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Abstract
Background: A variety of interactions between up to three different movement proteins (MPs),
the coat protein (CP) and genomic DNA mediate the inter- and intra-cellular movement of
geminiviruses in the genus Begomovirus. Although movement of viruses in the genus Mastrevirus is
less well characterized, direct interactions between a single MP and the CP of these viruses is also
clearly involved in both intra- and intercellular trafficking of virus genomic DNA. However, it is
currently unknown how specific these MP-CP interactions are, nor how disruption of these
interactions might impact on virus viability.

Results: Using chimaeric genomes of two strains of Maize streak virus (MSV) we adopted a genetic
approach to investigate the gross biological effects of interfering with interactions between virus
MP and CP homologues derived from genetically distinct MSV isolates. MP and CP genes were
reciprocally exchanged, individually and in pairs, between maize (MSV-Kom)- and Setaria sp. (MSV-
Set)-adapted isolates sharing 78% genome-wide sequence identity. All chimaeras were infectious in
Zea mays c.v. Jubilee and were characterized in terms of symptomatology and infection efficiency.
Compared with their parental viruses, all the chimaeras were attenuated in symptom severity,
infection efficiency, and the rate at which symptoms appeared. The exchange of individual MP and
CP genes resulted in lower infection efficiency and reduced symptom severity in comparison with
exchanges of matched MP-CP pairs.

Conclusion: Specific interactions between the mastrevirus MP and CP genes themselves and/or
their expression products are important determinants of infection efficiency, rate of symptom
development and symptom severity.
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Background
Mutation studies are often employed in attempts to iden-
tify the genetic basis of important aspects of a pathogen's
phenotype. For example, in order to understand the
genomic determinants of pathogenicity, genetic elements
may be altered in, deleted from, or exchanged between
virulent and benign pathogen isolates. During the last two
decades, molecular biologists studying the ssDNA gemin-
iviruses (family: Geminiviridae) have made extensive use
of intra- and intergeneric genetic exchange in a wide vari-
ety of experiments. Briddon et al. [1] replaced the coat
protein gene of the whitefly-transmitted African cassava
mosaic begomovirus (ACMV) with that of beet curly top
curtovirus (BCTV) and successfully transmitted the
recombinant ACMV via the BCTV-specific leafhopper vec-
tor Circulifer renellus (Baker), thereby demonstrating that
insect vector specificity for geminiviruses is determined by
the coat protein. Similarly, Liu et al. [2] constructed chi-
maeras of the dicot-infecting mastrevirus bean yellow
dwarf virus and the very distantly related monocot infect-
ing mastrevirus maize streak virus (MSV) with the aim of
identifying host specificity determinants. Although none
of these chimaeras were able to systemically infect host
plants of either parental virus, the study demonstrated the
importance of intragenomic interactions in mastreviruses,
and exposed the consequent limitations of genetic swaps
between such diverse members of the genus. Subse-
quently, Martin and Rybicki [3] used chimaeras of closely
related MSV variants to demonstrate that the primary
sequence determinants of pathogenicity in maize resided
in the MSV movement (MP) and coat protein (CP) genes.

Among the bipartite begomoviruses pseudorecombina-
tion of A and B components has formed the basis of many
useful studies illuminating various trans-acting functions
important in replication [4,5], symptom development
[6], and in planta virus movement [7].

Findings from a large number of studies have led to a
fairly detailed model of bipartite begomovirus movement
[8] involving interactions between viral DNA and the
nuclear shuttle protein (NSP, encoded by ORF BV1), and
between a viral DNA-NSP complex and the movement
protein (MP, encoded by ORF BC1). There is good in vitro
evidence for analogous interactions involving the MP
(encoded by ORF V2 or mp) and coat protein (CP;
encoded by ORF V1 or cp) of mastreviruses [9-12] but the
specificity of these interactions and their impact on MSV
pathogenicity have not yet been fully explored in the con-
text of natural infections. We felt that it should be possible
to employ genetic complementation to illustrate the func-
tional relevance of sequence-specific interactions between
the mastrevirus MP and CP.

