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Abstract
Background: HTLV-1 Gag protein is a matrix protein that contains the PTAP and PPPY sequences
as L-domain motifs and which can be released from mammalian cells in the form of virus-like
particles (VLPs). The cellular factors Tsg101 and Nedd4.1 interact with PTAP and PPPY,
respectively, within the HTLV-1 Gag polyprotein. Tsg101 forms a complex with Vps28 and Vps37
(ESCRT-I complex) and plays an important role in the class E Vps pathway, which mediates protein
sorting and invagination of vesicles into multivesicular bodies. Nedd4.1 is an E3 ubiquitin ligase that
binds to the PPPY motif through its WW motif, but its function is still unknown. In the present
study, to investigate the mechanism of HTLV-1 budding in detail, we analyzed HTLV-1 budding
using dominant negative (DN) forms of the class E proteins.

Results: Here, we report that DN forms of Vps4A, Vps4B, and AIP1 inhibit HTLV-1 budding.

Conclusion: These findings suggest that HTLV-1 budding utilizes the MVB pathway and that these
class E proteins may be targets for prevention of mother-to-infant vertical transmission of the virus.

Background
The Gag polyprotein of HTLV-1 is the only viral protein
that is both necessary for and sufficient to drive the release
of virus particles through a budding process [1-7]. During
or after the process of particle release, the action of the ret-
roviral protease cleaves Gag to produce mature matrix
(MA), capsid (CA), and nucleocapsid (NC) proteins.
Three functional domains that are critical for the assembly
and budding processes have been identified in the Gag
protein. The membrane-binding domain (M-domain) is
required for myristoylation of the Gag N-terminal region
and subsequent targeting of the protein to the plasma
membrane. The interaction domain (I-domain) appears
to be a major region involved in Gag multimerization.
The late assembly domain (L-domain) plays a critical role

in pinching off of virus particles from the plasma mem-
brane of infected cells. It has also been reported that inac-
tivation of the viral protease has no effect on the
production of HTLV-1 particles, similar to our previous
observations in Mason-Pfizer monkey virus (M-PMV)
[7,8].

Three L-domain consensus sequences, PPXY, PT/SAP, and
YPXL, have been identified within the matrix proteins of
many enveloped RNA viruses, including retro-, rhabdo-,
filo-, and arenaviruses [1,2,4,5,9-21]. The majority of ret-
roviruses possess PPXY and/or PT/SAP motifs as an L-
domain, one exception being equine infectious anemia
virus (EIAV), which possesses a YPXL motif. Most of the
host factors that interact with the L domain are involved
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in the class E vacuolar protein-sorting pathway, suggesting
that budding into the lumen of multivesicular bodies
(MVBs) in late endosomes and viral budding at the
plasma membrane are topologically identical and share a
common mechanism. Three ESCRT complexes, ESCRT-I, -
II, and – III, play critical roles in the MVB sorting pathway,
acting in a sequential manner. In the final step of protein
sorting, AAA-type ATPase Vps4A/B interacts with ESCRT-
III to catalyze disassembly of the ESCRT machinery to
recycle its components.

The PTAP motif was first identified in human immunode-
ficiency virus (HIV) p6Gag and has been reported to inter-
act with Tsg101, which is a ubiquitin-conjugating E2
variant and participates in vacuolar protein-sorting (Vps)
machinery. The interaction between p6Gag and Tsg101 is
required for HIV-1 budding, and Tsg101 appears to facili-
tate this budding by linking the p6 late domain to the Vps
pathway [22,23].

The PPXY motif has been shown to be the core sequence
involved in binding to the WW domain, a sequence of 38
to 40 amino acids containing two widely spaced tryp-
tophan residues, which are involved in protein-protein
interaction. In fact, it has been shown that the viral PPXY
sequences interact with the WW domains of the cellular
Nedd4-like ubiquitin ligases, such as Nedd4 and BUL1
[4,24-26].

The YPXL motif in EIAV p9 and a related sequence YPLASL
in HIV-1 p6 have been shown to interact with AIP1/Alix,
which has been reported to be linked to ESCRT-I and -III
[23,27-29].

It has been reported that expression of dominant negative
(DN) forms and small interfering RNA (siRNA) specific
for Tsg101 and AIP1/Alix inhibit L-domain-mediated
VLPs or virus release [3,12,13,18,22,30]. In addition, in
many cases, DN forms of Vps4A and Vps4B lacking the
ability to bind or hydrolyze ATP were shown to inhibit the
budding of VLPs or virions [9,10,12,22,23,31,32].

In this study, to investigate the mechanism of HTLV-1
budding in detail, we analyzed HTLV-1 budding using DN
forms of the class E proteins. Our results showed that the
DN forms of Vps4A, Vps4B, and AIP1 markedly sup-
pressed VLP production, suggesting that HTLV-1 budding
utilizes the MVB pathway and that these class E proteins
may be the targets for prevention of mother-to-infant ver-
tical transmission.

