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Abstract

Background: We have characterised a new highly divergent geminivirus species, Eragrostis
curvula streak virus (ECSV), found infecting a hardy perennial South African wild grass. ECSV
represents a new genus-level geminivirus lineage, and has a mixture of features normally associated
with other specific geminivirus genera.

Results: Whereas the ECSV genome is predicted to express a replication associated protein (Rep)
from an unspliced complementary strand transcript that is most similar to those of begomoviruses,
curtoviruses and topocuviruses, its Rep also contains what is apparently a canonical retinoblastoma
related protein interaction motif such as that found in mastreviruses. Similarly, while ECSV has the
same unusual TAAGATTCC virion strand replication origin nonanucleotide found in another
recently described divergent geminivirus, Beet curly top Iran virus (BCTIV), the rest of the
transcription and replication origin is structurally more similar to those found in begomoviruses
and curtoviruses than it is to those found in BCTIV and mastreviruses. ECSV also has what might
be a homologue of the begomovirus transcription activator protein gene found in begomoviruses,
a mastrevirus-like coat protein gene and two intergenic regions.

Conclusion: Although it superficially resembles a chimaera of geminiviruses from different genera,
the ECSV genome is not obviously recombinant, implying that the features it shares with other
geminiviruses are those that were probably present within the last common ancestor of these
viruses. In addition to inferring how the ancestral geminivirus genome may have looked, we use the
discovery of ECSV to refine various hypotheses regarding the recombinant origins of the major
geminivirus lineages.
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Background

The geminiviruses (Family Geminiviridae) are a diverse
group of viruses with circular single stranded DNA
(ssDNA) genomes that are composed of one or two com-
ponents of 2700-3000 bp, characteristically encapsidated
within twinned incomplete icosahedral (or geminate)
particles. They are responsible for various economically
significant crop diseases throughout the tropical and sub-
tropical regions of the world [1] but are a particularly seri-
ous problem in Africa, where they threaten production of
the continent's two main food crops, maize and cassava

[2].

Based on host ranges, vector specificities, genome organi-
zations and genome-wide sequence similarities, the fam-
ily Geminiviridae is split into the Begomovirus, Curtovirus,
Topocuvirus and Mastrevirus genera. The mastreviruses are
both the most divergent and the most distinctive of the
four divisions: whereas the begomoviruses, curtoviruses
and topocuviruses share superficially similar genome
structures (Figure 1) and are only known to naturally
infect dicotyledonous plants, mastreviruses have unique
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genomic features and have been found infecting both
monocotyledonous and dicotyledonous plants [3].

While other currently described genomes from generic
begomo-, curto- and topocuviruses contain between five
and eight genes and have one intergenic region (IR), mas-
trevirus genomes contain only three genes and have both
a large (LIR) and a small (SIR) intergenic region. Of the
coding regions only the coat protein (¢p) and replication
associate protein (rep) genes are obviously conserved
amongst all geminiviruses (Figure 1). Whereas probable
movement protein (mp) genes occur in similar genomic
locations in most geminvirus genomes there is no detect-
able sequence similarity in these genes between the
viruses in different genera. Similarly, positional homo-
logues of transcription activator (trap or trap-like), replica-
tion enhancer (ren) and symptom determinant or
silencing suppressor (C4) genes which share either unde-
tectable or only very low degrees of sequence similarity
across different genera are only found in the begomovi-
ruses, topocuviruses and curtoviruses.

rep (C1+C2)
BCTIV

cp (V1)

The arrangement of genes and open reading frames (ORFs) within various major geminivirus lineages. BCTIV =
beet curley top Iran virus. ECSV = Eragrostis curvula streak virus (reported for the first time in this paper). In the case of bego-
moviruses only the DNA-A/DNA-A-like genome component sequence is represented. Arrows indicate the positions and ori-
entations of numbered ORFs (V = virion sense and C = complementary sense) that are known or strongly suspected to
encode expressed proteins. mp = movement protein gene [4-7], cp = coat protein gene, rep = replication associated protein
gene, ren = replication enhancer gene, trap = transcription activator protein gene, ss = silencing suppressor encoding ORF [8-
[4], sd = symptom determinant encoding ORF [15,16]; reg = potentially encoding a protein that regulates relative ssDNA and
dsDNA concentrations [4]. A question mark indicates that an ORFs function is either completely unknown or only suspected.
The only genes shared between all genomes are rep (in blue) and cp (in red). Variations in the presence or size of ORFs
between members of the different geminivirus groups are indicated in grey. Intergenic regions are represented as open blocks
and the probable hairpin structure at the origin of virion strand replication is indicated at the 12 o'clock position.
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Besides obvious differences in gene content there are also
many subtle biologically relevant architectural differences
between the genomes of mastreviruses and other gemini-
viruses. Prime among these are the occurrence in mastre-
viruses of (1) alternatively spliced introns within their mp
[17] and rep genes [18], (2) a RepA protein isoform of Rep
[19], (3) a canonical retinoblastoma related protein inter-
action motif within Rep and RepA proteins [20-22], and
(4) a unique arrangement of probable Rep binding sites
surrounding the virion strand origin of replication (v-ori)
[23-26].