In the small and informationally compact MSV genome,
deletion or inactivation of any genes results in asympto-
matic infections or loss of infectivity [13,14] and in some
cases even small alterations in coding or intergenic
regions have resulted in dramatic attenuation of virulence
[13,15-23]. While some of these mutations obviously
altered amino acid sequences [13,22] or disrupted con-
served DNA sequences required for replication or tran-
scription [19,20,23] the deleterious effects of other
mutations has been more difficult to explain [16,21]. In
one instance, 11 of the 14 N-terminal amino acids of the
MSV MP were altered without causing a noticeable loss of
virulence [13] but this is an exceptional case in the litera-
ture. Notwithstanding the apparent fragility of mastrevi-
ruses in the face of mutation, we reasoned that relatively
substantial genetic changes might be tolerated if effected
via the exchange of homologous genomic modules, rather
than through the introduction of isolated point mutations
or deletions. We took an ambitious stance and set out to
exchange the virion-sense ORFs between two of the most
divergent MSV strains known – MSV-Kom and MSV-Set.

MSV-Kom and MSV-Set are both well characterized in
terms of their host ranges, transmission dynamics, and
symptomatology: both infect susceptible maize varieties
and are transmitted by the same leafhopper vector,
Cicadulina mbila Naudé [24]. The viruses share 78% nucle-
otide sequence identity overall, with their mp and cp genes
respectively sharing 80% and 79% nucleotide sequence
identity. MSV-Kom is an isolate of the MSV-A strain,
which is the predominant MSV strain infecting maize in
Africa [25,26]. MSV-Set, on the other hand, is one of only
two characterized representatives of the Setaria-adapted
MSV-C strain, and produces considerably milder symp-
toms in maize than does MSV-Kom [24]. Here we describe
the construction of a series of six infectious MSV-Kom/
MSV-Set chimaeric genomes comprising all the possible
combinations of parental virus, mp and cp regions. Both
parental viruses and all six recombinant viruses were
assessed in terms of infectivity and symptomatology, and
evidence of biologically-important specific interactions
between the MSV MP and CP is presented.

Results
Viability of chimaeric genomes
To facilitate the exchange of the mp and cp genome
regions, PCR-mediated mutagenesis was used to create
NcoI restriction sites at the start codons of cp in the MSV-
Kom and MSV-Set genomes (KNco and SNco respectively;
[Additional file 1] [Additional file 2] [Additional file 3]);
the cloned PCR products were sequenced to ensure that
no unintentional mutations had been introduced (data
not shown). The corresponding T→G mutations resulted
in the substitution of alanine for serine at the second posi-
tions of the CP amino acid sequences [Additional file 2].
Page 2 of 11
(page number not for citation purposes)



Virology Journal 2008, 5:61 http://www.virologyj.com/content/5/1/61
While these substitutions were expected to be conserva-
tive, mutant and wild-type viruses were compared by
infecting Z. mays cv. Jubilee (a sweetcorn) to confirm that
the NcoI mutation did not affect either infectivity or symp-
tomatology in this host. Both NcoI mutants were indistin-
guishable from their wild-type counterparts in terms of
their infectivity and the symptoms they produced (data
not shown). In addition to KNco and SNco, all six chi-
maeric viruses produced symptoms in sweetcorn plants
following agroinoculation.

Altogether, mp exchanges produced changes at 62 out of
320 nucleotide positions, resulting in the alteration of 22
out of 101 MP amino acid residues [Additional file 3];
switching the 697 bp cp led to 153 nucleotide changes
affecting 39 out of 232 possible CP residues [Additional
file 2]. Using a PAM250 substitution matrix [27] score of
less than one as a guide, ten of the MP differences could
be considered to be non-conservative, of which eight
appear within the C-terminal quarter of the sequence.
Using the same criterion, seventeen of the thirty-nine dif-
ferences in the CP sequences represent non-conservative
substitutions, none of which occurs among the fifty-eight
C-terminal residues. Of the known splicing features in the
mp [28], only the putative branch point sequence is differ-
ent between MSV-Kom and -Set, but both variants comply
with the requisite intron branch point consensus
sequence (YUNAN) [29].

