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Abstract
Heterocapsa circularisquama DNA virus (HcDNAV; previously designated as HcV) is a giant virus
(girus) with a ~356-kbp double-stranded DNA (dsDNA) genome. HcDNAV lytically infects the
bivalve-killing marine dinoflagellate H. circularisquama, and currently represents the sole DNA virus
isolated from dinoflagellates, one of the most abundant protists in marine ecosystems. Its
morphological features, genome type, and host range previously suggested that HcDNAV might be
a member of the family Phycodnaviridae of Nucleo-Cytoplasmic Large DNA Viruses (NCLDVs),
though no supporting sequence data was available. NCLDVs currently include two families found
in aquatic environments (Phycodnaviridae, Mimiviridae), one mostly infecting terrestrial animals
(Poxviridae), another isolated from fish, amphibians and insects (Iridoviridae), and the last one
(Asfarviridae) exclusively represented by the animal pathogen African swine fever virus (ASFV), the
agent of a fatal hemorrhagic disease in domestic swine. In this study, we determined the complete
sequence of the type B DNA polymerase (PolB) gene of HcDNAV. The viral PolB was transcribed
at least from 6 h post inoculation (hpi), suggesting its crucial function for viral replication. Most
unexpectedly, the HcDNAV PolB sequence was found to be closely related to the PolB sequence
of ASFV. In addition, the amino acid sequence of HcDNAV PolB showed a rare amino acid
substitution within a motif containing highly conserved motif: YSDTDS was found in HcDNAV PolB
instead of YGDTDS in most dsDNA viruses. Together with the previous observation of ASFV-like
sequences in the Sorcerer II Global Ocean Sampling metagenomic datasets, our results further
reinforce the ideas that the terrestrial ASFV has its evolutionary origin in marine environments.

Findings
Dinoflagellates (Dinophyceae) are one of the highly abun-
dant and ubiquitous unicellular eukaryotic ("protistan")
components in marine environments [1]. They constitute a

major class of eukaryotes within the Alveolata, a firmly
established deep phylogenetic lineage that includes other
diverse classes of protists, such as apicomplexans and cili-
ates [2]. Some dinoflagellates are autotrophic using photo-

Published: 27 October 2009

Virology Journal 2009, 6:178 doi:10.1186/1743-422X-6-178

Received: 24 September 2009
Accepted: 27 October 2009

This article is available from: http://www.virologyj.com/content/6/1/178

© 2009 Ogata et al; licensee BioMed Central Ltd. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 8
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19860921
http://www.virologyj.com/content/6/1/178
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


Virology Journal 2009, 6:178 http://www.virologyj.com/content/6/1/178
synthesis, some are heterotrophic using endocytotic
feeding, and many dinoflagellates are mixotrophic having
both modes of nutrition. Blooms of certain photosynthetic
dinoflagellates kill fish and bivalves, or pollute shellfishes
for food with particular toxins, and can lead to serious eco-
nomic damages in aquaculture [3,4]. Heterocapsa circularis-
quama forms blooms causing massive death of shellfish
such as pearl oysters and mussels, and is one of the most
intensively studied dinoflagellate species [5].

HcDNAV is a marine giant virus (or "girus" [6,7]) contain-
ing dsDNA genome, and lytically infects H. circularisquama
[8,9]. HcDNAV is considered to play a significant role in the
demise of H. circularisquama blooms [9,10]. HcDNAV has
a large icosahedral capsid (180-210 nm in diameter),
which packs a ~356-kbp genome [8,11]. During its multi-
plication, virions emerge from a specific cytoplasm com-
partment, called "viroplasm", which is created by the virus
[9]. HcDNAV is the sole DNA virus currently isolated from
dinoflagellates, and to our knowledge, is the only DNA
virus isolated from the superphylum Alveolata [12]. Based
on its host range, genome type/size and microscopic fea-
tures, HcDNAV was previously suggested to be a member of
Phycodnaviridae [13]. However, there has been no molecu-
lar data supporting this tentative classification.