The evolutionary relationships between the different gem-
inivirus genera are difficult to disentangle due in large part
to the fact that genetic recombination has probably fea-
tured prominently in the evolution of these genera. It is
clear, for example, that begomovirus, topocuvirus and
curtovirus rep sequences share a far more recent common
ancestor than their ¢p sequences. As the ¢p sequences of
topocuviruses and curtoviruses share slightly higher
degrees of sequence similarity with mastreviruses than
with begomoviruses this has been interpreted as indicat-
ing that the topocuvirus and curtovirus genera may have
arisen through separate recombination events between
ancestral begomovirus and mastrevirus lineages [27-29].
That such recombination events may have occurred is
plausible in light of the fact that there is good evidence of
ongoing recombination between the rep sequences of cur-
toviruses, begomoviruses and topocuviruses [30-32]. It
has been determined, for example, that since the diver-
gence of the Old and New World begomoviruses there
have been at least five separate inter-genus recombination
events between curtoviruses and begomoviruses in which
viruses in both genera have served as either donors or
recipients of rep sequences [30,31]. It should, however, be
pointed out that it is often very difficult to determine the
polarity of sequence exchanges even amongst such well
sampled virus lineages as the begomoviruses. Despite the
strong possibility that one or more of the geminivirus gen-
era may have arisen through an inter-genus recombina-
tion event, with only four major geminivirus lineages
having been sampled it is impossible to definitively iden-
tify which genera are recombinant and which are parental.

Given that the root of the geminivirus evolutionary tree is
unknown, and will possibly always remain so, it is also
impossible to determine which geminivirus genera share
more recent common ancestry. It is, for example, incorrect
to assume either that the midpoint between the two most
dissimilar sequences in a phylogenetic tree is the root of
the tree or that the relative degrees of sequence identity
shared between pairs of sequences is perfectly correlated
with their evolutionary relatedness. Put another way, it
often happens that two sequences which are more similar
to one another than either is to a third sequence actually
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share a more distant common ancestor than the third
sequence shares with one of the two. In the case of the
geminivirus recombination debate the slightly higher
degrees of similarity shared in the CP by the topocuviruses
and curtoviruses with the mastreviruses has prompted the
possibly incorrect assertion that topocuvirus and curtovi-
rus CP sequences share a more recent common ancestor
with the mastreviruses than they do with the begomovi-
ruses [27,29].

Even if the begomoviruses, curtoviruses and topocuvi-
ruses do share a more recent rep common ancestor and the
mastreviruses, curtoviruses and topocuviruses share a
more recent ¢p common ancestor, this does not necessar-
ily imply that topocuviruses and curtoviruses are the
recombinant offspring of mastreviruses and begomovi-
ruses. It is, for example, possible that the ancestral mastre-
virus obtained a divergent rep from a geminivirus lineage
that has remained unsampled. Similarly, transfer of a
divergent ¢p from such a lineage to the ancestral begomo-
virus might explain the apparent uniqueness of this gene
in begomoviruses.

The importance of considering these alternative hypothe-
ses has been emphasized by the recent discovery of an
unusual geminivirus infecting sugar beet plants in Iran:
Beet curly top Iran virus (BCTIV) [33]. Whereas this virus
expresses an obviously curtovirus-like CP, it expresses a
mostly mastrevirus-like Rep. Although the Rep of BCTIV is
only slightly more similar to those of mastreviruses than
it is to those of curtoviruses, begomoviruses and topocu-
viruses, the rep gene has a distinctly mastrevirus-like struc-
ture including a probable (although currently unproven)
intron. Unsurprisingly, this sequence was identified by its
discoverers as a mastrevirus-curtovirus recombinant.
While it represents the best indirect evidence yet that
major geminivirus lineages may have arisen through
inter-genus recombination, it should again be stressed
that it cannot be definitively determined whether it is the
mastreviruses, curtoviruses or the unique lineage repre-
sented by this new geminivirus species that is recom-
binant. In fact, a relatively plausible argument is that this
new lineage represents none other than the mastrevirus-
like virus that is speculated to have recombined with a
begomovirus to yield the curtoviruses [28,29]. Differenti-
ating between the many possible recombination hypoth-
eses will clearly require the discovery and characterization
of additional divergent geminivirus lineages.