Symptom severity and streak morphology
Both symptom severity and streak character varied mark-
edly among the viruses tested. In sweetcorn, KNco typi-
cally and consistently produced extensive, yellowish
chlorotic streaks which, in extreme cases, were almost as
wide as the leaf, and usually extended unbroken for sev-
eral centimetres (Figure 1). In severe KNco infections,
plants and leaves were noticeably stunted and in some
cases leaves were malformed and curled. In contrast, the
symptoms of SNco infection were milder in most respects
(Figure 2): the total chlorotic area per leaf was smaller and
more variable among SNco infected plants than among
plants infected with KNco; SNco did not cause severe
stunting, curling or malformation of infected leaves; SNco
streaks tended to be shorter and narrower than those of
KNco, resulting in a more stippled appearance. However,
in one respect SNco appeared to be more pathogenic than
KNco in that SNco caused more acute chlorosis, giving rise
to whiter streaks. In severe instances the chlorotic tissue
eventually disintegrated, leading to fine perforations in
the leaves of some SNco-infected plants.

All the chimaeric daughter viruses displayed less virulence
than either KNco or SNco (Table 1). With the notable
exception of the relatively severe symptoms of K-MP-S
(Figure 1; see Table 1 for the meaning of chimaeric virus

names), chimaeras containing unmatched mp-cp pairs (K-
CP-S, Figure 1; S-MP-K and S-CP-K, Figure 2) produced
the mildest symptoms: chlorotic lesions were confined to
short, narrow streaks that were sparsely distributed across
the leaf. In contrast, the two reciprocal chimaeras contain-
ing matched mp-cp pairs (K-MP-CP-S and S-MP-CP-K)
were significantly more pathogenic, with S-MP-CP-K
showing particularly severe streak symptoms.

As with the parental KNco and SNco viruses, the lesions
produced by the chimaeras differed in their degree of
chlorosis, and could be classified as either yellow (MSV-
Kom-like) or white (MSV-Set-like; Table 1). Chimaeric
viruses carrying the MSV-Kom mp – K-CP-S, S-MP-K, and
S-MP-CP-K – produced yellowish streaks, while those car-
rying the MSV-Set mp – K-MP-S, K-MP-CP-S, and S-CP-K –
produced streaks that were more severely chlorotic and
were correspondingly distinctly white.

Infection efficiencies and rates of symptom development
To provide additional indications of viral fitness, infectiv-
ity and the rate of symptom appearance were determined
for each virus by inoculating plants with agroinfectious
constructs and then monitoring them for symptom devel-
opment.

Figure 3 shows the rate at which symptoms appeared in
plants following agroinoculation with each virus. As
expected, plants inoculated with SNco developed symp-
toms slightly later than did plants inoculated with KNco,
but both viruses showed very few new infections after fif-
teen days post inoculation (dpi). Over the course of
twenty-five days, SNco infected a somewhat smaller per-
centage of plants than did KNco [SNco, 81% ± 7% (mean
± SD) ; KNco, 87% ± 7%].

Despite considerable differences in symptom severity,
inoculation with all of the KNco-based chimaeras gave
rise to symptomatic plants at similar rates, which were
much slower than that of either parental virus. Accord-
ingly, these chimaeras infected a significantly smaller per-
centage of plants over a twenty day period than did either
parent: K-MP-S, 48% ± 11%; K-CP-S, 44% ± 2%; and K-
MP-CP-S, 54% ± 7%. No new infections were observed
later than 25 dpi (data not shown).

Compared with the KNco-based chimaeras, infection
rates among SNco-based viruses were more distinct: while
S-MP-K and S-CP-K both showed reductions in infectivity
similar to those seen in KNco-based chimaeras, plants
inoculated with S-MP-CP-K became symptomatic at a
similar rate to those inoculated with SNco. Of all the
viruses in this study, S-MP-K infected the lowest percent-
age of plants (38% ± 2%), while S-CP-K appeared to be
slightly more infectious (51% ± 12% of plants infected).
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Streak symptoms produced by MSV-Kom-based constructsFigure 1
Streak symptoms produced by MSV-Kom-based constructs.
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Streak symptoms produced by MSV-Set-based constructsFigure 2
Streak symptoms produced by MSV-Set-based constructs.
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The fitness of each of the chimaeras and their parental
viruses is summarized in Figure 4, which shows the aver-
age area under the disease progress curve (AUDPC) and
symptom severity for each agroinfectious construct. The
chimaera comprising both MSV-Kom mp and cp
exchanged into the MSV-Set genome showed the highest
AUDPC of all the chimaeric constructs, achieving 80%
and 85% of the AUDPC figures of KNco and SNco respec-
tively. The remaining recombinant viruses all showed
large reductions in infectivity, resulting in AUDPC figures
less than half that of either parent. Symptom severity fol-
lowed a similar pattern, except that K-MP-S appeared to be
relatively more virulent and K-CP-S relatively less virulent
than the infectivity data would suggest.