Phycodnaviridae includes intensively-studied algal virus mem-
bers such as chlorella viruses and Emiliania huxleyi viruses [14-
17], and belongs to a larger group of eukaryotic DNA viruses
called NCLDVs [18]. NCLDVs complete their replication cycle
within the host cytoplasm, and share an array of conserved
core genes for transcription, RNA processing, replication, DNA
packaging, and structural components. Other viral families of
NCLDVs are Mimiviridae, Poxviridae, Iridoviridae, and Asfarviri-
dae. Mimiviridae is represented by the freshwater amoeba-
infecting mimivirus [19] and its close relative mamavirus [20].
Based on the sequences of PolB, the most conserved NCLDV
core genes, three algal viruses have been suggested to belong
to Mimiviridae [21]. Poxviridae include a number of successful
pathogens known to infect a tremendous variety of terrestrial
animals, such as insects, reptiles, birds, and mammals [22].
Iridoviruses infect invertebrate and cold-blooded vertebrate
hosts, and includes numerous emerging pathogens of fishes
and amphibians [23]. The last family Asfarviridae [24,25] is
currently represented by a sole species, African swine fever
virus (ASFV) with a 170 kbp dsDNA genome [26]. ASFV is a
large (~200 nm in diameter), intracytoplasmically-replicating
arbovirus, naturally maintained in a sylvatic cycle between
wild swine (warthogs and bushpigs) and argasid ticks (Orni-
thodoros). In these hosts, ASFV infection is usually asympto-
matic [27]. However, ASFV causes an acute hemorrhagic
infection in domestic swine with mortality rates up to 100%
for some viral isolates.

In an attempt to further characterize HcDNAV, we performed
a low coverage shotgun sequencing of its genome. Specifically,

from 4 liters of HcDNAV suspension (lysate of HcDNAV-
infected H. circularisquama on 6 dpi), virus particles were col-
lected as described in [11]. The viral genomic DNA was puri-
fied in a PFGE-gel and was subjected to shotgun sequencing
(coverage = 0.11 X). Resulting sequence reads covered part of
the region containing a PolB-like sequence. With the use of
tail-PCR method [28], we successfully determined a 5,800 bp
sequence (DDBJ accession number AB522601) containing an
open reading frame (ORF) for the complete HcDNAV PolB
gene. By means of a reverse transcription-PCR (RT-PCR)
experiment, the PolB gene was shown to be transcribed to
mRNA (additional file 1); thus, it is most likely crucial for the
replication of HcDNAV.

HcDNAV PolB gene was found to be 3,675 bp long (for-
ward strand, position = nt 1,913-5,590 in AB522601),
punctuated by normal start and stop codons, and no
intron or intein-like sequence was observed. The pre-
dicted protein product is 1,225 amino acids (aa) long.
Unexpectedly, the translated amino acid sequence
showed the closest BLASTP hits against PolB sequences
from different ASFV isolates, with the best homolog being
DPOL_ASFL6 (identity = 27%, bit score = 311, E-value =
4.10E-82) in the NCBI non-redundant sequence database.
The best non-ASFV hit corresponded to the PolB sequence
of Pyramimonas orientalis virus (DPOL_POV01, identity =
23%, bit score = 131, E-value = 4.10E-28). A multiple
sequence alignment of the HcDNAV PolB and its close
homologs confirmed the presence of conserved residues
for exonuclease and polymerase activities [29] (additional
file 2). Curiously, the HcDNAV PolB sequence exhibited a
rarely observed amino acid substitution within the motif
containing two highly conserved metal binding aspartic
acid residues; HcDNAV exhibits the motif YSDTDS-
instead of the YGDTDS- sequence usually found in
dsDNA viruses. In addition, we identified two ORFs in the
upstream region of the PolB ORF in a divergent orienta-
tion. Their products were respectively predicted to be 245
and 194 aa in length (positions = nt 463-1,200 and 1,255-
1,839). The former showed a significant similarity to
HNH endonucleases with its BLASTP best hit to mimivi-
rus L245 (YP_142599, E-value = 4E-11); the latter showed
a significant similarity to hypothetical proteins from
NCLDVs with its best hit to mimivirus R325 (annotated as
a metal-dependent hydrolase, YP_142679.1, E-value = 1E-
12). Incidentally, R325 is located near the PolB gene
(R322) in the mimivirus genome [30].

