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Abstract

The adeno-associated virus (AAV) has rapidly gained popularity in gene therapy since the
establishment of the first AAV2 infectious clone, in 1982, due to some of their distinguishing
characteristics such as lack of pathogenicity, wide range of infectivity, and ability to establish long-
term transgene expression. Notably over the past decade, this virus has attracted considerable
interest as a gene therapy vector, and about 85% of the currently available 2,041 PubMed
references on adeno-associated viruses have been published during this time. The exponential
progress of AAV-based vectors has been made possible by the advances in the knowledge of the
virology and biology of this virus, which allows great improvement in AAV vectors construction
and a better comprehension of their operation. Moreover, with the recent discovery of novel AAV
serotypes, there is virtually one preferred serotype for nearly every organ or tissue to target. Thus,
AAV-based vectors have been successfully overcoming the main gene therapy challenges such as
transgene maintenance, safety and host immune response, and meeting the desirable vector system
features of high level of safety combined with clinical efficacy and versatility in terms of potential
applications. Consequently, AAV is increasingly becoming the vector of choice for a wide range of
gene therapy approaches. This report will highlight the state of the art of AAV-based vectors
studies and the advances on the use of AAV vectors for several gene therapy approaches.

Background

The adeno-associated virus (AAV) is a small, icosaedral
and nonenveloped virus that belongs to the parvovirus
family, specifically the Dependovirus genus. The mem-
bers of this genus require a helper virus, such as adenovi-
rus or herpes simplex virus, to facilitate productive
infection and replication. In the absence of a helper virus,
AAVs establish a latent infection within the cell, either by
site-specific integration into the host genome or by per-
sisting in episomal forms. The wild AAV capsid has
approximately 22 nm and encapsidates a linear single-
stranded DNA genome of about 4.7 kb of either plus or

minus polarity [1,2]. The AAV2 DNA termini consists of a
145 nucleotide-long inverted terminal repeat (ITR) that
forms a characteristic T-shaped hairpin structure, due to
the multipalindromic nature of its terminal 125 bases,
which allows its fold on itself via complementary base
pairing [3], forming a secondary structure that provides a
free 3' hydroxyl group for the initiation of viral DNA rep-
lication [4]. This viral replication process relies on host
cell polymerase activities, since AAV does not encode its
own polymerase [5]. These ITRs are the only cis-acting ele-
ments required for genome replication and packaging,
and flank the two large open reading frames (ORFs) of the
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virus genome. The left ORF, Rep (replication), encodes
four replication proteins (Rep 78, Rep 68, Rep 52, and Rep
48), through the use of two different promoters and alter-
native splicing, responsible for site-specific integration,
nicking, and helicase activity, as well as regulation of pro-
moters within the AAV genome. The right ORF, Cap (cap-
sid), encodes, through alternative mRNA splicing and
alternative start codon usage, the three viral structural pro-
teins (VP1, VP2 and VP3) that assemble at a ratio of
approximately 1:1:10, respectively, to form a mature AAV
particle [6].

Following the establishment of the first infectious clone of
AAV serotype 2 (AAV2) in 1982 [7] and the pioneering
work on the successful cloning of AAV establishing the
foundation of recombinant AAV vectors capable of
expressing foreign genes in mammalian cells [8,9], in the
early 1980s, AAV2 vectors have rapidly gained popularity
in gene therapy applications, due to some of their distin-
guishing biological features. The unique life cycle of AAV
demonstrates how this class of viruses has adapted to
coexist with mammalian hosts in a manner that allows for
long-term persistence without any detectable deleterious
effect on the host. Despite the deceptively simple structure
of AAV, this virus is able to use its nonstructural proteins
to facilitate replication as a satellite of other DNA viruses
during its productive phase, as well as to establish stable
integrated and episomal forms during its latent phase
[4,10,11]. This requires numerous complex interactions
between AAV genomic elements, AAV proteins, host pro-
teins, and helper virus proteins [12]. Many of those mech-
anisms have been elucidated in detail for the AAV2, the
best characterized AAV serotype [13,14]. Therefore, the
nonpathogenic and persistent long-term nature of AAV
infection combined with its wide range of infectivity have
made this virus an important candidate as a therapeutic
gene transfer vector.

