphogenesis [19,35], replication [36] and
pathogenesis [6,8,9,33,37]. At the ER, NSP4 functions as
an intracellular receptor for double layered particles
(DLPs) to facilitate the addition of the RV outer coat
protein (VP7) in the ER and possibly the spike protein
(VP4) [19,38-40]. RNA silencing (siRNA) studies of
NSP4 expression reveal that in the absence of NSP4,
there is: (i) an abnormal distribution of viral proteins in
the viroplasm; (ii) little to no infectious viral particles in
the cell, (iii) an accumulation of empty viral particles,
and (iv) an increase of viral transcripts [35,36].
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It has been established by several groups that exogen-
ous introduction of NSP4 or the NSP4,;,,4.135 enterotoxic
peptide from distinct genotypes with divergent
sequences induces an age-dependent diarrhea in rodents
[10,37,41,42] and may contribute to RV pathogenesis in
other organs [43]. These data indicate NSP4 has distinct
roles on opposite sides of the plasma membrane (PM)
similar to select host cell proteins that function differ-
ently in intracellular and extracellular microenviron-
ments [44,45].

NSP4 has been localized to multiple intracellular sites.
A few examples include radiating from the ERGIC along
microtubules into the cytoplasm [30], association with
autophagosomes [22], bound to caveolin-1 (cav-1)
[24,29,46,47], and in PM-derived caveolae [48]. Previous
reports of NSP4 association with rafts suggest these
lipid microdomains may contribute to secretion of NSP4
from infected cells [49,50]. Other studies show that the
secretion of NSP4 into culture media is either a cleavage
product [23] or an over-glycosylated form of NSP4 (~32
kD) [51]. Both of these studies indicate the release of
NSP4 is dependent on secondary processing of the
mature, 28 kD form.

Our previous data reveal that the native glycosylated,
28 kD NSP4 is distributed throughout the cell, including
the cell periphery, and is present in enriched, PM-
derived caveolae fractions that lack ER markers
[24,29,48]. Herein we address the presence of NSP4 at
the exofacial surface, the glycosylated form of NSP4
secreted from infected cells, and the directional trans-
port of NSP4 in polarized cells of different origin. The
temporal appearance of NSP4 at the exofacial PM and
release into culture media in canine kidney (MDCK)
and cloned human intestinal (HT29.F8) [52] cells were
examined at specified times post RV infection and at a
relatively low MOI. The results signify NSP4 intracellu-
lar transport and release from the cell is cell type-, viral
strain-, and/or MOI-dependent.

Materials and methods

Antibodies and Reagents

NSP4150.147 and NSP4;54 175 peptide-specific antisera
were generated in rabbits and mice as previously
described [10]. Peptide-specific rabbit antibodies were
affinity purified with pre-activated cyanogen bromide
Sepharose 4B beads to which the peptide was bound
(Amersham Pharmacia Biotech Piscataway, NJ). NSP4
peptide-specific IgG was eluted by altering the pH
[53,54] and reactivity confirmed by Western blot.
NSP4,5¢.175-specific F(ab), fragments were produced
from the peptide-specific rabbit IgG using the Immuno-
Pure preparation kit (Pierce, Rockford, IL) [55] and con-
jugated to CY5 and/or CY3 monofunctional reactive
dyes as described by the manufacturer (Amersham



Gibbons et al. Virology Journal 2011, 8:278
http://www.virologyj.com/content/8/1/278

Pharmacia Biotech). Reactivity of the fluorescently-con-
jugated F(ab), was confirmed by immunofluorescent
microscopy. Rabbit anti-NSP5 and guinea pig anti-NSP5
were the gifts of Dr. S. Lopez (Institute of Biotechnol-
ogy, Morelos, Mexico) and Dr. O. Burrone (Interna-
tional Center for Genetic Engineering and
Biotechnology, Trieste, Italy), respectively.

Rabbit anti-giantin (Convance Research Products, Inc.,
Princeton, NJ), mouse anti-sheep sodium/potassium (Na
"/K¥)-ATPase a (Affinity BioReagents, Inc., Golden,
CO), rabbit anti-cav-1 (Cell Signaling, Danvers, MA),
goat anti-rabbit IgG conjugated to horseradish peroxi-
dase (HRPO), and goat anti-mouse IgG-HRPO (South-
ern Biotech Assoc, Inc, Birmingham, AL, or Pierce,
Rockford, IL) were obtained from the indicated com-
mercial sources. Linked fluorescent antibodies and
molecules included Alexa Fluor 350-, CY3-, or CY5-
conjugated streptavidin (Molecular Probes, Eugene, OR),
goat anti-mouse IgG-Texas Red (Rockland Immuno-
chem, Inc, Gilbertsville, PA), goat anti-mouse IgG-CY5,
and the F(ab), fragment of goat anti-rabbit antibody-
CY2 (Jackson ImmunoResearch, West Grove, PA).

EZ-Link® Sulfo-NHS-SS-Biotin and streptavidin-agar-
ose (Pierce), endo-B-N-acetylglucosaminidase H
(EndoH; New England BioLabs, Ipswich, MA), protease
inhibitor cocktail set III (Calbiochem, Darmstadt, Ger-
many), and nucleofectin transfection reagent (Amaxa
Biosystems, Cologne, Germany) were purchased from
the indicated commercial sources.

Cell Lines, Virus, and Viral Growth Curves

MA104 and MDCK cell lines were acquired from the
American Type Culture Collection (Manassas, VA).
The HT29.F8 cells, a spontaneously polarizing cell
line, was derived from the parent human adenocarci-
noma (HT29) intestinal line, grown in Dulbecco’s
modified minimal essential media (DMEM) and sup-
plemented as previously described [52]. BHK-21 cells
(gift of Dr. J. Leibowitz, TX Health Science Center,
College Station, TX) were grown in Minimal Essential
Medium (MEM; Mediatech) supplemented with 20
mM L-glutamine, 1 mM sodium pyruvate, 5% fetal
bovine sera, 5% Serum Supreme, 100 U/L penicillin,
100 pg/L streptomycin, 0.25 pg/L Fungizone (Cam-
brex Corporation, East Rutherford, NJ). BHK-21
transfection media also included 10% tryptose phos-
phate broth and 10 mM 4-(2-hydroxyethyl)-1-pipera-
zineethanesulfonic acid (HEPES, Amresco, Solon,
OH), pH 7.3 + 0.1.

RV SA11 clone 4F (SA11.4F, gift of Dr. M. Estes, Bay-
lor College of Medicine, Houston, TX) was grown and
titered in MA104 cells, and stored at -80°C. Titers were
determined by indirect immunofluorescent staining of
MA104 monolayers inoculated with serial dilutions of
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the virus and expressed as the number of focus forming
units (FFU) per ml [56,57].

For RV infection, MDCK and HT29.F8 cell mono-
layers (~80% confluent) were starved for sera for 12-16
h prior to addition of virus as previously reported [29].
Briefly, the RV stock was sonicated (5 min using a cup-
horn attachment ice bath in a Misonix Sonicator 3000;
Misonix, Inc, Farmingdale, NY) and incubated in serum-
free DMEM with 1 pg/ml trypsin (Worthington Bio-
chemical, Lakewood, NJ) for 30 min at 37°C. The acti-
vated viral inoculum was added to the cells for 1 h at
37°C in 5% CO, at an MOI of 2. The inoculum was
replaced with serum-free DMEM supplemented with 1
pg/ml trypsin and incubated for various times post
infection. For imaging, cells were grown to 40% con-
fluency so that individual cells could be analyzed
independently.

To evaluate the directional transport of NSP4 in the
polarized kidney and intestinal cell lines, the cells were
seeded at a density of 1 x 10° cells/cm® on Transwell
permeable membrane supports (Corning Costar, Acton,
MA) and separately on plastic at the same density to
monitor confluency and the formation of domes, which
are indicative of directional transepithelial water and
electrolyte transport [58,59]. Transepithelial resistance
(TER) was monitored prior to, during and post RV
infection using a Millicel-ERS volt-ohmmeter according
to the manufacturer’s instructions (Millipore, Billerica,
MA). The cells were infected with RV SAIL4F at a MOI
of 2 only on the apical surface and maintenance of the
polarized phenotype was monitored by TER.

To generate RV growth curves, MDCK and HT29.F8
cells were grown to 80% confluency in 35 mm tissue
culture plates, starved for fetal bovine sera 12 h prior to
infection with trypsin-activated RV SA11.4F at 37°C for
1 h at an MOI of 2 (as above). At specified times post
infection, the media only or a combination of the cells
and media were collected for RV titration. Media was
clarified at 850 xg for 5 min and was stored at -80°C.
Cells and media were collected, subjected to repeated
freeze-thaws and stored at -80°C. Titers were deter-
mined by inoculating MA104 cells with serial dilutions
of the media or the cells and media, and expressed as
FFU/ml as reported [56].