To examine the unexpected sequence similarity between
the HcDNAV and ASFV PolBs, we conducted a series of
maximum likelihood phylogenetic analyses. First, we
aligned the HcDNAV PolB sequence with its homologs
from NCLDVs. A phylogenetic tree based on the 362
amino acid residue sites from the alignment supported
the monophyletic grouping of HcDNAV and ASFV with a
100% bootstrap value (Fig. 1). The grouping of each of the
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Maximum likelihood tree of PolB amino acid sequences from NCLDVsFigure 1
Maximum likelihood tree of PolB amino acid sequences from NCLDVs. Alignment was constructed with the use of 
T-Coffee. All the gap-containing amino acid residue sites were removed before tree construction. The phylogenetic tree was 
constructed using PhyML [38] available at Phylogeny.fr [39] using WAG matrix and gamma distribution. Branch labels indicate 
bootstrap percentages (≥ 50%) after 100 replicates. The tree is essentially an unrooted tree, albeit mid-point rooted only for 
presentation purpose. The same method was used for the phylogenetic trees in Fig. 2, Fig. 3 and in the additional file 3. HcD-
NAV and ASFV sequences are indicated by filled diamond marks. CeV: Chrysochromulina ericina virus; PoV: Pyramimonas orienta-
lis virus; HaV: Heterosigma akashiwo virus.
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Maximum likelihood tree of PolB amino acid sequences from diverse groups of virusesFigure 2
Maximum likelihood tree of PolB amino acid sequences from diverse groups of viruses. HcDNAV and ASFV 
sequences are indicated by filled diamond marks.
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other four NCLDV families was also supported by a high
bootstrap value (100% for Iridoviridae, 81% for Phycodna-
viridae, 90% for Mimiviridae and 100% for Poxviridae).
Next, we used a wider range of viral homologs including
those of bacteriophages. The resulting tree based on 320
amino acid residues again supported the grouping of
HcDNAV/ASFV with a 98% bootstrap value (Fig. 2).

In addition, we obtained a short sequence partially corre-
sponding to an RNA polymerase II large subunit gene
from HcDNAV genomic DNA (AB522602), for which we
obtained a similar result. The 892 bp sequence showed
BLASTX best hit against ASFV RNA polymerase sequence
(RPB1_ASFM2, E-value = 2E-12). A monophyletic group-
ing between the HcDNAV sequence (97 aa) and the ASFV

Maximum likelihood tree of PolB amino acid sequences from NCLDVs and several sequences from environmental samples (indicated by open diamond marks)Figure 3
Maximum likelihood tree of PolB amino acid sequences from NCLDVs and several sequences from environ-
mental samples (indicated by open diamond marks). HcDNAV and ASFV sequences are indicated by filled diamond 
marks.
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RNA polymerase sequence was again received a high boot-
strap value of 87% (additional file 3).

Our homology search and phylogenetic analyses thus
confirm that the newly determined HcDNAV sequences
are most closely related to their ASFV homologs. This
result is in clear contradiction with the previous proposal
that HcDNAV may belong to the Phycodnaviridae [13].

A previous "phylogenetic mapping" survey of the metage-
nomic sequence data sets generated by the Global Ocean
Sampling (GOS) expedition [31] revealed several PolB-
like sequences most closely related to the PolB sequence
of ASFV [32]. This observation suggested the presence of
ASFV-related viruses in marine environments. In order to
examine whether the "ASFV-like" marine PolB sequences
were close to the HcDNAV PolB sequence, we retrieved
267 sequences from the environmental sequence collec-
tion of NCBI/GenBank using the PolB sequences of HcD-
NAV and ASFV as queries (E-value < 1E-10). These
environmental sequences were in turn searched against
the NCBI non-redundant sequence database and the
HcDNAV PolB sequence. Of the 267 sequences, 15
showed their best hit to the ASFV PolB, one showed its
best hit to HcDNAV (gi|136563424), and the remaining
sequences had their best hit to other viruses or cellular
organisms. Therefore, most of the ASFV/HcDNAV-like
PolB sequences in the marine environmental collection
are more closely related to the ASFV PolB than to the HcD-
NAV homolog. A phylogenetic tree using several environ-
mental sequences supported their grouping with the
terrestrial ASFV PolB (bootstrap value = 84%, Fig. 3).