Discussion
MSV-Kom/MSV-Set chimaeric viruses are infectious
Few directed mutagenesis studies of mastreviruses have
been reported, and of these, most have focused on knock-
ing out entire genes with the aim of establishing their
functions [13,14,30]. Where genetic variants of MSV have
been compared, relatively small differences – such as sin-
gle nucleotide substitutions – have often been found to be
responsible for rather large phenotypic disparities [16-
18,22]. Considering the apparent sensitivity of MSV to
mutation and the inability of similar BeYDV/MSV chi-
maeras to produce systemic infections [2] it may seem sur-
prising that all the MSV-Kom/MSV-Set chimaeras
described here are infectious. However, it should be borne
in mind that directed mutagenesis studies are usually
aimed at interrogating sequences suspected or known to
be functionally critical, and neutral mutations are unlikely
to be specifically reported because they are not generally
considered interesting. Moreover, while numerous, the
effective "point mutations" made in this study are of a
special type – they comprise a set of mutations known to
function well together within the context of the original,
parental virus. That is to say, because entire homologous
ORFs were exchanged, no intra-ORF or intra-protein inter-
actions were disrupted in the chimaeras.

Determinants of chlorotic severity
In view of the number of known – as well as the many
likely but as yet unknown – trans-acting mechanisms
engaged in functions such as gene regulation, virus repli-
cation, virus movement, virus-host interactions, et cetera,
it is unsurprising that simple correlations between geno-
type and phenotype were not observed among the chi-
maeras described here: neither mp nor cp, either
individually or together, could be considered wholly
responsible for an MSV-Kom- or Set-like phenotype.
However, the data do suggest that mp is a determinant of
the severity of chlorosis, with the MSV-Set mp inducing
whiter chlorotic streaks than that of MSV-Kom (Figure 1
and 2; Table 1). The movement protein gene not only
encodes the MP, but also comprises an intron [Additional
file 3] which is thought to affect cp expression levels [28]
so it is also possible that variations in chlorosis were
mediated via differences in cp expression.

Since the underlying causes of the chlorosis seen in MSV-
infected tissue are not known, the significance of the var-
ying degrees of chlorosis noted here is not obvious. It has
been shown that chlorosis occurs only in infected cells
[31] so it seems evident that the causal link between virus
and chlorosis is fairly direct. One possibility is that chlo-
rosis arises from the simple toxicity of one or more viral
gene products. It is known that the MSV MP seems suffi-
ciently toxic in E. coli to require strict control of expression
for the generation of stable MP-expressing recombinants
(personal observation, and personal communication
from M.I. Boulton). Expression of geminivirus MP in
transgenic plants can negatively affect plant development,
necessitating the use of defective MP transgenes to regen-
erate healthy plants [32,33]. In contrast, geminivirus CPs
have readily been over-expressed both in transgenic plants
(TYLCV) [34] and in E. coli (MSV) [11] with no apparent
adverse effects; the CP is unlikely to be inherently toxic.
Thus, one hypothesis is that MP causes chlorosis as a
result of its toxicity, and that the MSV-Set MP is inherently
more toxic than that of MSV-Kom in sweetcorn. Alterna-
tively, it is possible that the MSV-Set and -Kom MPs are

Table 1: Naming and symptomatology of MSV-Kom and -Set chimaeras.

Virus Origin of ORF: (MSV-Kom/MSV-Set) Streak colour: (Yellow/White) Symptom severity (1 = mild;10 = severe)
mp cp

KNco K K Y 10
K-MP-S S K W 7
K-CP-S K S Y 1
K-MP-CP-S S S W 5
SNco S S W 9
S-MP-K K S Y 2
S-CP-K S K W 3
S-MP-CP-K K K Y 8
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similarly toxic, but that the MSV-Set MP is expressed in
higher concentrations than MSV-Kom MP.