Transfection of pcDNA3.2DestNSP4 plasmid DNA

Nucleofector Solution L (Amaxa Biosystems) was used
for transient transfection of pcDNA3.2DestNSP4 plas-
mid DNA in BHK-21 cells. The Amaxa Nucleofector I1”
and Nucleofector I kits were employed following the
manufacturer protocols (Amaxa Biosystems). BHK-21
cells were grown to 60-70% confluency (~2 x 10°/cm?),
harvested, counted, and diluted to 1 x 10° cells per 100
pl. The cell suspension was mixed with 100 pl of cell-
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type specific Nucleofector solution L and 2 pg of
pcDNA3.2DNSP4,_;,5 plasmid DNA using the Nucleo-
fector program A-031. Transfected cells were plated
onto 10 mm cover slips and incubated at 37°C in 5%
CO, for 20 h prior to image analyses. Alternatively, the
transfected cells were plated onto 6-well plates and
incubated at 37°C in 5% CO, for 20 h prior to surface
biotinylation and streptavidin pull down (below).

Surface biotinylation and recovery of exofacial proteins
Cells were grown in 6- or 12-well culture plates, RV-
infected at MOI of 2 or NSP4-transfected (above), and
washed with ice-cold PBS-CM (PBS supplemented with
0.1 mM CaCl, and 1 mM MgCl,) immediately before the
addition of 0.5 mg/ml solution of Sulfo-NHS-SS-Biotin
in ice-cold PBS-CM as previously described with minor
modifications [59,60]. Infected, uninfected, transfected,
or naive cells to which NSP4-containing media had been
added were incubated for 30 min at 4°C with cold NHS-
S-S-Biotin solution. Excess biotin was quenched with an
equal volume of cold DMEM with 10% bovine sera. Cells
were treated with SDS-free RIPA buffer (150 mM NacCl,
50 mM Tris-base, 10% NP40, 0.5% DOC, pH 8.0) with
protease inhibitors (protease inhibitor cocktail set III,
Calbiochem) for 20 min at 4°C. Lysates were pelleted by
centrifugation and the supernatants from equally treated
cells were pooled. To extract the biotin-labeled surface
proteins, 30 pl of streptavidin-agarose slurry (6% solution
stock, Pierce) per ml of lysate was incubated at 4°C for
approximately 14 h with constant rotation.

Streptavidin-agarose-bound proteins were pelleted at
12,000 xg for 20 min at 4°C and the supernatants care-
fully removed. The pelleted beads were washed with
RIPA buffer, suspended in sample reducing buffer,
boiled and loaded onto 12% SDS-PAGE gels for Wes-
tern blot analyses (below). To ensure the lack of non-
specific binding to the agarose beads, mock biotinylated
(lacking NHS-SS-Biotin) and mock pull-down (lacking
streptavidin-bound agarose) samples from both the RV-
and mock-infected MDCK and HT29.F8 cells, or BHK-
21 NSP4- and mock-transfected cells were included as
controls. Cav-1, a cytofacial membrane protein [61-64]
was used as a negative exofacial protein control.

Polarized cells grown on permeable supports were
biotinylated at 24 hpi. NHS-SS-biotin solution was
added to either the apical (100 pl) or basolateral (300
pl) surface. Media was added to the opposite surface
that was not being biotinylated [60]. Care was taken to
ensure the TER was maintained. All other steps of the
biotinylation were the same as above.

Live Cell Staining: Surface Antibody Binding
To control for biotin artifacts and show the presence of
NSP4 at the exofacial surface by another technique,
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unfixed, RV-infected MDCK cells were reacted with rab-
bit anti-NSP4,54.175 at 4°C and biotinylated rabbit-anti-
IgG prior to cell lysis at 11 hours post infection (hpi),
lysed in RIPA buffer, and precipitated with streptavidin
agarose in the cold. Uninfected cells served as the con-
trol. The lysates and precipitated proteins were sepa-
rated by 12% SDS-PAGE and probed with mouse anti-
NSP4,4.135 followed by anti-mouse IgG-HRPO by Wes-
tern blot analyses.

Protein Quantification

The micro bicinchoninic acid (BCA) protein assay
(Pierce) was employed to quantify protein concentra-
tions using bovine serum albumin as the standard per
manufacturer’s protocol.

EndoH digestions

One pg aliquots of total protein from each sample and
control were denatured and diluted per the manufac-
turer’s protocol (New England Biolabs). As previously
described, either 1-2 pl of sterile water (mock cleavage)
or 1-2 pl of EndoH (2000 Units) were added to each
sample or control and incubated at 37°C for 1 h prior to
evaluation by Western blot.

Western blot analyses

Western blots were performed to visualize (i) the pre-
sence of NSP4 on the cell surface when biotinylated, (ii)
the relative size of the biotinylated, exofacial NSP4
molecule(s) at various times, (iii) the expression of
NSP4 post RV-infection or pcDNA3.2DestNSP4-trans-
fection, (iv) the potential shift in NSP4 mobility on
SDS-PAGE following EndoH digestion, and (v) the pre-
ferential surface expression in polarized cells. Briefly,
each sample was resolved by 12% SDS-PAGE and trans-
ferred to nitrocellulose filters according to the manufac-
turer (BioRad, Hercules, CA). The filters were blocked
in 10% non fat dry milk (BLOTTO) in phosphate buf-
fered saline, pH 7.2 (PBS) at 27°C for 1 h, and reacted
with rabbit anti-NSP4,5,.1-5 diluted in 2.5% blotto/PBS
(1:2000) for at 4°C 14 h. The membrane was washed in
0.5% BLOTTO/PBS with and without 0.05% Tween-20
(v/v), reacted with anti-rabbit IgG-HRPO (1:10,000) for
1 h at 27°C, washed again, and reacted with Western
chemiluminescent substrate (Millipore, Bedford, MA)
per the manufacturer’s instructions. As indicated, sub-
strate with femtogram sensitivity was substituted
(Pierce) when necessary.

Once the cells polarized, apical and basolateral mem-
branes were differentially biotinylated, an equal quantity
of protein was separated by SDS-PAGE in separate lanes
and examined by Western blot. Cell lysates and the bio-
tinylated apical or basolateral surfaces were probed with
the same antibodies as listed above.
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Laser Scanning Confocal Microscopy (LSCM)

Specific fluorescently-tagged IgG or F(ab), fragments
were used with LSCM to visualize NSP4 and marker pro-
teins in RV-infected cells. Cells were treated with antibo-
dies post fixation and permeabilization to conduct
fluorescent resonance energy transfer (FRET) analyses.
The fluorescent images were captured with a MRC-
124MP BioRad LSCM system (BioRad) using a Zeiss
inverted Axiovert microscope (Carl Zeiss, Inc., Thron-
wood, NY), a 63X Zeiss oil apochromat objective, and the
488, 568 or 647 nm excitation lines of an argon/krypton
ion laser source. LaserSharp 3.0 (BioRad), Confocal
Assistant 4.02 (Brelje TC/BioRad), Metamorph 4.0
(Molecular Devices Corporation, Sunnyvale, CA), Image ]
(public domain Java image-processing program inspired
by NIH Image), and Adobe Photoshop 7.0 (Adobe Sys-
tems Inc., San Jose, CA) were employed depending on
the application to capture the pixilated PMT data, con-
vert the image data to tiff format, and adjust for contrast
curves to construct the final images.

RV SA11.4F- and mock- infected or NSP4- and mock-
transfected cells were grown on glass cover slips, fixed and
permeabilized with methanol acetone (1:1 vol/vol) for 5
min at -20°C prior to fluorescent staining at various hpi or
at 20 h post transfection. Non-specific binding sites were
blocked with 4% BLOTTO in PBS for 45 min at 27°C. Pri-
mary antibodies were diluted in 2% BLOTTO-PBS and
incubated with the cells for 45 min at 27°C. Following a
series of PBS washes, secondary antibodies (CY2-, Texas
Red-, or CY5-conjugated, species-specific IgG) were incu-
bated for 45 min in the dark. The PBS wash was repeated
in the dark and the cover slips mounted onto glass slides
with fluorescent mounting media (Kirkegaard & Perry
Laboratories, Inc., West Chester, PA).