Recombinant adeno-associated viral (rAAV) vectors have
rapidly advanced to the forefront of gene therapy in the
past decade. The exponential progress of AAV-based vec-
tors has been made possible by the advances in the knowl-
edge of the virology and biology of this virus, which
allows great improvement in AAV vectors construction
and a better comprehension of AAV vectors operation.
Moreover, with the recent discovery of novel AAV sero-
types, there is virtually now one preferred serotype for
nearly every organ or tissue to target, since these isolates
are ideally suited to development into human gene ther-
apy vectors due to their diverse tissue tropisms and poten-
tial to evade preexisting neutralizing antibodies against
the common human AAV serotype 2. Thus, rAAV-based
vectors have been successfully overcoming the main gene
therapy challenges and meeting the desirable vector sys-
tem features of high level of safety combined with clinical
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efficacy and versatility in terms of potential applications.
Consequently, rAAV are increasingly becoming the vector
of choice for a wide range of gene therapy approaches.

This review will originally highlight the state of the art of
AAV-based vector studies and the advances in the use of
AAV vectors in several gene therapy approaches.

Characteristics of AAV-based vectors

As mentioned above, in the early 1980s, pioneering work
on the successful cloning of AAV established the founda-
tion of recombinant AAV vectors capable of expressing
foreign genes in mammalian cells. Since then, the AAV has
been more and more studied and considered for gene
therapy applications. In all, 85% of the available (up to
June 2007) 2,041 PubMed references on AAV were pub-
lished during the last 10 years.

This increasing interest on AAV is justified by its character-
istic features that distinguish it from many other viral vec-
tor systems, such as retro/lentiviral and adenoviral
vectors, and turn it into a very attractive tool for gene ther-
apy. These features, as mentioned above, include: (1) its
nonpathogenicity and nonimmunogenicity as well as its
heat stability and resistance to solvents and to changes in
pH and temperature [15]; (2) AAV vectors only retain
about 300 nucleotides of viral sequence in the form of
nontranscribed ITRs, which greatly improves its safety for
human clinical applications by reducing the risk of recom-
bination with wild-type virus. Moreover, lack of viral cod-
ing sequences extends the duration of gene expression as
no viral gene products are expressed in target cells, which
reduces the risk of eliciting a cellular immune response;
(3) AAV vectors have a broad host and cell type tropism
range and transduce both dividing and nondividing cells
in vitro and in vivo. Furthermore, the recent discovery of
novel AAV serotypes will expand even more the universe
of potential target organs, tissues and cells; and (4) AAV
vectors maintain (over several years) high levels of gene
expression in vivo, in the absence of a significant immune
response to the transgene product. This is a major require-
ment for gene therapy approaches for some diseases, and
constitutes the most promising and distinguishing fea-
tures of AAV vectors.

However, there are also a few drawbacks in using AAV vec-
tors for gene therapy applications. (1) Their size limits the
insertion of gene expression cassettes. Whereas strategies
have been developed to overcome this limitation, those
approaches still suffer from low efficiency resulting in
decreased levels of gene expression. (2) Gene expression is
generally of slow onset, due to the requirement of conver-
sion of the single-stranded AAV DNA into double-
stranded DNA before gene expression can be initiated.
Strategies developed to overcome this limitation include
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the construction of double-stranded DNA vectors, but this
results in further reduction in the size capacity of trans-
gene insertion, as one has to incorporate the gene twice
into the vector (in its sense and antisense orientation). (3)
A possible association between AAV2 vector gene transfer
and tumorigenesis has been suggested, in a preclinical
study with an animal model for mucopolysaccharidosis
VII (MPS VII) [16]. To date, these results have not yet been
reproduced and the cause for the malignancies is still
unclear. And (4), some investigators have shown prefer-
ential integration of recombinant AAV2 vectors into tran-
scriptionally  active  chromatin  regions  [17,18].
Nevertheless, the overall frequency of rAAV2 integration is
very low and it is not clear yet whether this is a general
phenomenon or specific for liver or the model used or
AAV2.