Here we describe another highly divergent geminivirus
lineage that shares traits with both begomoviruses, curto-
viruses and topocuviruses on the one hand and mastrevi-
ruses on the other. This new virus is a virtual mirror image
of BCTIV in that it was isolated from a monocotyledonous
host, has a clearly begomovirus/curtovirus/topocuvirus-
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like rep and a mastrevirus-like cp. Besides emphasizing the
probable importance of host-range switching and recom-
bination in the early evolution of geminiviruses, this new
geminivirus sheds further light on the possible genome
arrangement of the last common geminivirus ancestor.

Results and discussion

Discovery of a highly divergent geminivirus lineage

Six Eragrostis curvula plants presenting with streak symp-
toms similar to those encountered in maize streak virus
(MSV) infected grasses [see Additional file 1] were sam-
pled within 40 km of one another in the KwaZulu Natal
province of South Africa between December 2007 and
May 2008. Eragrostis curvula is a perennial grass with a dis-
tribution from southern Africa to East Africa. Following
Phi29 polymerase amplification of total extracted DNA,
~2.7 Kb BamHI and Pstl fragments were cloned and
sequenced to reveal what appeared to be a set of closely
related (>95% identical) geminivirus-like genomes [Gen-
Bank: FI665629 - FI665634]. BLASTX (translated query
nucleotide scanned against translated nucleotide
sequences in the NCBI non-reduntant nucleotide
sequence database) searches using the full genome nucle-
otide sequences of these isolates indicated significant (E
score < 104), albeit low, identity matches to both mastre-
virus c¢p [best match = Wheat dwarf virus (WDV)] and
begomovirus rep [best match = Corchorus golden mosaic
virus (CoGMV)] translated amino acid sequences. Elec-
tron microscopic analysis of negatively stained leaf sap
from a symptomatic E. curvula plant (isolate ECSV
[Gre5_Ky6-2008]) indicated the presence of geminate
particles [see Additional file 1] and supported our conclu-
sion that the new virus was most likely a highly divergent
monocot infecting geminivirus lineage - hereafter
referred to as Eragrostis curvula streak virus or ECSV.

Attempts to align one of the ECSV genome sequences to
those of 40 representative geminiviruses proved largely
futile due to the large genetic distances separating ECSV
from other currently described geminiviruses. Neverthe-
less, a neighbor joining phylogenetic tree constructed
from this alignment using genetic distances calculated
without any evolutionary model (called p-distances in
MEGA) serves as a reasonable graphical depiction of the
degrees of genome-wide sequence identity shared
between the ECSV genome and those of other geminivi-
ruses (Figure 2).

The ECSV genome displays a mixture of mastrevirus- and
begomovirusltopocuvirus/curtovius-like characteristics
The arrangement of open reading frames (ORFs) within
the ECSV genome is similar to those described previously
for other geminiviruses (Figure 1; [see Additional file 2]):
The locations of the two virion sense ORFS (V1 and V2)
respectively correspond with the positions of ¢p and mp
and genes found in other geminivirus genera. Similarly,
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the two complementary sense ORFs (C1 and C2) occur in
the same positions as rep and trap/trap-like genes found in
topocuviruses, begomoviruses and curtoviruses. Whereas
the predicted expression products of the V1 and C1 ORFs
share easily identifiable similarities with the geminivirus
CP and Rep proteins, respectively, the other ECSV ORFs
had no obvious homologues amongst sequences cur-
rently deposited in public databases. For example,
whereas the V2 ORF is in an analogous position to the mp
genes of other geminiviruses, its translated sequence lacks
the large hydrophobic domain that characterizes mastre-
virus MPs [17] and shares no significant amino acid
sequence similarity with any described proteins of gemin-
iviruses (BLAST E> 0.19), ssDNA viruses (BLAST E> 0.47),
viruses in general (BLAST E> 0.43), or any other organisms
(BLAST E> 6.1).