FRET by acceptor photobleaching

To confirm the exofacial exposure of NSP4, FRET by
acceptor photobleaching was employed with mock- and
RV-infected cells [65,66]. Cells were surface biotinylated
and probed with NSP4454.175-F(ab),-CY 5 and streptavi-
din-CY3. A series of images were recorded both before
and after (568 and 647 nm, 10% power) photobleaching
(100% power for 3 min) of the CY5 fluorophore and the
integrated density value (IDV) was determined. The
unquenching of the CY3 donor signal (568 nm) was
measured indicating FRET due to acceptor photobleach-
ing (2 fluorophores are within 10 nm). For each time
point, a minimum of 20 fields were analyzed from 2
independent experiments. The ratio Fps/Fp was calcu-
lated, where Fp, is the fluorescence intensity (pre-
bleach) of the donor in the presence of the acceptor and
Fp is the fluorescence intensity (post-bleach) of the
donor in the absence of acceptor. By measuring the IDV
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of the donor (CY3) signal before acceptor (CY5) photo-
bleaching divided by the donor (CY3) IDV post bleach
signal (i.e. CY3 IDV pre-photobleaching/CY3 IDV post),
the amount of FRET was estimated. The change in IDV
of the donor in the presence of acceptor was calculated
as follows: CY3 IDV post photobleaching - CY3 IDV
pre-photobleaching/CY3 IDV post. The % change in
IDV due to a FRET interaction was calculated for every
field that was photobleached and the average was calcu-
lated from 3 independent experiments for each time
point. CY3-labeled surface proteins in a 500 by 100
pixel area outside of the photobleached region served as
the negative control area for each analyzed cell within a
given field of view. Image analyses were completed
using Image ] software. Since the amount of biotinylated
proteins on the surface of the PM far exceeded the
amount of surface-biotinylated NSP4, we employed an
equation describing the non-interacting donors in com-
bination with the fraction of donor-acceptor pairs that
interact at a mean distance r, written as: ¢q,, = f,q, +
1—qn
1—qp
is the measured relative quantum vyield resulting from
FRET but containing background donor signal and also
is the measured ratio of Fpa/Fp, g, is the quantum yield
of the “unbound” donors not specifically involved in
FRET that was normalized to 1; f, is the fraction of
“unbound” donors not specifically involved in FRET
equal to 1- f,; g, is the quantum yield (after the
unbound donor quantum yield was normalized to 1)
resulting from FRET of the donor-acceptor pairs; and f,
is the fraction of donors that are “bound” to an acceptor
[66,67]. Geometric constraints upon the position of the
donor CY3 labeling the streptavidin and the position of
the acceptor CY5 on the NSP4,54.175-F(ab),-CY5 com-
plex provided an estimate of the mean FRET interaction
radius. Since the radius of the streptavidin has been sta-
ted as approximately 27 A [68,69] and the radius of the
F(ab), as approximately 35 A [70,71] a mean FRET

interaction distance of 62A was used. Using the two
6

RSRETG and E =1 - g, , where E is the
energy transfer due to FRET between a donor and
acceptor pair, R, is the Forster distance for fluorescent
probes, CY3 and CY5, and r is the mean interaction dis-
tance between many donor and acceptor pairs resulting
from the CY3-streptavidin-NSP415y.175-F(ab),-CY5 com-
plexes on the surface of the PM. Using Ry = 50A and r
= 62A, the energy transfer was calculated to be E =
0.2157 and thus q;, = 0.7843. These values were subse-
quently used to determine the % of fluorescent donors
involved in FRET interactions with CY5 acceptors as
shown in the Results.

fogs = (1 - f) + f»qs and rearranged to fp =

m

equations, E =
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Epifluorescence of Transfected BHK-21 cells

BHK-21 cells were transfected with pcDNA3.2-
DestNSP4 using nucleofectin prior to colocalization of
NSP4 and Na*/K"-ATPase (PM marker). Transfected
and non-transfected cells were visualized using a Stal-
lion Digital Imaging Workstation (Carl Zeiss) equipped
with 300W xenon fluorescent light source with rapid
switching (<2 msec) between excitation wavelengths.
Images were collected using a 63X objective 0.75
numerical aperture, ROPER CoolSnap HQ camera and
Slidebook 4.2 software (Intelligent Imaging Innova-
tions, Denver, CO). The Stallion system filter sets
include the excitation/emission wavelengths for: (i)
FITC and CY2 (470/20:505-530 nm) to detect anti-rab-
bit IgG-CY2, (ii) Texas Red and CY3 (560/40:590 nm)
to detect anti-mouse IgA-Texas Red and (iii) CY5
(600/50:685/50 nm) to detect streptavidin-CY5. All
images, including the series of merged colocalizations
were processed using Image J (NIH).

Addition to naive cells of RV-free, soluble NSP4 released
into culture media of infected cells

Culture media from RV SA11.4F-infected or mock-
infected cells were collected, clarified by centrifugation
at 850 x g for 5 min to remove intact cells and cellular
debris, followed by 92,000 x g to remove viral particles.
The supernatants then were collected and tested for the
presence of RV by FFU assays to rule out the presence
of infectious virus. The presence of NSP4 was confirmed
by immunoprecipitation [24]. The supernatants lacking
RV were concentrated approximately 10-fold using an
iCON™ Concentrator (Pierce, MWCO 9 kD) and
diluted 6-fold in DMEM to evaluate the first time point.
For the other time points, clarified media directly was
reacted with uninfected MDCK or HT29.F8 cells for 1.5
h at 4°C to allow NSP4 attachment and avoid endocyto-
sis. The cells were washed and surface biotinylated as
described above. To detect the presence of NSP4 bound
to the surface of the uninfected cells, the treated cells
were lysed and the lysates were precipitated with strep-
tavidin-agarose and both subjected to Western blot.

Detection of released NSP4 on the surface of RV-infected

HT29.F8 cells in culture

At 7 hpi, RV-infected HT29.F8 cells were surface bioti-
nylated and fixed at 4°C. Streptavidin-CY2 was added
to the fixed cells to label all exofacial proteins. NSP4
was reacted with CY5-linked NSP4,5¢_175 F(ab),. LSCM
was utilized to detect infected cells via the presence of
intracellular NSP4 and for the presence of NSP4 on
the surface of neighboring, uninfected cells. Colocaliza-
tion of the streptavidin-CY2 and NSP4-CY5 appeared
yellow.
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Results

Kinetics of NSP4 transport to the exofacial surface of
MDCK and HT-29.F8 cells were distinct

To delineate the temporal expression of NSP4 at the
exofacial surface of MDCK and HT29.F8 cells, we evalu-
ated the appearance of NSP4 on the cell surface by sur-
face biotinylation followed by streptavidin pull-downs
and Western blots. Initially the expression of NSP4 was
established on the exofacial surface of both cell lines at
8, 11 and 24 hpi (not shown) and then was examined at
sequentially earlier time points (7, 4, 3 and 2 hpi). We
also tested different MOI to ensure a MOI of 2 yielded
detectable expression of NSP4 in the absence of mem-
brane disruption. Total cell lysates (Figure 1, Panels A
and B, lanes 1 and 3) revealed the presence of NSP4 in
intact cells using a MOI of 2. Lysates of both cell types
showed the fully glycosylated, native 28 kD, the single
glycosylated (26 kD) and the unglycosylated (20 kD)
forms of NSP4 at 7 and 4 hpi. In addition, a band near
17 kDa consistently was noted in these lysates. In the
HT29.F8 cells, streptavidin-bound, surface-exposed
NSP4 was detected at 7, 4 and 3 hpi but not at 2 hpi
(Figure 1A, lanes 2) indicating NSP4 had been trans-
ported to the exofacial membrane between 2 and 3 hpi
in the human intestinal cell line. Only the full-length
(FL), double glycosylated NSP4 was apparent in the pre-
cipitated, cell surface samples (Figure 1A, lanes 2).
There consistently was a lack of the other forms of
NSP4 and the 17kD band on the cell surface. Similarly,
only the FL NSP4 (28 kD) was observed in the HT29.F8
lysates at 2 and 3 hpi (lanes 1). The identity of the 17
kD NSP4 band in infected lysates is unknown, but may
correspond to the 15 kD product noted by Zhang, et. al,
2000 [23].

Examination of the MDCK cells similarly revealed the
presence of FL NSP4 on the exofacial surface but only
at 7 hpi (Figure 1B, 7 hpi, lane 2). At the next time
point, 4 hpi, NSP4 was present in the lysates, but absent
from the surface of the kidney cells (Figure 1B, 4 hpi,
lanes1-2). Earlier time points were completed, but
lacked NSP4 surface exposure and are not shown, n = 5.
These data indicate NSP4 trafficked to the exofacial
membrane of the MDCK cells between 4 and 7 hpi.