PolB is one of the most reliable phylogenetic markers for
large eukaryotic DNA viruses [32,33]. The fact that the
HcDNAV PolB was not grouped with the PolBs from phy-
codnaviruses strongly argues against the previous tenta-
tive classification of HcDNAV in the Phycodnaviridae
family [13]. It is clear that the definitive classification of
HcDNAV will require the complete sequencing of its
genome. It may also turn out that the HcDNAV genome
corresponds to a mosaic of NCLDV genes with different
evolutionary histories, precluding a simple classification
scheme. Pending its complete genome sequencing, we
recently proposed to the ICTV to create a new genus "Din-
odnavirus" where to tentatively classify the HcDNAV.

Our finding now establishes an evolutionary link between
a terrestrial pathogen and a marine girus. A recent metage-
nomic analysis of corals provided evidence for the exist-
ence of viruses related to herpesviruses [34], which have
been mostly isolated as pathogens of terrestrial animals.
So far, giruses of 7 algal classes [12,35] have been isolated;
still, we know next to nothing about viruses infecting

other protists in aquatic environments. Given the huge
diversity of protists [36,37], a comparable diversity prob-
ably exists for marine viruses living in these environ-
ments. Exploring this hidden viral world is necessary to
our understanding of the evolutionary relationships
between aquatic viruses and their terrestrial relatives.
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Additional material

Additional file 1
Transcription of the PolB gene of HcDNAV. To verify the transcription 
of the HcDNAV PolB gene, reverse transcription-PCR (RT-PCR) experi-
ment was conducted. The total RNA samples were isolated from HcD-
NAV-inoculated Heterocapsa circularisquama cells collected at 0, 1, 6, 
12, and 24 hpi, then reverse-transcribed according to the method given by 
Nagasaki et al. [10]. PCR amplification was performed using a DNA 
polymerase KOD FX (Toyobo, Osaka, Japan) and primers designed for 
amplification of HcDNAV PolB gene fragment (01F: ACG TTT TAA 
ATG ATG TTA TTA ATG, 01R: GCC ATT TTA ATA TAT GAA TAA A); 
the reaction cycling conditions were 94°C for 2 min, then 25 cycles of 
98°C for 10 s, 50°C for 30 s, 68°C for 1 min. Lanes 1 to 5 show the RT-
PCR fragments amplified from cDNAs at 0, 1, 6, 12, and 24 hpi, respec-
tively, and lane 6 shows the PCR fragments amplified from HcDNAV 
DNA (positive control).
Click here for file
[http://www.biomedcentral.com/content/supplementary/1743-
422X-6-178-S1.JPEG]

Additional file 2
Conserve blocks from the multiple sequence alignment of PolB 
sequences from NCLDVs. The data provided shows the presence of con-
served residues for exonuclease and polymerase activities in the HcDNAV 
PolB and its close homologs. Species abbreviation is followed by a database 
sequence identifier. Intein sequences were removed from the sequences 
prior to alignment. The alignment was generated by T-Coffee [40] and 
ClustalX [41]. AmEPV: Amsacta moorei entomopoxvirus 'L'; APMV: 
Acanthamoeba polyphaga mimivirus; ASFV: African swine fever virus; 
CeV: Chrysochromulina ericina virus; EhV: Emiliania huxleyi virus 
86; EsV: Ectocarpus siliculosus virus 1; FsV: Feldmannia species virus; 
HaV: Heterosigma akashiwo virus 01; HcDNAV: Heterocapsa circu-
larisquama DNA virus; HvAv: Heliothis virescens ascovirus 3e; IIV: 
Invertebrate iridescent virus 6; LCDV: Lymphocystis disease virus 1; OtV: 
Ostreococcus virus OsV5; PBCV: Paramecium bursaria Chlorella 
virus 1; PoV: Pyramimonas orientalis virus; VAR: Variola virus.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1743-
422X-6-178-S2.JPEG]
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