The C2 ORF in the ECSV genome is a positional analogue
of the begomovirus, topocuvirus and curtovirus trap/trap-
like genes and, as with these genes in curtoviruses and
begomoviruses, it partially overlaps the Rep C-terminus
encoding part of rep. Although we found marginal evi-
dence that the C2 ORF of the new virus is a genuine
homologue of trap (E-score = 0.083 when restricting
BLASTp comparisons to geminivirus proteins) it is impor-
tant to point out that the region of the potential C2
expression product contributing to this significant simi-
larity is that encoded by the portion of C2 that overlaps
rep. This marginal similarity might therefore simply reflect
rep conservation rather than any significant degree of
sequence similarity or functional conservation between
the C2 ORF of the new virus and the trap genes of other
geminiviruses. It is noteworthy, however, that we were
able to identify potential transcription factor binding sites
72 nucleotides upstream of the C2 start codon [see Addi-
tional file 2] that are nearly identical to those identifiable
in curtoviruses, begomoviruses and topocuviruses and
which have been shown to strongly influence trap expres-
sion in begomoviruses [34].

As with mastreviruses and the newly characterized BCTIV
sequence, the new genome contains two probable inter-
genic regions. However, in the case of ECSV, the analogue
of the mastrevirus LIR and the begomovirus, curtovirus
and topocuvirus IR (i.e. the presumed location of both the
v-ori and transcription start sites) is apparently smaller
than the analogue of the mastrevirus SIR (i.e. the pre-
sumed location of both the complementary strand repli-
cation origin and transcription termination sites). To
avoid confusion we refer to the v-ori containing IR as IR-1
and the larger IR as IR-2.

We identified a number of sequence elements within IR-1
and IR-2 that, by analogy with other geminiviruses, are
potentially involved in replication and/or transcription
[see Additional file 2]. The most interesting among these
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Figure 2

Degrees of genome-wide sequence identity shared between ECSYV (in bold; isolate ECSV [Za-Gre3-g257-
2007]) and 40 representative geminivirus genomes (or DNA-A or DNA-A like genome components in the case
of the begomoviruses; virus names and GenBank accession numbers are given in the tree). Note that due to (i)
recombination during the evolutionary histories of many of the represented viruses (ii) very high degrees of alignment uncer-
tainty and (jii) the strong possibility that many regions of the aligned genomes are not homologous, the presented neighbour
joining tree is simply intended as a graphical depiction of genome-wide nucleotide sequence identities rather than a credible
representation of the evolutionary relatedness of these viruses. Numbers associated with tree branches indicate percentage of
bootstrap support (from 1000 replicates) for those branches. Branches with less than either 50% bootstrap support or less
than 90% interior branch length test support (as determined in MEGA 4.0) have been collapsed. The percentage genome-wide
nucleotide sequence identities shared between ECSV and the other geminivirus genomes (with alignment gaps treated as miss-
ing data rather than a fifth character state) is presented on the right.

was the presumed nonanucleotide sequence at the v-ori
that falls within the loop sequence of a probable IR-1 hair-
pin structure. As with BCTIV [33], ECSV has a TAAGAT-
TCC sequence rather than the usual TAATATTAC sequence
found in almost all other geminiviruses.

Besides this similarity with BCTIV, the overall structural
arrangement of IR-1 is most similar to the IRs of begomo-
viruses, curtoviruses and topocuviruses. Directly repeated

sequences in IR-1 between the probable rep initiation
codon and a potential complementary-sense transcript
TATA box, resemble the arrangement of begomovirus,
topocuvirus and curtovirus iterated sequence elements
implicated in v-ori recognition and binding by Rep
[23,24,36].

Also unlike BCTIV and the mastreviruses, the rep gene of
ECSV is probably translated from an unspliced comple-
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mentary strand transcript. The predicted protein encoded
by this gene contains various rolling circle replication and
deoxyribonucleotide triphosphate binding motifs that
characterize all known geminivirus Rep proteins. Interest-
ingly, it also contains a canonical LXCXE retinoblastoma
binding (Rb) protein interaction motif which, unlike
analogous Rb interaction domains identified in other
geminiviruses, is close to the C-terminus of the protein
[see Additional file 3].

The evolutionary relationships amongst major geminivirus
lineages

As ¢p and rep were the only ECSV genes that were obvi-
ously homologous to those of other geminiviruses we
focused on these to explore the possible evolutionary rela-
tionships between ECSV and the other geminiviruses. We
constructed phylogenetic trees for CP and Rep from trans-
lated amino acid sequences using two separate
approaches. In the first we aligned the amino acid
sequences using CLUSTALW, used PROTTEST to determine the
best fit models of amino acid substitution, and con-
structed bootstrapped maximum likelihood phylogenetic
trees using PHYML. As there is a large degree of uncertainty
associated with aligning such divergent amino acid
sequences, we also used the program STATALIGN to directly
construct phylogenetic trees in which alignment uncer-
tainty is explicitly accounted for. We then used the abso-
lute consensus of the PHYML and STATALIGN trees,
collapsing all tree branches that were: (i) Not retrieved in
the consensus trees generated by both methods; (ii) were
supported in less than 50% of the PHYML bootstrap repli-
cates; or (iii) were only represented in less than 90% of the
trees constructed from sampled alignments during the sta-
tistical alignment process (Figure 3).