Results and Discussion
HTLV-1 Gag budding utilizes Vps4A and Vps4B
Vps4A and Vps4B are ATPases, each of which is the final
effector in the MVB sorting pathway in cells. Recent stud-

ies using DN of Vps4A have shown that activity of this
enzyme is required for efficient budding of HIV-1, murine
leukemia virus, equine infectious anemia virus, Mason-
Pfizer monkey virus, simian virus 5, vesicular stomatitis
virus (VSV), human hepatitis B virus, Ebola virus, and
Lassa virus [10,12,22,31-35]. In contrast to Vps4A, the
contribution of Vps4B in virus budding has not been
demonstrated, although we previously showed that Lassa
virus budding utilizes Vps4B [12]. To examine the
involvement of Vps4A and Vps4B in the egress of HTLV-1
Gag-induced VLP, we analyzed the effects of overexpres-
sion of DN mutants of Vps4A and Vps4B, termed
Vps4AEQ and Vps4BEQ, respectively (Fig. 1A) [12]. Both
DN mutants were expressed as proteins containing a Flag
tag at their N-termini. As shown in Fig. 2A and 2B, HTLV-
1 Gag-induced VLP production was significantly reduced
by the overexpression of Vps4AEQ or Vps4BEQ. Relative
levels of production of VLPs from cells expressing
Vps4AEQ and Vps4BEQ were 25% and 33%, respectively
(Fig. 2B). To further examine the effects of overexpression
of wild-type Vps4A and Vps4B, we also cotransfected
pVps4A and pVps4B with pK30-Gag into 293T cells. As
shown in Fig. 2C and Fig. 2D, overexpression of Vps4A
and Vps4B did not promote VLP production. These results
indicate that endogenous Vps4A and Vps4B are sufficient
for producing VLPs, but the enzymatic activities of Vps4A
and Vps4B are clearly required for efficient budding of
HTLV-1.

DN form of AIP1/Alix suppresses the egress of the HTLV-1 
VLP production
To examine the involvement of AIP1/Alix in HTLV-1 bud-
ding, we overexpressed mutant forms of AIP1/Alix with
pK30-Gag (Fig. 1B). As shown in Fig. 3A and 3B, the AIP1/
Alix mutant AIP1 (1–628) significantly inhibited the pro-
duction of HTLV-1 Gag-induced VLP. On the other hand,
another mutant of AIP1/Alix, AIP1 (424–628), had no
effect. Overexpression of WT AIP1/Alix suppressed the
Gag-induced VLP production. Although we could not
detect the interaction between HTLV-1 Gag and AIP1
(data not shown), AIP1 may regulate HTLV-1 budding
indirectly. Similar results were obtained in a previous
study examining the involvement of Tsg101 in HIV-1
budding [36]. Overexpression of the wild-type and C-ter-
minal deletion mutant of Tsg101 inhibited HIV-1 produc-
tion. The intracellular levels of Tsg101 appear to be strictly
regulated for its physiological function. AIP1/Alix may be
subject to similar regulation in cells.

The mechanism responsible for HTLV-1 budding has not
been addressed in detail. Previous studies showed that
HTLV-1 Gag protein plays a key role in viral budding as in
other retroviruses, and that Tsg101 and Nedd4.1 recog-
nize PTAP and PPPY within the HTLV-1 Gag polyprotein,
respectively. Although it is well known that Tsg101 and
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Nedd4.1 play important roles in HTLV-1 budding, further
mechanisms have not been characterized. In this study, to
investigate the mechanism of HTLV-1 budding in detail,
we analyzed HTLV-1 budding using DN forms of the class
E proteins Vps4A, Vps4B, and AIP1 (Fig. 1). The results
indicated that the catalytic activities of Vps4A and Vps4B
are required for budding of HTLV-1 VLPs, suggesting that
HTLV-1 budding mimics the MVB pathway, similar to
observations in other envelope viruses. The DN form of
AIP1 expressing only the N-terminal region from residues
1–628 also suppressed the budding of HTLV-1 VLPs. The
Bro1 domain of AIP1, which is present in the N-terminal
region, has been reported to interact with CHMP4
[23,33]. PRR binds to Tsg101. The V domain can bind to
HIV-1 p6 and EIAV p9, and overexpression of a mutant
containing only the V domain suppresses HIV-1 and EIAV
particle release [28,29]. Our results shown in Fig. 3 can be
explained by binding of AIP1 (1–628) to CHMP4, thus
disturbing the downstream parts of the MVB pathway. On
the other hand, AIP1 (424–628) had no effect on HTLV-1
budding. AIP1 (424–628) appears to be sufficient for the
function of AIP1 in HTLV-1 budding, suggesting that HIV-
1 and HTLV-1 utilize AIP1 in different ways [28,29].