Controls included mock-biotinylated, RV-infected cells
and the corresponding streptavidin pull downs (Figure
1, lanes 3 and 4, respectively) and an uninfected cell
control (lanes 5). Two control antibodies, anti-cav-1
(cytofacial membrane control) (Figure 1C) and anti-
NSP5 (cytosolic control) (Figure 1D) were employed to
ensure the cells were intact when the biotin reagent was
applied and that there was an absence of biotin entering
the cell at the later time points. Cav-1, a protein known
to traverse the cytofacial leaflet with both termini
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Figure 1 NSP4 transport kinetics to the exofacial PM of HT29.F8 and MDCK cells vary. The cloned intestinal and canine kidney cells
simultaneously were infected with RV SA11.4F (MOl = 2). At 2, 3, 4, 7, and 8 hpi, the cells were surface biotinylated at 4°C, lysed, and
precipitated with streptavidin agarose. The cell lysates and precipitated surface proteins were separated by SDS-PAGE and analyzed by Western
blot using NSP454 475.peptide-specific antibodies (panels A and B). A cytofacial membrane (anti-caveolin-1) and intracellular (anti-NSP5) control
are shown in panels C and D, respectively. Lanes were loaded as follows: Lane 1 = cell lysates recovered from the streptavidin pull-downs. Lane
2 = streptavidin precipitate of the surface biotinylated proteins. Lane 3 = cell lysates from a mock-biotinylated control. Lane 4 = streptavidin
precipitate of the mock-biotinylated control, Lane 5 = cell lysates from an uninfected cell control.

cytosolic in a hairpin structure [61-64], was absent from
the surface of the infected cells at all time points (Figure
1C, lanes 2), MDCK cells at 11 hpi and HT29.F8 cells at
7 hpi. These times were selected because of the strong
NSP4 signal routinely acquired in the respective cells
and time. Similarly, NSP5 was absent from the exofacial
PM (Figure 1D, lanes 2) at 7 (HT29.F8 cells) and 11 hpi
(MDCK cells). Lanes 1 and 3 (Figure 1C-D) are the total
cell lysates, which showed that the control proteins were
expressed, but not exposed on the cell surface (lanes 2).

Because both cell lines simultaneously were infected
with the same RV inoculum at an MOI of 2 and con-
currently evaluated, these data suggest the difference in
the transport kinetics and surface exposure of NSP4 was
due to variation in the cells and how NSP4 interacts
with specific host-cell molecules, not the virus or the

conditions during the infection. Surface exposure of
NSP4 at the same time NSP5 and cav-1 remained intra-
cellular indicated the PM was intact in the same cells at
the same hpi.

Detection of the NSP4 C-terminus on the exofacial
membrane by live cell staining and the lack of biotin
artifacts

To control for biotin artifacts, uninfected and infected
MDCK cells (MOI = 2, 11 hpi) were either biotinylated
or reacted with a NSP4 C-terminal specific antibody,
anti-NSP4;50.175, and a biotinylated anti-rabbit IgG in
the cold (Figure 2). Streptavidin-beads were added to
the biotinylated or biotin antibody-treated cells prior to
cell lysis. The pelleted surface proteins and supernatants
were examined by Western blot. Lysates of the infected
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Figure 2 NSP4,54_475 peptide-specific antibodies were bound to
the surface of live, RV-infected MDCK cells at 4°C. MDCK cells
were infected with RV SA11.4F at a MOI of 2 for 11 h and either
surface biotinylated followed by precipitation with streptavidin
agarose (lane 2) or reacted with rabbit affinity-purified anti-NSP4; 5.
175 and biotin-conjugated anti-rabbit IgG, then similarly precipitated
with streptavidin agarose (lane 4). Cell lysates and the precipitated
surface proteins were examined by Western blot using mouse anti-
NSP4114.135. Lanes 1 and 3 are the cell lysates from the streptavidin
pull-down and antibody binding, respectively. Lanes 2 and 4 show

the full-length NSP4 exposed on exofacial surfaces, and lanes 5 and

6 are uninfected controls.
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cells (Figure 2, lanes 1 and 3) showed the same NSP4
banding pattern previously observed in the MDCK and
HT29.F8 cells. The biotinylated-(Figure 2, lane 2) and
the NSP4 peptide antibody-bound precipitates (Figure 2,
lane 4) showed a single NSP4 band at 28 kD supporting
the exposure of the C-terminus of FL NSP4. Antibody
and biotin pull-down controls of uninfected cells are
shown in Figure 2, lanes 5 and 6, respectively. Compari-
son of the band intensities showed that NSP4 more effi-
ciently bound biotin (lane 2) when compared to binding
the C-terminal antibody (lane 4). This may reflect a dif-
ference in detection sensitivity due to the ability of the
small biotin molecule to bind multiple sites on the
exposed NSP4 C-terminal domain whereas the peptide
antibody may have limited access to a single epitope at
the C-terminus. Although less efficient, a single 28 kD
band was observed when the NSP445¢ 175 -specific IgG
were bound to the cell surface that appeared similar to
that seen with the biotinylated cells. These data indicate
a lack of biotin artifacts and confirm the presence of at
least the NSP4 C-terminus on the cell surface.

FRET by acceptor photobleaching confirms the exofacial
localization of NSP4

Because of the enhanced sensitivity of FRET analyses,
FRET by acceptor photobleaching was employed using
the CY5/CY3 fluorophore pairs (detection within 10
nm) to confirm NSP4 at the exofacial PM on individual
cells while simultaneously analyzing the PM integrity
(Figure 3). Analyses were limited to cells that appeared
to be intact by monitoring the stained PM of the
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biotinylated, CY3 labeled cells by LSCM. When the
membrane lacked integrity, intracellular proteins were
biotinylated and bound CY3 (Figure 3B) and were not
utilized in the study.

Two time points were selected for examination, one in
which NSP4 was not detected on the exofacial mem-
brane of RV-infected MDCK cells by surface biotinyla-
tion (4 hpi) and a time when NSP4 was observed at the
exofacial PM (7 hpi) in both MDCK and HT29.F8 cells.
The photo-acceptor fluorophore, CY5, was photo-
bleached while the intensity of the donor fluorophore
(CY3) was assessed. In this way, the quantity of the
unquenched donor intensity due to release from FRET
between the donor and acceptor pairs post photobleach-
ing was measured. Figure 3A, panels 1, 4 and 7 show
the merged images prior to photobleaching; panels 2, 5
and 8 show the merged images immediately post bleach-
ing; and panels 3, 6, and 9 are magnified images of the
green pseudo colored CY3-PM within the outlined yel-
low regions in panels 1, 4 and 7, both pre (top image)
and post (lower image) photobleaching. At 4 hpi in
MDCK cells, there is an absence of FRET; the integrated
intensity was similar to that of the negative control with
the Fpa/pp ratio normalized to 1 or a 0% change in the
integrated intensity (Figure 3A, panels 1-3, n = 3).
These data confirmed the lack of NSP4 at the surface of
MDCK cells at 4 hpi. At 7 hpi, a positive FRET reaction
as determined by the % change of the IDV of the donor
CY3 in the DA pair was noted between NSP4 and the
biotinylated exofacial PM proteins in the examined area
(yellow box, Figure 3A, panels 4-6). The % change in
IDV in the MDCK cells at 7 hpi ranged from 3.2-6.8%
with an average of +3.9% (panel 6, n = 20). Using the
equations defined in the Methods, this implied that
18.1% of fluorescent CY3 labels were involved in a
FRET interaction with the CY5 acceptor. HT29.F8 cells
similarly were treated at 7 hpi and served as the positive
control (panels 7-9). The average % change in IDV in
the HT29.F8 cells that was gained due to photobleach-
ing was +4.5% (panel 9, n = 10). Approximately 20.9%
of fluorescent CY3-PM labels were involved in a FRET
interaction with the CY5-NSP4 acceptors in the HT29.
F8 membranes within the yellow box. Negative controls
for each region were calculated from a section of the
PM in which NSP4 was not present. As an additional
control, CY5-cav-1 IgG was analyzed with CY3-strepta-
vidin following surface biotinylation at 7 hpi and yielded
0% change in IDV implying no FRET (data not shown).
Taken together, the positive FRET reaction between the
biotinylated surface proteins bound by CY3-streptavidin
and NSP4 bound by Cy-5-NSP4,5¢.175 F(ab), in RV-
infected MDCK cells at 7 hpi, but not at 4 hpi, con-
firmed our biotinylation/pull down kinetics results. As
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showing intracellular staining with CY3 were not used.

Figure 3 Positive FRET analyses by acceptor photobleaching between NSP4 and surface proteins of RV-infected MDCK and HT29.F8
cells. Live cells were surface biotinylated prior to fixation and permeabilization. Streptavidin-CY3 was utilized to label all surface biotinylated
proteins of the exofacial PM including NSP4, if exposed. NSP4 was labeled with Cy5-linked F(ab), prepared from NSP4,sq 75 rabbit antisera. A.
CY5 (NSP4) and CY3 (PM) images were acquired with the 647-nm and 568-nm-wavelength lasers both prior (merged CY3 and CY5 images,
panels 1,4,7) and after (same cells, panels 2,5,8) photobleaching of the NSP4 CY5 (donor) signal in infected MDCK cells at 4 hpi (panels 1,2,3) and
7 hpi (panels 4,5,6). RV-infected HT29.F8 cells (MOl = 2) were examined at 7 hpi (panels 7,8,9). FRET was calculated from the fluorescence
intensity of selected areas of the PM (yellow box) both before and after bleaching. Panels 3, 6, 9 show a magnification of the photobleached
regions of the PM delineated by the yellow boxes in panels 1, 4, and 7. Panels were pseudo-colored to show relative intensities with its
respective calculated FRET values. Both the pre (top panels of 3, 6, 9) and post bleaching (bottom panels 3, 6, 9) images are shown. Values were
calculated from 10 different regions taken from two separate experiments for each time point. Controls for each region were calculated from a
region of PM in which NSP4 was not present and was calculated at 0% FRET. Vertical bar = relative intensity scale with red > green > blue. B
shows an example of a cell that lacked membrane integrity (*) and therefore intracellular molecules were biotinylated and bound CY3. Cells

anticipated, the % change in IDV of NSP4 and exofacial
molecules in the HT29.F8 cells was positive (Figure 3A).