While the predicted CP amino acid sequence of ECSV is
clearly most similar to those of the Eurasian mastreviruses
WDV, Barley dwarf virus (BDV) and Oat dwarf virus
(ODV; Figure 3a), its Rep amino acid sequence is appar-
ently most closely related to those of begomoviruses, cur-
toviruses and topocuviruses (Figure 3b).

Note, however, that whereas the Rep phylogeny could be
rooted using a nanovirus Rep sequence as an outlier, this
was not possible for the CP phylogeny since there are no
obvious homologues of geminivirus CPs in any other
virus group. Therefore, although we may have some con-
fidence that the Rep phylogeny represents the flow of time
from left to right, the same is not true for the CP phylog-
eny. It is possible, for example, that the root of the CP tree
is located on the branch separating the ECSV lineage from
that of WDV, BDV and ODV. If the root of the CP tree
were on this branch then time would run from right to left
into the tree through nodes separating ECSV from the
begomoviruses and topocuviruses and from left to right
through all other nodes.

http://www.virologyj.com/content/6/1/36

Therefore, while the apparent discrepancy between the
location of ECSV sequences in the Rep and CP phyloge-
nies might indicate that ECSV is, along with the topocuvi-
ruses, curtoviruses and BCTIV, yet another example of an
inter-genus geminivirus recombinant, it is possible that
the apparent discrepancy is an artifact of incorrect rooting.

Analysis of inter-genus recombination in geminiviruses
Directly testing for recombination in potential inter-genus
geminivirus recombinants is not straightforward in that it
requires the accurate alignment of extremely diverged
nucleotide sequences. Inter-genus recombination has,
however, been quite easily detected in curtoviruses, topo-
cuviruses and begomoviruses where the recombination
events in question (involving rep sequence exchanges)
have occurred in the relatively recent past. For these
recombination events nucleotide sequence similarities in
different parts of recombinant genomes are closely related
to different parents, despite the parental sequences being
very different from one another [30-32,36,27,29].

To test for recombination, we first constructed a nucle-
otide sequence alignment with ECSV, BCTIV and one rep-
resentative from each of the four established geminivirus
genera and tested this for recombination using an
approach which rigorously accounts for the adverse influ-
ences that alignment inaccuracies have on recombination
analysis [37].

While our analysis (Figure 4) supported the prevailing
hypotheses that the curtoviruses and topocuviruses are
inter-genus recombinants [27-29], it also indicated that
BCTIV is probably not an inter-genus recombinant as sug-
gested by Yazdi et al. [33]. BCTIV is instead identified as a
close relative of the "mastrevirus-like" progenitor for-
merly proposed by Stanley et al. [28] and Rybicki [29] as
the originator of the curtovirus coat protein gene. While
our analysis also indicated that topocuviruses are the
recombinant offspring of begomoviruses and curtovi-
ruses, the identified recombination event in rep is within
an extremely recombinogenic genome region such that it
is very probable that either one or both of the identified
parental sequences (i.e. the begomovirus CoGMV and the
curtovirus Beet curly top virus [BCTV]) are also inter-spe-
cies recombinants in this genome region [30-32]. The pos-
sibility of quite widespread ongoing rep sequence
recombination amongst the begomoviruses, topocuvi-
ruses and begomoviruses is, for example, strongly sup-
ported by the fact that these lineages cannot be reliably
resolved within the Rep amino acid sequence phylogeny
(Figure 3b).

Importantly, our direct recombination and nucleotide
alignment tests indicated that the the ¢p and rep genes of
ECSV are not detectably derived by recombination from
mastrevirus and curtovirus/begomovirus/topocuvirus
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BSCTV [NP 840048]
BMCTV [ACB97656]
BCTV [P14991]

o HrCTV [NP 066185]
TSLCV [AAD33452]

BCTIV [EU273818]
BDV [CAL69917]
._|:[ WDV [CAJ13700]
ODV [CAL30140]
| o [ Misvioersaol
CSMV [P18919]
MSV [P14988]
—'—Esv [Q80GMs]
PansV [P0C647]

TYDV [P31618]
-.—l:{cm:ov [CAP69809]
BYDV [CAA71908]