A second hypothesis is that the MSV MP and/or CP mod-
ulate a hypersensitive response [35,36] (HR reviewed in
[37]) or other innate defense pathway in infected cells,

Average infection rates of chimaeras compared with parental virusesFigure 3
Average infection rates of chimaeras compared with parental viruses. A – Chimaeras based on MSV-Kom; B – chimaeras based 
on MSV-Set; C – averaged, combined data for MSV-Kom and -Set based chimaeras. Error bars represent standard deviations.
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which results in chlorosis. Geminivirus CPs have distant
but detectable homology to begomovirus nuclear shuttle
proteins (NSPs)[38], and it is worth noting that NSPs
have been shown to elicit the HR [39] and to interact spe-
cifically with membrane-localised receptor-like kinases
that are likely to play a role in defense responses [40]. A
number of possibilities then follow: (1) that the MSV-Set
MP is a more potent elicitor – or attains higher concentra-
tions – than that of MSV-Kom; (2) that the MSV-Kom MP
is a more effective inhibitor of the defense response; or (3)
that mp influences CP levels, which in turn modulates the
hypothetical defense response.

Movement and coat protein genes interact specifically to 
facilitate infection and symptom development
Symptom severity and infection efficiency were roughly
correlated (Pearson's R2 = 0.75, P = 0.005; Figure 4)
although K-MP-S displayed relatively severe symptoms in
relation to its infection efficiency, whereas K-CP-S dis-
played comparatively mild symptoms. In both parental
backgrounds, the exchange of cognate mp-cp pairs rescued
much of the fitness lost through single gene exchanges: K-
MP-CP-S was considerably more infectious and patho-
genic than K-CP-S; similarly, S-MP-CP-K was almost as
infectious and virulent as SNco, whereas both S-MP-K and
S-CP-K were drastically compromised in both respects.

These observations provide strong evidence in support of
the importance of specific mp-cp interactions in natural
infections of maize. Specific binding of MP and CP has
been demonstrated in vitro and in vivo [18] and some
progress has been made in drawing parallels between the
mechanisms underlying MSV cell-to-cell movement and

the rather more developed models of movement in bego-
moviruses. MSV CP is localized to the nucleus and facili-
tates nuclear transport of viral DNA [12] which may be
analogous to the nuclear localization and/or shuttling
functions performed by begomovirus CPs and/or NSPs
[41,42]; and MSV MP is localized at the cell periphery and
binds to CP [43], which is reminiscent of at least some
begomovirus MPs that have been shown to associate with
plasma membranes and cell walls [44,45] and to co-oper-
ate with NSP in moving viral DNA out of the nucleus to
adjacent cells [46-48]. As others have noted, the roles that
CP, NSP, and MP play in intra- and inter-cellular move-
ment seem to differ somewhat among various geminivi-
ruses [42,8] and a detailed model of mastrevirus
movement has yet to be elucidated.

Modularity of genetic elements
Although the idea of the modularity of genetic elements is
inherent in the traditional concept of the gene, this notion
of neatly delineated, modular genes has become increas-
ingly blurred by the discovery of the myriad complex
interactions governing gene expression and protein func-
tion. Thus it has become clear that relatively few genes act
independently, while some phenotypic characters arise
from intricate webs of highly specific interactions between
numerous distinct genetic sequence elements. One might
imagine that the structures of these genetic interaction
networks define the boundaries of functional genetic
modules, which may range in size from a few nucleotides
in the case of some regulatory sequences to many mega-
bases in the case of an entire genome. Here we present evi-
dence that the mp-cp cassette may represent such a
functional genetic module in mastreviruses.

Average area under the disease progress curve and symptom severity for each chimaera, compared with the parental viruses KNco and SNcoFigure 4
Average area under the disease progress curve and symptom severity for each chimaera, compared with the parental viruses 
KNco and SNco. Error bars represent standard deviations. Symptom severity and AUDPC are positively correlated (R2 = 0.75; 
P = 0.005).
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Conclusion
This study provides some interesting perspectives on the
varying degrees of modularity among the genetic regions
studied here – namely mp, cp, mp-cp, and the remainder of
the MSV genome. The results imply that mp is modular
with respect to the degree of chlorosis it elicits in infected
tissues, but not with respect to infection efficiency or chlo-
rotic area. Similarly, exchanging cp alone was insufficient
to maintain high infection rates or extensive virus move-
ment. In contrast, the mp-cp cassette behaved in a far more
modular fashion, in that exchanging this region had a rel-
atively small effect on both virus infectivity and, judging
from symptom development, in planta virus movement; it
follows that the remainder of the MSV genome reflected
the same degree of modularity.