The state of the art of AAV-based vectors in gene therapy
Despite existing limitations and troubles to be resolved
and overcome, rAAV-based gene transfer vectors still rep-
resent one of the most promising gene therapy systems
and gain increasing popularity. In a search for "AAV gene
therapy", 1,016 PubMed references were recovered (until
June 2007). The first paper, on the use of AAV as mamma-
lian DNA cloning vector, was published in 1984 by Her-
monat and Muzyczka [9]. Since then, a rapidly growing
number of studies on AAV-based vectors have been pub-
lished, as shown in Figure 1.

The initial studies described aspects of the virology and
molecular biology of the virus, virus isolation, as well as
methods for gene transfer and expression in in vitro stud-
ies. As this vector system was used with increasing in gene
delivery protocols, the interest in the complexities of AAV
biology and transduction ability has also raised, and a
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Figure |
Percentage of published papers on AAV gene therapy,
according to PubMed search (until June 2007).
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considerable diverse potential for different cell types and
target tissues was described [19]. Simultaneously, research
efforts concentrated on rAAV construction, production
and purification, as well as on the understanding and
improvement of their functioning.

Publications on the use of AAV-based vectors in gene ther-
apy may be classified into ten large groups (Figure 2): (1)
review; (2) virology and molecular biology; (3) gene
transfer and expression studies in vitro; (4) construction,
production and functioning of rAAV vectors; (5) preclini-
cal studies; (6) human clinical trials; (7) preclinical and
clinical ex-vivo approaches; (8) cancer; (9) vector biodistri-
bution and routes of vector administration; (10) associa-
tion of cellular and gene therapy. As presented in Figure 3,
the great majority of papers concerns to preclinical stud-
ies, followed by studies on the construction, production
and functioning of rAAV vectors. Human clinical trials are
just beginning to appear in this scenario.

If each area is analyzed along the time, we can observe
that studies concerning AAV virology and molecular biol-
ogy are relatively constant, which is to be expected since
basic research is of crucial importance to provide the
information needed for pre-clinical and clinical studies. In
vitro studies have been decreasing in number, to the
advantage of in vivo and preclinical studies which have
had their peak in the least year. Pre-clinical studies and
clinical trials using AAV-based vectors will be detailed
below.

The analysis of publications available in the PubMed
show that several animals have been used in preclinical
studies investigating the use of AAV-based. The mouse is
the most frequently used animal, corresponding to about
68% of preclinical studies. The second most frequent ani-
mal model is the rat, used in 19% of the studies. Primate
and canine models are used in 10% and 13% of in vivo
animal studies, respectively. Other less expressive models
are the guinea pig, rabbits, hamster (5% each one) and
gerbil (only one study).

Recombinant AAV2 vectors have been tested in preclinical
studies for a variety of diseases such as hemophilia, oc1-
anti-trypsin deficiency, cystic fibrosis, Duchenne muscu-
lar dystrophy, rheumatoid arthritis and others. Figure 2
presents the type and frequency of target diseases for
which AAV-based vectors gene therapy is under study.
Genetic diseases is the leading group of target diseases
(32%), followed by tumors (19%), neurological disorders
(14%), ocular (11%) and cardiovascular (10%) diseases,
chronic disorders (5%) and others (9%). For all of them,
the majority of papers concerns to both preclinical and
clinical in vivo studies, although clinical trials are still
scarce. In a review published in 2004 about the use of AAV
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Publications on AAV-based gene therapy per area.
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vectors for the treatment of inherited disorders [19],
hemophilia was shown as the major target disease, corre-
sponding to about 37% of the published papers. Muscular
dystrophy, cystic fibrosis and lysosomal storage disorders
contributed with 20%, 18% and 20% of all reports,
respectively. Other genetic diseases are still poorly investi-
gated regarding AAV-based gene therapy approaches.