0.2 amino acid
substitutions per site

Maximum likelihood trees of (a) coat protein (JTT + G, model) and (b) replication associated protein (RtRev +
G, model) amino acid sequences of ECSV (isolate ECSV [Za-Gre3-g257-2007]) and 40 other viruses represent-
ing the broadest breadth of currently sampled geminivirus diversity. Whereas the CP tree is unrooted, the Rep tree
was rooted using the translated "master” rep sequence of Faba bean necrotic yellows virus (FBNYV; in grey). Viruses that are
clearly members of the currently established geminivirus genera, Begomovirus, Topocuvirus, Curtovirus and Mastrevirus are indi-
cated in green, orange, blue and pink respectively. Branches of the tree marked with filled circles were present in 90 or more
maximum likelihood tree bootstrap replicates (performed in PHYML)and more than 99% of constructed trees from alignments
sampled during the statistical alignment process (performed in STATALIGN). Open circles represent branches supported by 70
or more percent of the maximum likelihood tree bootstrap replicates and 95 or more percent of trees constructed during sta-
tistical alignment. Branches were collapsed if they were not supported in the consensus trees of either the maximum likelihood
bootstrap replicates or the statistical alignment process. Branches were also collapsed if they were supported in less than
either 50% of the bootstrap replicates or 90% of the trees generated during the statistical alignment.

ancestors. Despite the apparent similarity in CP amino
acid sequence shared by ECSV and the Eurasian wheat,
barley and oat dwarf mastreviruses (Figure 3a), the ECSV
cp nucleotide sequence cannot, for the most part, be
meaningfully aligned with that of WDV (in the top panel
of Figure 4 note how the multiple grey lines of the align-
ment controls overlap the blue line representing the
ECSV-WDV alignment).

The only evidence that we could find for a recombinant
origin of ECSV was that the genome region corresponding
to IR-2 is highly divergent relative to the analogous
genome region in other geminiviruses, and has poten-
tially been derived through recombination from either a
highly divergent geminivirus lineage or another source
entirely. Given the extremely distant relationship between

ECSV and the other geminiviruses and the fact that this
recombination hypothesis invokes the existence of a still
more divergent geminivirus lineage, it is very difficult to
discount the alternative hypothesis that this recombina-
tion signal is simply an alignment artifact.

Conclusion
ECSV represents a new genus-level geminivirus group dis-
playing a mixture of characteristics normally associated
with specific geminivirus genera. Accordingly, we propose
the name Ecuvirus for a new genus of Geminiviridae. As the
most divergent geminivirus species yet identified, the
genome features that ECSV shares with other geminivi-
ruses provides some indication of what the last common
ancestor of the geminiviruses may have looked like. It is,
for example, probable that this ancient progenitor
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(page number not for citation purposes)



Virology Journal 2009, 6:36 http://www.virologyj.com/content/6/1/36
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— 256
— BCTIV
Topocuvirus (TPCTV)
— Mastrevirus (WDV)
= Curtovirus (BCTV)
— Begomovirus (CoGMV)

Percentage nucleotide sequence identity within a 100 nucleotide moving window

Begomovirus (CoGMV
i
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Position in genome (proportion of full genome length)

Figure 4

Pairwise genome scans of local nucleotide sequence similarities (uncorrected by any evolutionary model - cor-
responding to p-distances in MEGA 4.0 with pairwise deletion of gaps) within a moving 100 nucleotide window
between ECSYV (isolate ECSV [Za-Gre3-g257-2007]), BCTIV and representatives of the four established gemi-
nivirus genera. Each coloured plot represents a different pairwise nucleotide sequence alignment (using CLUSTALW with a gap
open penalty of 6 and gap extension penalty of 3) between a single representative of each of the six main geminivirus lineages
and representatives of all the other lineages. The grey plots represent analogous scans between 20 geminivirus genome pairs in
which the positions of nucleotides have been randomly reshuffled and aligned using the same settings used to align the unshuf-
fled nucleotide sequences. The maximum and minimum bounds of these scans represent the degrees of sequence similarity
expected following alignment amongst unrelated sequences with the same nucleotide composition as the real geminivirus
sequences.
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expressed a mostly topocuvirus, curtovirus and begomov-
irus-like Rep protein from an intronless transcript that,
unlike the Reps of these other viruses, contained a canon-
ical LXCXE pRBR interaction motif. While this virus may
have had movement and transactivation protein-like
genes it probably had neither a C4 gene nor a replication
enhancer protein gene. It also probably had a virion sense
replication origin structure more closely resembling that
of the begomoviruses, curtoviruses and topocuviruses
than that of the mastreviruses. The lack of a replication
enhancer gene probably meant that, like the mastrevi-
ruses, this earliest geminivirus had two intergenic regions.