Given that the Cy-5-labelled (Fab), fragments were
prepared from NSP4,50.175 [gG, these data indicate at
least the C-terminus of NSP4 was exposed/available for
antibody and/or biotin binding on the cell surface.
These experiments were repeated using anti-NSP4,q.
147, which also is within the NSP4 C-terminal region,
and the FRET reactions were positive with a similar
average % change in IDV (data not shown). Efforts to

prepare high-titer antibodies to the hydrophobic N-ter-
minus, NSP4,_,,, were not successful so we were unable
to test the relative intracellular location of the N-
terminus.

Surface exposed NSP4 was EndoH sensitive early post
infection

To determine the glycosylation state of the FL NSP4
molecules on the exofacial PM early post infection, the
RV-infected MDCK and HT29.F8 cells were surface
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biotinylated, precipitated with streptavidin agarose,
mock or EndoH digested, and evaluated by Western
blot. Seven hpi was examined to ensure NSP4 surface
exposure in both cell types (Figure 4). Akin to that
observed in the kinetics experiment (above) and the
polarity study (below), the infected cell lysates contained
the 2 glycosylated forms (28 and 26 kD) and the ungly-
cosylated form (20 kD) of NSP4, and a band near the 17
kD marker when mock-glycosidase treated or immedi-
ately prior to EndoH treatment (Figure 4, lysates, lanes
1-2, 7-8 and 13-14). EndoH digested lysates revealed a
shift in NSP4 electrophoretic mobility with the 28 kD
double-glycosylated band shifting to about 20 kD in
both cell lines (Figure 4, lysates, lanes 3, 9 and 15, n =
5). There was no obvious change in the mobility of the
unglycosylated 20 or the 17 kD bands.

When the precipitated, surface-exposed fractions were
examined by Western blot (PM fractions), the doubly-
glycosylated (28 kD) form of NSP4 was the only form
detected prior to EndoH digestion (Figure 4, PM, lanes
4-5, 10-11, and 16-17, n = 5) except for a very faint 20
kD band in lane 4. EndoH treatment of the surface-
exposed NSP4 resulted in a shift from the 28 kD protein
the 20 kD unglycosylated form (Figure 4, PM, lanes 6,
12 and 18) in both cell lines. These data support our
previous results showing that NSP4 in isolated caveolae
from enriched PM fractions is EndoH sensitive [48] and
verifies that the 17 kD protein bands lack the N-term-
inal glycosylation sites. We also evaluated the EndoH
sensitivity of NSP4 at the surface of HT.29F8 cells at 4

' Y
MDCK HT29.18 HT29.18
7 hpi 7 hpi 4 hpi
Lysates PM Lysates PM Lysates PM
123 456 789 101112 131415 161718
26 e “ e -
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Figure 4 EndoH sensitivity of NSP4 localized to the exofacial
surface. MDCK and HT29.F8 cells were infected with RV SA11.4F for
7 h (MOl = 2) biotinylated at 4°C, lysed, and treated with EndoH
prior to Western blot analyses. Lysates and precipitated surface
proteins from MDCK cells at 7 hpi and from HT29.F8 cells at 7 and 4
hpi are shown. Lane: 1 = MDCK lysates, pre EndoH treatment, 7 hpi.
2 = MDCK lysates, mock EndoH treatment, 7 hpi. 3 = MDCK lysates,
EndoH treated, 7 hpi. 4 = MDCK PM (streptavidin pull-down), pre
Endo H treatment, 7 hpi. 5 = MDCK PM, mock EndoH treatment, 7
hpi. 6 = MDCK PM, Endo H treated, 7 hpi. 7 = HT29.F8 lysates, pre
EndoH treatment, 7 hpi. 8 = HT29.F8 lysates, mock EndoH
treatment, 7 hpi. 9 = HT29.F8 lysates, EndoH treated, 7 hpi. 10 =
HT29.F8 PM (streptavidin pull-down), pre EndoH treatment, 7 hpi. 11
= HT29.F8 PM, mock EndoH treatment, 7 hpi. 12 = HT29.F8 PM,
EndoH treated, 7 hpi. 13 = HT29.F8 lysates, pre EndoH treatment, 4
hpi. 14 = HT29.F8 lysates, mock EndoH treatment, 4 hpi. 15 = HT29.
F8 lysates, EndoH treated, 4 hpi. 16 = HT29.F8 PM, pre EndoH
treatment, 4 hpi. 17 = HT29.F8 PM, mock EndoH treatment, 4 hpi.

18 = HT29.F8 PM, EndoH treated, 4 hpi.
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hpi (Figure 4). These data agreed with the HT29.F8
kinetic data showing only the fully-glycosylated protein
was exposed on the cell surface at 4 hpi and also
revealed it was EndoH sensitive at this early time point.

NSP4 directional transport in polarized cells
To monitor the directional transport of NSP4 in polar-
ized epithelium, MDCK and HT29.F8 cells were grown
on permeable supports until a high TER (=500 ohms x
cm?) was reached and then virus was added to apical
membranes at a MOI of 2. As expected, there was an
initial drop in the resistance immediately post infection
that completely recovered by 1 hpi in the HT29.F8 cells
and 15 hpi in the MDCK cells to pre-infections levels
(Figure 5A). The MDCK cells displayed ~80% of the pre-
infection TER at 1 and 6 hpi. By 19 hpi, the TER values
in the MDCK cells increased to greater than 120% of the
pre-infected values (Figure 5A). Maximal TER values
typically ran at or greater than 600 ohms x cm? with the
HT29.F8 displaying higher overall TER values as pre-
viously seen [52]. Several MOI’s were examined (not
shown) and a MOI of 2 was found to yield a detectable
level of NSP4 while maintaining the polarized phenotype.
At 24 hpi, cells were surface biotinylated on apical or
basolateral surfaces, precipitated with streptavidin-agar-
ose, and evaluated by Western blot as before (Figure
5B). In MDCK cells, NSP4 only was detected on apical
membranes (Figure 5B, lane 1) and was absent from
basolateral membranes (lane 2) indicating NSP4 primar-
ily was transported to the apical surface in the kidney
cells under the indicated test conditions. Cell lysates are
shown corresponding to the biotinylated apical (lane 3)
and basolateral (lane 4) MDCK surfaces. In contrast,
NSP4 was detected on both the apical (lane 5) and baso-
lateral (lane 6) surfaces of the HT29.F8 cells under the
same test conditions. The corresponding intestinal cell
lysates are shown in lanes 7 and 8. Similar to that seen
in the kinetics study, the level of NSP4 expression
appeared higher in the HT29.F8 cells when compared to
that of the MDCK cells (Figure 5B, cell lysates, lanes 3,
4 vs. lanes 7, 8; and on membranes, lanes 1-2 vs. 5-6)
even when infected at the same MOI under the same
conditions and when the samples consistently were
loaded onto SDS-PAGE gels at equivalent ug/lane.
There was a barely visible band near the 54 kD marker
in lane 1 (MDCK apical surface), which presumably is a
dimer of the 28 kD NSP4. It is unclear why only the
HT29.F8 lysates that were biotinylated on the basolat-
eral surface showed multiple glycosylated forms of NSP4
(lane 8) or, alternatively, why the other lysates only
showed the double-glycosylated form. Finally, the prefer-
ential transport of NSP4 to distinct membranes in dif-
ferent cell types again implies unique interactions of
NSP4 with specific host-cell molecules.
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Figure 5 Preferential sorting of NSP4 in polarized kidney and intestinal cells was distinct. MDCK and HT29.F8 cells were grown on
permeable, membrane supports until differentiation as indicated by an elevated transepithelial resistance (TER, > 500 ohms x cm?) and the
presence of domes in cells grown on plastic. The cells were simultaneously infected with RV SA11.4F on apical membranes at MOl = 2 and the
TER monitored to ensure the polarized phenotype was maintained 1 - 24 hpi. Shown in Panel A are the TER measurements of the infected
MDCK and HT29.F8 cells taken at 1, 6, 15, 19, and 24 hpi. The x-axis indicates the hpi and the y-axis shows the corresponding % recovery of the
pre-infected TER. Panel B. Apical or basolateral surfaces were biotinylated at 24 hpi with opposite surfaces treated with media. The cells were
lysed, precipitated with streptavidin-agarose and subject to SDS-PAGE and Western Blot (Panel B). The Mr markers are shown on the left. Lanes
1-4 are from the MDCK cells and lanes 5-8 from the HT29.F8 cells, with lanes 1 and 5 showing the apical surface, and lanes 2 and 6 the
basolateral surfaces. Lanes 3-4 and 7-8 are the corresponding cell lysates.
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Released NSP4 was detected in culture media at 6-8 hpi