In our PubMed research, we found 15 publications
describing the results of clinical trials. Among them, 13
are phase I trials and two are phase II studies. Currently,
several clinical trials evaluate the use of AAV vectors for
genetic and acquired diseases [20-22]. From 1989 until
now, a total of 1,283 gene therapy clinical trials have been
approved. Only 4% (47) of them are AAV-based gene
therapy trials, distributed in phase I (66%), phase I/II
(17%), phase II (6%) and phase III (11%). The first trial
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Figure 3
Target diseases for AAV gene therapy approaches.

was approved in 1994, but most of the trials were
approved in 2004, 2005 and 2006 [22]. Table 1 shows the
number of clinical trials with AAV-based vectors and their
status in June 2007.

Despite the fact that the main target disease for gene ther-
apy clinical trial is cancer (67%), followed by cardiovascu-
lar disease (9.1%) and monogenic diseases (8.4%), AAV-
based gene therapy trials are mainly focused on mono-
genic diseases (53%), followed by cancer that corresponds
to 23% [22].

The first clinical trial results were published in 1999, with
the treatment of cystic fibrosis patients with an AAV-based
vector [23]. Currently, this is the disease most frequently
treated with AAV vectors [24-26], followed by hemophilia
B [27,28]. There are also phase I human trials for oc1-anti-
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Table I: Clinical trials with AAV-based vectors [22].
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Category/Disease

Clinical trial

Phase | O/C* Phase l/ll O/C Phase Il O/C Phase Ill O/C Total

Infeccious

HIV vaccine 2/0 0/0 0/0 0/0 2
Cancer

Malignant melanoma 1/0 0/0 0/0 0/0 |

Prostate cancer o/1 2/1 0/0 4/0 8

Hormone refractory prostate cancer 1/0 0/0 0/0 0/0 |

Metastatic prostate cancer 0/0 0/0 0/0 1/0 |
Genetic

Lipoprotein lipase deficience 0/0 1/0 0/0 0/0 |

Haemophilia B 172 0/0 0/0 0/0 3

Early onset retinal degeneration 3/0 0/0 0/0 0/0 3

Cystic fibrosis 2/3 171 0/2 0/0 9

Muscular dystrophy 1/0 0/0 0/0 0/0 |

Canavan disease 1/0 0/0 0/0 0/0 |

Duchenne muscular dystrophy 171 0/0 0/0 0/0 2

Limb Girdle muscular dystrophy 1/0 0/0 0/0 0/0 |

Amyotrophic lateral sclerosis 1#%/0 0/0 0/0 0/0 I

Inherited autosomal recessive alpha-|-antitrypsin deficiency 2/0 0/0 0/0 0/0 2

Late infantile neuronal ceroid lipofuscinosis 1/0 0/0 0/0 0/0 |
Neurological

Parkinson's disease 1/1 0/0 1/0 0/0 3

Alzheimer's disease 0/0 0/1 0/0 0/0 |

Epilepsy 1/0 0/0 0/0 0/0 |
Cardiovascular

Heart failure 2/0 0/0 0/0 0/0 2
Others

Rheumatoid arthritis 2/0 0/0 0/0 0/0 2
TOTAL 24/8 4/3 172 5/0 47

* OIC, openl/closed; ** under review.

trypsin deficiency [29], Canavan disease [30-32], infantile
neuronal ceroid lipofuscinosis [33] and Parkinson disease
[34]. The only two phase II clinical trials already pub-
lished were directed to cystic fibrosis [35,36]. At least 20
clinical trials have been completed or initiated with 15
different AAV2-based vectors being administered in sev-
eral hundred patients [37].