Besides indicating how ancient geminiviruses may have
looked, viruses such as ECSV may also provide some clues
as to their biology. The fact that ECSV was found infecting
a monocotyledonous host does not necessarily imply that
the earliest geminiviruses infected monocots but it does
indicate that major host-range switches between dicotoly-
donous and monocotyledonous plants have occurred
multiple times during geminivirus evolution. Therefore,
unless many more extremely divergent geminivirus line-
ages are discovered, it could prove extremely difficult to
determine whether monocots or dicots were the first gem-
inivirus hosts. It may in fact be considerably easier to
identify the earliest geminivirus vectors. Although the
ECSV CP is clearly very similar to those of mastreviruses,
it is not obviously derived from mastreviruses through
recombination. The possibility therefore remains that the
real root of the geminivirus CP tree is somewhere along
one of the mastrevirus or ECSV associated branches - a
possibility that, if confirmed, would indicate not only that
the last common ancestor of all geminiviruses had a very
mastrevirus/ECSV-like coat protein, but that it was also
probably leathopper transmitted.

Methods

Virus Sampling

Six grasses presenting with mild maize streak virus-like
symptoms [see Additional file 1] were sampled in Kwa-
Zulu Natal province of South Africa between December
2007 and May 2008 [see Additional file 4 for sampling
coordinates]. The host species of the infected grasses was
identified as Eragrostis curvula (common name, weeping
love grass) based on sequencing of chloroplast ndhF genes
as described by Varsani et al. [38].

Electron Microscopy

Approximately 10 pl of leaf sap was obtained from fresh
leaf material (sample ECSV [Gre5_Ky6-2008]) and
diluted with 50 pul 0.1 M sodium acetate buffer (pH 4.8).
10 pl of the diluted sap was negatively stained with 2%
uranyl acetate on carbon-coated copper grids and
observed in a JEOL 1200CX transmission electron micro-
scope.

http://www.virologyj.com/content/6/1/36

Genome cloning and sequencing

Viral genomes were isolated from infected grass samples
[39] and amplified using Phi29 DNA polymerase (Tem-
pliPhi™, GE Healthcare, USA) as described previously
[40,41]. Amplified full-genome concatemers were
digested with either BamHI or Pstl to yield ~2.7-kb line-
arised viral genomes which were inserted into pGEM 3 Zf+
(Promega Biotech) cloning vector. Both strands were
sequenced using primer walking by Macrogen Inc.
(Korea). Sequences were assembled and edited using DNA-
MAN (version 5.2.9; Lynnon Biosoft) and MEGA version 4
[42].

Identification of genes

We identified all open reading frames (ORFs) that could
potentially express proteins larger than 50 amino acids in
length and used protein-protein BLAST (BLASTp) [43]
searches to identify potential homologues of these in the
NCBI non-redundant protein sequences database. To
increase our chances of finding significantly similar pro-
tein sequences in this database, we used a nested search
strategy initially restricting the search to geminivirus pro-
tein sequences, and then progressively expanding the
search to include all ssDNA virus protein sequences, all
virus protein sequences and, finally, all publically availa-
ble protein sequences irrespective of their origin. For
ORFs where no matches were found we additionally
searched the NCBI environmental sample, whole genome
shotgun read, high throughput genomic sequence and
expressed sequence tag databases using tBLASTn. Identified
proteins with BLAST E scores smaller than 0.1 were consid-
ered to potentially have a common ancestry with our
query sequences.

Phylogenetic and recombination analysis

Translated amino acid sequences of ¢p and rep gene
sequences from 39 representative geminivirus species
were obtained from public databases and aligned using
the CLUSTALW (gap open = 2, gap extension = 0.1) [44]
implementation in MEGA. Maximum likelihood phyloge-
netic trees were constructed using PHYML[45] with model
parameters selected using either PROTTEST (for amino acid
sequence alignments) [46] or the automated model selec-
tion procedure implemented in RDP3.32 (for full genome
nucleotide sequence alignments) [47]. To account for
uncertainty in the amino acid sequence alignments used
to reconstruct phylogenetic relationships, alignment and
phylogenetic tree construction were simultaneously car-
ried out using STATALIGN[48] using 10° MCMC updates
with the first 10> updates discarded as burn-in (as judged
by the convergence statistic provided by STATALIGN) and
the same basic evolutionary model (but without rate var-
iation) suggested for each gene/genome sequence align-
ment by PROTTEST. The consensus of 1000 trees
constructed from alignments sampled during the statisti-
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cal alignment process was retrieved using the CONSENSE
component of PHYLIP[49].