Once we established that FL. NSP4 was exposed on the
exofacial PM of RV-infected cells, we then evaluated the
extent of NSP4 release into culture media at 2-12 hpi
while ensuring that the infected cells were intact by
probing for the cytosolic enzyme, d-glyceraldehyde-3-
phosphate dehydrogenase (GADPH). At each time
point, the media from both cell lines were removed and
clarified at 192,000 x g for 3 h to ensure the absence of
virus (verified by the lack of FFU). The media that was
collected and analyzed at 2 and 6 hpi were concentrated

about ten times to enhance the detection of small
amounts of secreted NSP4. Whereas the media collected
at 8 and 12 hpi were clarified and directly evaluated in
the absence of concentration. At 2 hpi (not shown) and
6 hpi (Figure 6A, lanes 1 and 4), NSP4 were not
detected in the concentrated media of either cell line. In
contrast, a single, 28 kD NSP4 band was detected in the
media at 8 and 12 hpi both from the MDCK (lanes 2
and 3) and HT29.F8 cells (lanes 5 and 6). Cells were
simultaneously probed for GADPH as a cytosolic, mem-
brane integrity control (Figure 6B). Only lane 7 (lysates)
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showed positive GADPH reactivity with anti-GADPH.
The lack of NSP4 at 6 hpi (MOI = 2) and the presence
of NSP4 at 8 hpi in media of both the MDCK and
HT29.F8 cultures indicate that NSP4 was released from
both the intestinal and kidney cells between 6-8 hpi
while the cells were intact (lack of GADPH). There
appeared to be a stronger signal for NSP4 in the media
of the HT29.F8 cells (Figure 6A, lanes 5 and 6) when
compared to an equal volume of media from the MDCK
cells (lanes 2 and 3). At 12 hpi, there was a small
amount of the unglycosylated NSP4 in the media of the
intestinal cells only. It is unclear if this was a specific
release or if some of the cells were becoming leaky at
this time point, even though the stain for GADPH
remained negative.

RV growth curves showed virus release from both the
HT9.F8 and MDCK cells between 6-8 hpi

Our data showing the release of NSP4 at similar times
(6-8 hpi) in both the human, cloned intestinal and
canine kidney cell lines were surprising given the differ-
ence in intracellular transport kinetics to the cell sur-
face. To evaluate a possible role of viral replication and
release in the secretion of NSP4, RV growth curves were
generated in both cell lines (Figure 7, n = 3). Culture
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Figure 6 NSP4 was detected in the media of intact, RV-infected
MDCK and HT29.F8 cells. Cells were infected with RV SAT14F at a
MOI of 2 for 6, 8 and 12 hpi. At each time point, the media was
collected, clarified to remove cell debris, and ultra-centrifuged to
remove RV particles prior to separation by SDS-PAGE and analyses
by Western blot. Panel A: membrane was probed with anti-
NSP4150.175. The clarified media collected at 6 hpi from MDCK (lane
1) or HT29.F8 (lane 4) cells were concentrated 10-fold prior to
analyses. The clarified media collected at 8 and 12 hpi from RV-
infected MDCK cells (lanes 2 and 3, respectively) and HT29.F8 cells
(lanes 5 and 6, respectively) were analyzed in the absence of
concentration. Panel B: the same membrane was probed with anti-
GAPDH as a membrane integrity control. Lane 7 is HT29.F8 cell
lysates showing the presence of GAPDH (positive antibody control).
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media (to monitor virus release) or cells and media (to
evaluate total virus production) were collected at 2-48
hpi and titered by measuring FFU/ml. The growth curve
of RV SA11.4F in MDCK cells resembled that previously
reported [72] (diamonds and squares) and the RV
growth curve in the HT29.F8 cells (triangles and out-
lined x) was similar to that of the MDCK cells. The
curves were generated by averaging the RV titer from
the media only or from the cells plus media at various
hpi (n = 3, P < 0.5). Although the difference in NSP4
transport kinetics to the cell surface (2-3 hpi for HT29.
E8 cells; 4-7 hpi in MDCK cells) did not appear to be
due to differences in RV replication, it is noteworthy
that the growth curves showed that virus was released
from both cell types (6-8 hpi) at about the same time
NSP4 was released (6-8 hpi). These data suggest that
the release of RV into media may have influenced the
secretion of NSP4 in both cell lines.

NSP4 traffics to the PM in the absence of other viral
proteins
It was important to determine the extent RV replication
or RV-encoded proteins contributed to NSP4 intracellu-
lar transport to, exposure on, and translocation across
the PM. Due to low transfection efficiencies in the
MDCK and HT29.F8 cultures, BHK-21 cells were uti-
lized for these experiments. The BHK-21 cells were
transfected with pcDNA3.2 NSP4,_,,5 and examined at
20 h post transfection by surface biotinylation followed
by streptavidin precipitation and Western blot (Figure
8A) or fluorescent imaging (Figure 8B). Western blot
analyses of the NSP4-transfected BHK-21 lysates of the
mock biotinylated (lane 1) or post biotinylated/streptavi-
din pull-downs (lane 3) revealed a single, 28 kD band.
The different glycosylated forms of NSP4 were not
observed, similar to the infected lysates in the polarity
experiment (above). In the streptavidin pull-downs of
the transfected BHK-21 cells, the same FL, 28 kD NSP4
band was observed (Figure 8A, lane 2) indicating FL
NSP4 was present on the exofacial membrane when
expressed in the absence of other viral proteins. How-
ever, the quantity of NSP4 was considerably less than
that seen in the infected cells. To sufficiently visualize
the bands required the use of substrate with femtogram
sensitivity. Whether the reduced quantity of NSP4 at
the cell surface was due to the lack of virus or viral pro-
teins or reduced expression of NSP4 will require addi-
tional study. Mock transfected cells (middle panel) and
RV-infected lysates (right panel) are shown as controls.
Colocalizations of NSP4 and two markers, surface-
bound biotin (with CY5-streptavidin) and mouse anti-
Na'K"ATPase (PM marker, with Texas Red-conjugated
anti-mouse IgG) in NSP4-transfected BHK-21 cells were
completed to support the biotinylation/streptavidin pull-
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Figure 7 RV SA11.4F growth curves in MDCK and HT29.F8 cells. The kidney and intestinal cell lines were RV infected at MOI = 2. At 2 to 48
hpi, the media was collected to assess for released virus or cells and media were collected to evaluate total virus production. Samples were
titered for RV by determining the FFU/ml. The average of 3 different assays for each time point is graphically shown.
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Figure 8 Transfected NSP4 travels to the cell surface in the absence of other viral proteins. A. BHK-21 cells were transfected with
pcDNA3.2 NSP4,.;75 and surface biotinylated at 20 h post transfection at 4°C. Cells were lysed and surface proteins were precipitated with
streptavidin agarose (left panel). Mock transfected cells were treated identically and served as controls (middle panel). Lanes 1 are the cell lysates
from transfected or un-transfected cells and lanes 2 are the surface biotinylated, streptavidin pull downs of the transfected (left) or mock-
transfected (center) cells. Lanes 3 show the transfected or mock-transfected lysates following biotinylation and streptavidin pull-down. RV-
infected cell lysate (right panel) is shown as a NSP4 control. Note that substrate with femtogram sensitivity was used to detect the expression of
transfected NSP4. B. BHK-21 cells were grown on glass cover slips, transfected with pcDNA3.2 NSP4, 55, surface biotinylated in the cold, and
probed with affinity-purified anti-NSP4,54.1,5 and anti-rabbit 1gG-CY2 (all panels) and either streptavidin-CY5 (top panels) or mouse anti- Na™/K
*-ATPase and anti-mouse IgA-Texas Red (bottom panels,). Cells were visualized with a Stallion Digital Workstation. The colocalized images with
surface molecules pseudo-colored red and NSP4 pixels pseudo-colored green are shown in panels 3. Yellow pixels indicate the areas of pixel
overlap. On the far right is shown the antibody controls.
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down data. The transfected BHK-21 cells were surface
biotinylated at 20 hpi and probed with CY2-conjugated
rabbit NSP4;50.175 IgG to detect NSP4 and with CY5-
streptavidin and Texas Red-conjugated anti-mouse IgG
to detect the exofacial PM proteins (Figure 8B). Filter
sets that were suitable for CY2, Texas Red and CY5
with a Stallion Digital Imaging Workstation were
employed. The CY2-NSP4 signal was pseudo-colored
green (panels 1 and 3) while the exofacial membrane
indicator, the CY5-streptavidin (top panels 2 and 3) and
the PM indicator, Texas Red-anti-mouse IgG (bottom
panels 2 and 3) were pseudo-colored red. Evaluation of
the number of cells with NSP4 fluorescence vs. the
number lacking the NSP4 signal was utilized to estimate
a transfection efficiency of 10-12%. Positive colocaliza-
tions of NSP4 with streptavidin and anti-Na"K"ATPase
were observed as indicated by the presence of yellow
pixels (panels 3). These data denote NSP4 travelled to
and traversed the PM in the absence of virus or viral
proteins, albeit at reduced levels.