Results and perspectives

The studies so far have shown that AAV-based vectors, and
particularly the AAV2 serotype, are in general safe and effi-
cient tools for gene transfer, but have also pointed out that
transduction efficiency of AAV2 vectors falls short of
requirements for adequate and organ-specific transgene
expression. As a result, research efforts focused on modi-
fying both vector genomes and capsid proteins to improve

the transduction efficiency and/or specificity of AAV2-
based vectors have been emerging. Self-complementary
AAV2 vectors [38-40], for instance, were developed to
bypass rate-limiting second-strand DNA synthesis and
display enhanced transduction in comparison with con-
ventional AAV vectors in some organs and tissues as liver
[38-40], muscle [40], brain [41], retina [42] and cancer
cells [43]. Other efforts have focused on manipulating the
AAV2 capsid through site-directed and insertional muta-
genesis, peptide display libraries, and chemical conjuga-
tion [44,45].

The repertoire of rAAV vectors has been greatly expanded
by the development of technologies to pseudo-package
rAAV genomes, package AAV genomes with two different
ITR serotypes, generate mosaic rAAV particles with more
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than one capsid serotype, retarget AAV by generating rAAV
capsid modification and generate rAAV with chemically
modified capsids. These technologies have greatly
expanded the ability to fit rAAV for specific gene therapy
applications [46,47].

These publications reveal also a great interest on rAAV
biology, concerning particularly virus intracellular traf-
ficking which has been shown a major rate-limiting step
in rAAV transduction for many cell types. Moreover, it has
also been indicated as critically affecting host immuno-
logical response toward input capsids in the absence of
new viral protein synthesis. If so, altering the rate of intra-
cellular trafficking and uncoating of rAAVs by the use of
specific drugs or serotype modifications could directly
influence the stability of gene expression, by reducing
host immune responses that promote the clearance of
virus-infected cells. Advances in understanding rAAV biol-
ogy will lead to the improvement of the efficacy of this
vector system for the treatment of inherited and acquired
diseases.

Conclusion

Progress in gene therapy is indisputable but has been slow
and there have been many ups and downs. The two major
hurdles to gene therapy, safety and efficacy, remain road-
blocks to the widespread application of gene therapy as a
standard medical treatment for disease. Improvement of
efficacy can be mediated in part by the development of
more efficient vectors. Retrovirus-based vectors repre-
sented the first attempt to use viral vectors, and were con-
sidered the great promise for gene therapy approaches.
However, after the serious adverse events occurred with
the Moloney virus, retrovirus had their potential ques-
tioned. Later, the development of lentiviral-based vectors
renewed gene therapy expectations. Currently, although
these vectors have been shown in preclinical studies to
mediate high levels of stable gene transfer for long-term
expression, there is reasonable concern regarding impor-
tant safety aspects, in particular regarding recombination
of a lentiviral vector into a replication-competent lentivi-
rus (RCL) that might represent a novel and unpredictable
pathogen; and insertional oncogenesis mediated by the
"random" insertion of retroviruses into cellular DNA [48].
Presently, other virus vectors have been gaining an impor-
tant place in gene therapy approaches, especially adenovi-
rus and adeno-associated virus.

Since the adeno-associated virus was first isolated and its
biological properties established, it has been considered a
promising vector for gene therapy. Research approaches
are disclosing advantages of this tools. Some obstacles
have already been overcome, others are rising and need to
be surpassed, and research advances will certainly bring
more challenges for the near future. Nevertheless, AAV-

http://www.virologyj.com/content/4/1/99

based vectors seem to bypass the main gene therapy barri-
ers, such as long-term and stable transgene expression in
many tissues, safety, broad range of target diseases and
lack of immunogenicity and pathogenicity.
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