Methods
Virus isolates, plasmids, bacterial strains, enzymes, and 
maize genotypes
The cloning vectors pBluescriptSK+ (pSK+; Stratagene, La
Jolla, CA) and pUC19 (Stratagene), and the RecA-
Escherichia coli strains DH5α and JM109 were used in all
standard cloning procedures. The E. coli/A. tumefaciens
binary vector pBI121 (Clontech, CA, U.S.A.) was used to
produce agroinfectious DNA constructs, and the Agrobac-
terium tumefaciens strain C58C1 [pMP90][49] was used
for all agroinoculations. Restriction enzymes and DNA
ligase were obtained from a variety of commercial suppli-
ers and were used according to the manufacturers' instruc-
tions. Sweetcorn maize cv. Jubilee seeds were purchased
from Starke Ayres nursery (Rosebank, Cape Town, South
Africa). The construction of MSV-Kom and MSV-Set full
genome clones (pKom and pSet) and agroinfectious
clones (in pBI121) has been described elsewhere [24].

Construction of infectious chimaeric viral genomes
The construction of clones and agroinfectious constructs
for the chimaeras K-MP-S, K-CP-S, S-MP-K and S-CP-K has
been briefly described elsewhere [50] but will be fully
explained here. Six chimaeric viral genomes were con-
structed by reciprocally exchanging mp and cp either sin-
gly, or in pairs, between pMSV-Kom and pMSV-Set. To
facilitate these exchanges, it was necessary to first intro-
duce NcoI restriction sites near the cp start codons of
pKom and pSet to produce pKNco and pSNco respec-
tively. This was achieved by inducing T→G transversions
at nt. positions 468 and 471 (relative to the virion strand
ori) in the MSV-Kom and -Set genomes respectively.

pKNco and pSNco were completely digested with PstI and
partially digested with NcoI. Fragments of both plasmids
approximately 0.33 kbp, 0.69 kbp, and 4.4 kbp in size
(respectively referred to as K1, K2, and K3 for pKNco and
S1, S2, and S3 for pSNco) were purified by agarose gel
electrophoresis. Ligations were performed using equimo-

lar quantities of the purified fragments from pKNco and
pSNco, using the following combinations of fragments: 1)
S1, K2, K3; 2) K1, S2, K3; 3) S1, S2, K3; 4) K1, S2, S3; 5)
S1, K2, S3; 6) K1, K2, S3. These six ligations respectively
yielded the clones (1) pK-MP-S; (2) pK-CP-S; (3) pK-MP-
CP-S; (4) pS-MP-K; (5) pS-CP-K; and (6) pS-MP-CP-K.

Agroinfectious clones of KNco, K-MP-S, K-CP-S, K-MP-
CP-S, SNco, S-MP-K, S-CP-K, and S-MP-CP-K [Additional
file 1] were constructed as described previously for pSet
and pKom [24].

Agroinoculation and Analysis of symptoms
Agroinfectious clones were used to transform A. tumefa-
ciens C58C1 [pMP90], and agrinoculated into three day
old maize seedlings as has been described previously [51].

Each inoculated plant was inspected for symptoms of
virus infection regularly until twenty days post inocula-
tion (dpi; day 0 = day of inoculation) and thereafter every
week until 45 dpi. Symptoms on the first emergent leaf
were disregarded to avoid confusion with physical dam-
age inflicted during injection. Plants that did not survive
agroinoculation and subsequent planting were disre-
garded for all subsequent analyses. The percentage of
symptomatic plants was used as a measure of infection
efficiency and disease progression. Calculations of area
under the disease progress curve (AUDPC) were per-
formed using the simple trapezoidal rule for calculating
areas. By assessing chlorotic areas, stunting, curling and
malformation of photographed leaves we subjectively
ranked and scored then on a scale of 1 to 10, with 1 being
the mildest and 10 the most severe symptoms.
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