Nucleotide/amino acid sequence similarities (using p-dis-
tances and pairwise deletion of gaps) were calculated
using MEGA. The degrees of similarity shared by full-length
genome sequences of various representative geminivi-
ruses (see Figure 2) were graphically depicted using a
neighbor joining tree (1000 bootstrap replicates, p-dis-
tances) constructed in MEGA. Pairwise nucleotide sequence
similarity plots for individual representatives of six major
geminivirus lineages were plotted using optimal pairwise
CLUSTALW nucleotide sequence alignments (gap open = 6;
gap extension = 3) using RDP3.32 with a window size =
100 nucleotides and a step size = 5 nucleotides.

Recombination was analysed using the RDP[50], GENE-
CONV[32], BOOTSCAN[51], MAXCHI[52], CHIMAERA[53], SIS-
CAN[54] and 38EQ[55] methods implemented in RDP3.32.
The method developed by Varsani et al., [37] for detecting
recombination in difficult to align sequences was fol-
lowed. Briefly, this involved a three stage recombination
signal verification process in which (i) a recombination
signal detected in a particular triplet of sequences using a
nucleotide sequence alignment generated using the cLUS-
TALW method was retested with: (ii) the same recombina-
tion analysis methods following realignment with the POA
method [56] and (iii) using a chi square test of re-align-
ment consistency described previously [37].

List of abbreviations used

BCTV: Beet curly top virus; BDV: Barley dwarf virus;
BCTIV: Beet curly top Iran virus; CP: Coat protein; cp: Coat
protein gene; CoGMV: Corchorus golden mosaic virus;
ECSV: Eragrostis curvula streak virus; FBNYV: Faba bean
necrotic yellows virus; IR: intergenic region; LIR: Long
intergenic region; MP: movement protein; mp: movement
protein gene; MSV: Maize streak virus; ODV: Oat dwarf
virus; ORF: Open reading frame; PCR: Polymerase chain
reaction; ren: replication enhancer protein gene; Rep: rep-
lication associated protein; rep: replication associate pro-
tein gene; Rb: retinoblastoma binding; reg: regulatory
gene; sd: symptom determinant gene; SIR: Short intergenic
region; ssDNA: Single stranded DNA; ss: silencing sup-
pressor gene; TPCTV: Tomato pseudo curly top virus; trap:
transcription activator protein gene; v-ori: virion strand
origin of replication; WDV: Wheat dwarf virus.
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Additional material

Additional File 1

Supplementary Figure 1. Discovery of a divergent monocotyledonous
grass infecting geminivirus. Discovery of a divergent monocotyledonous
grass infecting geminivirus. (a) Leaves of Eragrostis curvula presenting
with mild streak symptoms. (b) Negatively stained geminate particles
(indicated by arrows) within the leaf sap of an MSV infected maize plant
(left) and an ECSV infected Eragrostis curvula plant. The size bars rep-
resent 100 nm.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1743-
422X-6-36-S1.ppt]

Additional File 2

Supplementary Figure 2. Annotated ECSV genome sequence. Annotated
ECSV genome sequence (isolate ECSV [Za-Gre3-3257-2007]). Sequence
features that potentially play some role in ECSV replication and transcrip-
tion (inferred by analogy with similar features identified in other gemin-
iviruses) are marked in colour. [1] Stenger, etal., 1991. Proc Natl Acad
Sci USA 88:8029; [2] Sunter, et al. 1985. Nucl Acids Res 13:4645; [3]
Morris-Krsinich et al. 1984. Nucleic Acids Res 13:7237; [4] Tu & Sunter
2007. Virology 367: 117; [5] Argiiello-Astorga et al. 1994. Virology
203:90.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1743-
422X-6-36-S2.doc]

Additional File 3

Supplementary Figure 3. Annotated predicted replication-associated pro-
tein amino acid sequence of ECSV. Annotated predicted replication-asso-
ciated protein amino acid sequence of ECSV (isolate ECSV [Za-Gre3-
8257-2007). Potential rolling-circle replication motifs and interaction
domains inferred by analogy with other geminiviruses are highlighted. [1]
Argiiello-Astorga et al. 2001. Arch Virol 146:1465 [2] Koonin & Ilyina.
1992. ] Gen Virol, 73:2763; [3] Argiiello-Astorga et al. 2004. ] Virol
78:4817 [4] Horvath et al. 1998. Plant Mol Biol 38:699; [5] Orozco et
al. 1997. ] Biol Chem 272:9840. [6] Xie etal. 1995. EMBO ] 14:4073;
[7] Gorbalenya & Koonin. 1989. Nucl Acids Res 17:8413.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1743-
422X-6-36-S3.doc]

Additional File 4

Supplementary Table 1. Geographical coordinates at which ECSV sam-
ples were collected.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1743-
422X-6-36-S4.doc]
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