Soluble NSP4 released into culture media bound the
exofacial surface of uninfected cells

We hypothesized that the released NSP4 would associ-
ate with surface molecules on naive cells, similar to that
reported by Bugarcic and Taylor (2006) [51] and akin to
the addition of purified NSP4 or peptide to the exofacial
surface of cell monolayers or mouse intestinal mucosal
[10]. Therefore the clarified, NSP4-containing media
was exogenously added to naive cells and incubated for
90 min at 4°C. The treated cells were washed, surface
biotinylated, lysed and precipitated with streptavidin
agarose or directly analyzed by Western blot prior to
streptavidin addition (Figure 9). NSP4 was absent from
the MDCK lysates following the precipitation of the sur-
face molecules with streptavidin-agarose (lane 1), indi-
cating that most of the added NSP4 was in the
precipitate (lane 2). The streptavidin precipitate consis-
tently showed two bands at 28 and 56 kD on the exofa-
cial surface of both the MDCK (lane 2) and the HT29.
F8 cells (lane 7) that corresponded to the FL, 28 kD,
monomeric and dimeric NSP4. When the MDCK and
HT29.F8 lysates were examined prior to precipitation, a
single band at 28 kD was observed (lanes 3 and 8,
respectively) signifying that NSP4 had bound the exofa-
cial surface of the naive cells in agreement with the pre-
sence of NSP4 in the streptavidin precipitates.

In the HT29.F8 cells, once the biotinylated surface
proteins were removed from the lysates with streptavi-
din-agarose beads, the lysates were evaluated by Wes-
tern blot to verify a lack of intracellular NSP4.
Unexpectedly, a faint NSP4 band repeatedly was seen in
the lysates after removal of the biotinylated proteins
(lane 6). To ensure all of the biotinylated NSP4 was
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Figure 9 Western Blot of surface biotinylated, uninfected
MDCK and HT29.f8 cells in which media containing soluble
NSP4 was exogenously added. RV-free, NSP4-containing media
exogenously was added to MDCK or HT29.F8 naive cells and
incubated for 90 min at 4°C. The treated cells were washed, surface
biotinylated, lysed and the surface molecules precipitated with
streptavidin agarose. The surface precipitates and lysates were
separated by SDS-PAGE and analyzed by Western blot using anti-
NSP4,50.475. Dimeric and monomeric NSP4 are indicated. Lanes are
as follows: 1 = MDCK lysates following the streptavidin pull-down. 2
= MDCK streptavidin pull-down (exofacial PM). 3 = MDCK cell
lysates from the no biotin control. 4 = MDCK streptavidin pull-down
from the no biotin control. 5 = Uninfected MDCK cell lysates. 6 =
HT29.F8 lysates following the streptavidin pull-down. 7 = HT29.F8
streptavidin pull-down (exofacial PM). 8 = HT29.F8 cell lysates from
the no biotin control. 9 = HT29.F8 streptavidin pull-down from the

no biotin control

precipitated, we repeated the streptavidin pull downs 3
times prior to re-evaluating the lysate and acquired the
same results. These data suggest a small amount of
NSP4 was not available to the biotin reagent or a small
amount of NSP4 entered the intestinal cells post exo-
genous addition.

This difference in PM permeability or surface avail-
ability to biotin of the exogenously added NSP4 in the
HT29.F8 and MDCK cells requires additional study.
Taken together, these experiments revealed the presence
of biotinylated monomeric and dimeric NSP4 on the
surface of intact, uninfected cells when treated with
media from RV-infected cells, indicating the released
NSP4 can bind surface molecules of neighboring cells to
elicit its enterotoxic effects.

Uninfected neighboring cells are bound by NSP4 at 3 and
7 hpi in culture

To examine the release and rebinding of NSP4 in cul-
ture, RV-infected (MOI = 2) and uninfected (control)
HT29.F8 cells were surface biotinylated prior to fixation
and permeabilization at 3 and 7 hpi. The infected and
uninfected cells then were probed with CY2-streptavidin
(pseudo-colored red) to detect all proteins on the exofa-
cial PM and CY5-linked NSP4,54_,,5 F(ab), (pseudo-
colored green) to localize NSP4. A section of the slide
was selected such that a single infected cell was appar-
ent (NSP4 appears green) next to uninfected cells that
only showed the red-stained PM (Figure 10A). The sin-
gle infected cell (white arrow) showed several intracellu-
lar pools of NSP4 (green) with only a single point of co-
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cell control that was labeled the same as the infected cells (panel A).

|
C.

Figure 10 Confocal analyses of RV-infected HT29.F8 cells at 7 hpi. Panel A: Live HT29.F8 cells were surface biotinylated prior to fixation and
permeabilization. Once the cells. were fixed and permeabilized, streptavidin-CY2 was utilized to label the biotinylated proteins on the exofacial
PM (pseudo-colored red) and CY5-linked F(ab), prepared from anti-NSP4,s0 1,5 was added to label NSP4 (pseudo-colored green). The white,
block arrow indicates an infected cell stained with anti-NSP4,54.175-CY5-linked F(ab),. The yellow arrows highlight the PM of the uninfected cells
in which CY5-linked NSP4;s50 175 F(ab), is bound (green). Panel B is an enlargement of the white box in panel A and Panel C is the uninfected

localization (yellow) with the PM. The yellow arrows
indicate areas of the exofacial PM where it appears that
NSP4 had been secreted from an infected cell or cells
and then rebound (green pixels) to the cell surface of
uninfected, neighboring cells. The area in the white box
(panel A) is enlarged and shown in panel B. There was
no indication of NSP4 in mock-infected cells (panel C).
At 3 hpi, no colocalization of NSP4 and PM was
observed (not shown) supporting NSP4 was not released
from infected cells at this early time point under the sta-
ted conditions. Further, these data support the presence
of NSP4 on the surface of uninfected cells near an
infected cell at 7 hpi, and indicate NSP4 was released
from the infected cells to bind the exofacial PM of
neighboring, uninfected cells. Note that NSP4 (pseudo-
colored green) was apparent on the PM in sections if
the membrane that lacked staining with the streptavidin
(Panels A and B) indicating a lack or reduction of bioti-
nylation in those areas.

Discussion

Several reports indicate that the NSP4 enterotoxin is
secreted from infected cells, yet each of these studies
show a significant modification of the released glycopro-
tein. Bugarcic and Taylor (2006) detect a partially
EndoH-resistant form of NSP4 with an approximate Mr
of 32 kD in the media of intestinal-derived Caco-2 cul-
tures infected with the bovine UK RV at an MOI of 10.
In this study, the larger form of the glycoprotein is not
apparent in infected lysates, but is the only size of NSP4
detected in media between 16 and 24 hpi [51]. In con-
trast, Zhang et al. (2000) show a 7 kD cleavage fragment
(aa 112-175) of NSP4 is released from kidney-derived
MA104 and intestine-derived parental HT.29 cultures
when infected with the simian SA11 RV at a MOI of 20
[23]. In this study, FL NSP4 is detectable in lysates at
2.5 hpi and the 7 kD NSP4 fragment can be detected in
media at 4 hpi [23]. Both of these studies conclude

NSP4 secretion from the cell is dependent on secondary
processing or modifications of the mature 28 kD glyco-
protein. Our earlier data reveal FL, EndoH sensitive, 28
kD NSP4 is present in caveolae when isolated from a
PM-enriched fraction devoid of detectable ER and fluid
phase PM markers [48,73]. These differences likely are
due to variation in the viral strain, MOI, times post
infection when the cells were examined, the use of dif-
ferent cell lines, and most likely, a combination of these
variables.

We report the exofacial exposure of a pool of NSP4
that was FL, EndoH-sensitive, and unmodified with
respect to protease cleavage or the addition of unusual
glycans in both intact MDCK and HT29.F8 cells. The
same RV SA11.4F inoculum simultaneously was added
to both cell types and analyses were completed at the
same time, yet NSP4 transport kinetics and polarized
sorting varied in the two cells. It is unknown how these
cultured cells differ in terms of inherent transport
mechanisms or interaction(s) with NSP4 or if the cells
vary in the degree of soluble vs. vesicular trafficking,
which would explain the kinetic differences [74].