Taken together, these results strongly suggest that HTLV-1
budding utilizes the MVB pathway and that these class E
proteins may be useful as targets for prevention of
mother-to-infant vertical transmission.

Conclusion
In the present study, we showed that the enzymatic activ-
ities of Vps4A and Vps4B are required for efficient bud-
ding of HTLV-1 and that endogenous Vps4A and Vps4B
are sufficient for VLP production. In addition, it was
shown that AIP1 (1–628) acts as a DN mutant for HTLV-
1 budding.

Methods
Cells
Human 293T cells were maintained in Dulbecco's mini-
mal essential medium (Sigma, St. Louis, MO) supple-
mented with 10% fetal bovine serum and penicillin-
streptomycin at 37°C.

The involvement of Vps4A and Vps4B in HTLV-1 Gag bud-dingFigure 2
The involvement of Vps4A and Vps4B in HTLV-1 
Gag budding. A. 293T cells were cotransfected with pK30-
Gag and the expression plasmid for Vps4AEQ or Vps4BEQ, 
or the empty vector as a control. Extracellular VLPs were 
pelleted from the culture fluids. VLP-associated or cell-asso-
ciated Gag was detected by western blotting (WB) using anti-
HTLV-1 p19 monoclonal antibody. C. 293T cells were 
cotransfected with pK30-Gag and the expression vector for 
wild-type Vps4A or Vps4B, or the empty vector as a control. 
The proteins were detected as described in A. B and D. 
Intensities of the bands corresponding to cell- and VLP-asso-
ciated Gag in A and C were quantified using the LAS3000 
imaging system (Fuji film). The efficiency of Gag-induced VLP 
budding in cells cotransfected with pK30-Gag and control 
vector (VLP/Cellular) was set to 1.0. The data represent 
averages and standard deviations (SD) of 3 independent 
experiments.

DN forms of class E proteins used in this experimentFigure 1
DN forms of class E proteins used in this experiment. 
A. DN forms of Vps4A and Vps4B. Both Vps4AEQ and 
Vps4BEQ have point mutations that render them defective in 
ATP hydrolysis. B. DN forms of AIP1/Alix. AIP1/Alix is com-
posed of three major domains: Bro1 domain, V domain, and 
PRR (proline-rich region) [27]. The role of AIP1/Alix in endo-
somal sorting and virus budding requires binding the ESCRT-
III component CHMP4 at the broad Bro1 domain and the 
ESCRT-I component Tsg101 at the PRR. HIV-1 p6 and EIAV 
p9 bind to the V domain.
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Plasmid construction
After PCR amplification from the K30 infectious clone,
the HTLV-1 K30 gag gene was cloned into the pCAGGS-
MCS vector. pVps4A, pVps4B, pVps4AEQ, and pVps4BEQ
were described previously [12]. pCAGGS-HA-AIP1, -
AIP1(1–628), and -AIP1(424–628) were kind gifts from
Dr. Sakaguchi [30].

VLP budding assay
Forty-eight hours after transfection, the cell supernatant
was clarified from cell debris by centrifugation (13,000 ×
g, 10 min) and then VLPs were pelleted by ultracentrifuga-
tion through a 20% sucrose cushion (345,000 × g, 60 min
at 4°C). Cells and VLPs were lysed with Lysis A buffer (1%
TritonX-100, 25 mM Tris-HCl, pH 8.0, 50 mM NaCl, and
10% Na-deoxycholate). Cell lysates and VLPs were
resolved by SDS-PAGE, and the proteins were then trans-
ferred onto nitrocellulose membranes. The mouse anti-
HTLV-1 p19 monoclonal antibody TP-7 (Abcam, Cam-
bridge, UK) was used to detect K30Gag. The mouse anti-
Flag monoclonal antibody M2 (Sigma) was used for
detection of Vps4A, Vps4B, Vps4AEQ, and Vps4BEQ. The
mouse anti-HA monoclonal antibody 6E2 (Cell Signaling
Technology, Beverley, MA) was used for detection of HA-
AIP1 WT and DN series. Horseradish peroxidase-conju-
gated goat anti-mouse IgG antibody A-2304 (Sigma) was
used as a secondary antibody. Immunoreactive bands
were visualized using ECL plus (Amersham Pharmacia

Biotech, Upsalla, Sweden), followed by the LAS-3000 sys-
tem (Fuji Film, Tokyo, Japan). For quantification, the sig-
nal intensity on western blots was evaluated with Image
Gauge version 4.1 (Fuji Film) using the LAS-3000 system.
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