An earlier report by Delmas, et al [75] documents a
similar disparity in cells of a different origin when
infected with RV. In this study VP4, the RV spike pro-
tein, is localized with rafts at the apical membrane, facil-
itates RV assembly and promotes non-lytic release of RV
particles from the PM of the intestine-derived Caco-2
cells. In kidney MA104 cells, the RV particles are
released by cell lysis despite RV and VP4 association
with rafts in this cell line. Further analyses illustrate sig-
nificant differences in gross lipid composition of the raft
domains associated with VP4 in the two cell lines which
may explain the different mechanisms of virus release
[75]. This diversity in membrane rafts has been evalu-
ated and confirmed in a recent review that sought to
address key criticisms in the field, in particular the use
of artificial criteria for defining raft domains such as
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detergent insolubility [76]. Rafts are best defined as
dynamic, evolving cell membranes that begin as nanos-
cale assemblies of sterols, sphingolipids and proteins
that fluctuate in composition and size [76-78]. These
ordered nanoscale assemblies coalesce in response to
signaling or trafficking events to form larger, functional
raft domains via a variety of protein-lipid, lipid-lipid or
protein-protein interactions [77,78]. A third, um-sized
raft state is observed only at equilibrium in isolated
membranes [78]. The relationship(s) between these
three states are unclear however the fluctuating behavior
is dependent on the composition of the membrane,
which are dependent on the cell type from which the
PM is derived. Hence NSP4 association with rafts or
other membrane domains can vary in different cells or
the raft state. These events are further complicated by
bilayer asymmetry, cortical actin nucleation of raft het-
erogeneity [79,80], and the lack of knowledge of raft
assembly in the cytosolic leaflet, whose lipid content
varies from the exofacial leaflet, which is also cell-
dependent [81].

The data herein suggest that the NSP4 N-terminus
was not modified or alternately processed, and therefore
these alterations were not essential to NSP4 movement
to the PM when tested under the described conditions.
The secreted NSP4 recovered from culture media pre-
dominately was the same EndoH-sensitive, mature 28
kD form consistently and reproducibly seen at the cell
surface of both SA11.4F RV-infected MDCK and HT29.
F8 cultures. When media containing secreted NSP4 exo-
genously was added to uninfected cells, both the dimeric
and monomeric forms were detected on the exofacial
membrane of the naive cells.

Similar kinetics of NSP4 and RV release implies that
virus plays a role in NSP4 release. We did not anticipate
the notable delay from when NSP4 reached the exofacial
PM of the intestinal cells until it was detected in culture
media. Possible explanations include (i) a lack of sensi-
tivity such that NSP4 failed to be detected in the culture
media until a sufficient quantity was accumulated; (ii) a
threshold concentration of NSP4 at the PM was
required before its release; (iii) NSP4 was secreted into
the media but a significant portion of the secreted gly-
coprotein rebound the PM; or (iv) NSP4 was released
with the virus. Additional studies are necessary to dis-
sect the precise mechanism(s) of NSP4 secretion and
the role(s) of virus in promoting the release of NSP4
from both cell types.

Another interesting finding was the exposure of the C-
terminus on the exofacial surface of infected and NSP4-
transfected cells. Detection of NSP4 on the cell surface
prior to its release is reasonable given that the infected
cells are intact and NSP4 would have to traverse the
PM for its release. Both anti-NSP4,5.,75 and anti-
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NSP450.147 bound the surface-exposed portion of NSP4.
The anti-NSP41,¢_14, binding site has been mapped to
aa 130-140 [27]. Together with the positive reactivity
with anti-NSP450.175, these data suggest that at least
the C-terminal aa 130-175 are exposed on the exofacial
membrane, prompting several questions. If NSP4 travels
by a vesicular route from the ER, the budded vesicles
likewise would have the C-terminus facing the cytosol.
Upon vesicular fusion with the PM, the NSP4 N-termi-
nus would appear on the exofacial surface while the C-
terminus would remain cytosolic. This scenario is sup-
ported by the reactivity of the NSP4 C-terminus with
cav-1, an cytofacial membrane-bound molecule [29,47].
The data herein suggest NSP4 ‘flips’ its termini to
expose the C-terminus to the exofacial membrane of the
bilayer or NSP4 is a dual-topology homo-oligomer
membrane protein [82]. If NSP4 travels via a soluble
route, then the exposed termini could be somewhat ran-
dom depending on the mechanism of translocation
across the PM. One could envision the hydrophobic N-
terminus interacting with the PM, again leaving the C-
terminus cytosolic and requiring the protein to ‘flip’ to
place the C-terminus facing outside of the cell. Addi-
tional studies are needed to dissect the precise mechan-
ism(s) by which NSP4 traverses the PM.

In agreement with other studies [22-24,48,51], these
data show NSP4 travels via a Golgi-bypassing, uncon-
ventional pathway. Nickel (2008) reports there are at
least 4 distinct types of non-classical secretory export of
proteins lacking an ER signal sequence but are still
secreted to interact with receptors on adjacent target
cells [83]. One or more of these mechanisms may apply
to NSP4 and might begin to address the unique associa-
tion(s) of NSP4 with the PM. The first type is typified
by Leishmania surface protein HASPB in which the
entire molecule traverses the PM while the protein
remains membrane-anchored at the N-terminus [84,85].
This mechanism may require a flip-flop type of action
[86]. The second type is the formation of PM exosomes
or membrane blebbing that lyse in the extracellular fluid
to release its content such as that used by galectins
[87-89]. In this way, galectin is secreted prior to binding
the cell surface [90]. This could account for the C-term-
inal exposure of NSP4 as the N-terminal membrane
spanning domain would likely associate with the lipid
bilayer. The other mechanisms include the use of speci-
fic transporters and entry into endolysosomes that fuse
with the PM [83]. Finally, it has been proposed that par-
tial unfolding could lead to an unfolded state called the
molten globule state that is permissive to membrane
translocation as seen with fibroblast growth factor 1 and
IL-1 [91,92]. It remains to be determined if NSP4 traf-
ficking and/or secretion is mediated by one or more of
these reported mechanisms or by a unique process. We
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propose the process will vary dependent on the presence
or absence of specific host-cell interacting molecules.

These data also have implications in RV pathogenesis.
Exogenous introduction of purified NSP4 or the entero-
toxic peptide (NSP4414.135) induces a phospholipase-C
(PLC)-mediated, intracellular calcium [(Ca**)i] mobiliza-
tion resulting in chloride secretion and fluid accumula-
tion in mouse pup intestines [10-12]. The enterotoxin
could promote signaling events in the same infected cell
or neighboring, uninfected cells via the exposure of the
C-terminal enterotoxic domain and proximity to recep-
tors. Alternatively, NSP4 may require release from the
infected cell and subsequent binding to uninfected cells
for the activation of early signaling events. Because RV
escapes the intestine and can infect extraintestinal
organs [43], examination of kidney and other cells
becomes relevant.

Lastly this study showed variation in NSP4 expression
and trafficking in cells of different origin. NSP4 is pre-
sent in several organs outside of the intestine and has
been shown to be associated with RV-associated histolo-
gical lesions in the lungs and liver [43]. Although much
work is needed to decipher the role of NSP4 in alternate
tissues, this study suggests NSP4 functions differently in
different cells and may contribute to viral pathogenesis
in singular ways dependent on the cell type.

Conclusions

To our knowledge, this is the first report of the pre-
sence of the C-terminus of FL, EndoH sensitive, NSP4
on the exofacial surface of RV-infected cells between
2-3 hpi (HT29.F8 cells) and 4-7 hpi (MDCK cells).
Although NSP4 appeared the same by Western blot
and was reactive to the same NSP4 C-terminal, pep-
tide-specific antibodies, the transport kinetics was dis-
tinct and the directional transport was dissimilar when
infected with the same RV inoculum. Surface expres-
sion of NSP4 was shown by three techniques, surface
biotinylation-streptavidin precipitation, antibody bind-
ing to intact cells, and FRET by acceptor photobleach-
ing. Each technique disclosed similar results, C-
terminal NSP4 was exposed at the exofacial PM.
Results from the transfected cells suggest NSP4 is suf-
ficient to traffic to the cell surface but does not pre-
clude an enhancement of NSP4 transport or release in
the presence of virus or other viral proteins. EndoH
sensitivity of the surface-exposed and secreted NSP4
signify the FL toxin bypassed the Golgi en route to the
PM, remained on the cell surface long enough to be
detected, and subsequently was released intact into
culture media. It is curious that only the fully glycosy-
lated NSP4 was observed on the cell surface, whereas
multiple forms were seen in cell lysates, suggesting
that glycans may play a role in transport and release.
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Together these data indicate the transport properties
of NSP4 are complex, variable, and are dependent on a
number of factors. Further examination of the mechan-
ism(s) utilized by NSP4 for translocation across the
PM, its orientation within the PM bilayer, as well as
associations within the PM (transmembrane vs. periph-
eral, monomer vs. multimer, and chaperone vs. lipid
annulus complexes) would provide valuable insights
and potentially disclose alternate targets for vaccine
and antiviral therapies.
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(aa): Amino acids; (DLP): double layered particles; (GADPH): d-
glyceraldehyde-3-phosphate dehydrogenase; (EndoH): endoglycosidase H;
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