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Abstract
Cyclooxygenases (COXs) play a significant role in many different viral infections with respect to
replication and pathogenesis. Here we investigated the role of COXs in the mouse hepatitis
coronavirus (MHV) infection cycle. Blocking COX activity by different inhibitors or by RNA
interference affected MHV infection in different cells. The COX inhibitors reduced MHV infection
at a post-binding step, but early in the replication cycle. Both viral RNA and viral protein synthesis
were affected with subsequent loss of progeny virus production. Thus, COX activity appears to be
required for efficient MHV replication, providing a potential target for anti-coronaviral therapy.

Background
Virus infections often cause acute inflammatory
responses, which are mediated by several cellular effectors
and soluble factors. Although these responses have an
important protective role, they may also have deleterious
effects on the host. The balance between these protective
and deleterious effects may ultimately determine the
course of disease after viral infection. Prostaglandins
(PGs) are important regulators of this inflammatory reac-
tion. They are synthesized by cyclooxygenases (COXs),
converting arachidonic acid into PGH2, which can then be
isomerized to generate different biologically active forms
of PGs. There are three known isoforms of COXs, with
COX-1 and COX-2 being the best characterized. COX-1 is

expressed in various cell types and PGs produced by COX-
1 are predominantly involved in the regulation of various
homeostatic processes [1]. COX-2 is an immediate early
response gene, which upon induction generates mainly
hyperalgesic and proinflammatory PGs at sites of inflam-
mation [2,3]. PGs from the E series, such as PGE2, also
exhibit immunomodulatory activities, preventing hyper-
activation of the innate cellular immunity [4]. Further-
more, they can inhibit the secretion of gamma interferon,
a cytokine with antiviral activity [5]. A direct role for COXs
and PGs in controlling viral replication has been
described for a wide range of virus infections, but their
actions appear to be dependent on both the virus and cell
type [6]. For instance, COXs and/or PGs are required for
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efficient replication of herpesviruses [7-13], bovine leuke-
mia virus [14], and rotavirus [15]. In case of human
cytomegalovirus, human T-lymphotropic virus type 1,
and human immunodeficiency virus type-1 PGE2 has
been shown to stimulate virus replication by activating
viral promotors [16-18]. On the other hand, COXs/PGs
negatively affect adenovirus replication, as well as replica-
tion of human immunodeficiency virus type 1 in macro-
phages [19,20]. The mechanisms by which COXs and PGs
regulate viral replication are largely unclear.

Coronaviruses (CoVs) constitute a family of enveloped,
positive-stranded RNA viruses. They are known pathogens
in the veterinary field, causing severe diseases in several
domestic species [21]. Recently, their relevance has
increased considerably with the discovery of several new
human CoVs (HCoVs) such as the severe acute respiratory
syndrome (SARS)-CoV [22], HCoV-NL63 [23], and
HCoV-HKU1 [24]. The role of COXs during CoV infection
and pathogenesis is not well understood. MHV strain 3,
which causes fulminant hepatitis, was shown to induce
the synthesis of PGE2 in macrophages [25]. However, the
exogenous administration of PGE2 could completely pre-
vent the development of hepatic necrosis [26]. More
recently, two structural proteins from the SARS-CoV were
shown to induce the expression of COX-2 in vitro [27-29],
whereas elevated levels of PGE2 were found in the blood
of SARS-CoV-infected individuals [30], suggesting a role
for COXs and PGs in CoV pathogenesis. However, the
requirement for COX activity for CoV replication remains
unexplored.

Results
In the present study we investigated the role of COXs in
the MHV replication cycle. To this end, Caco-2 cells, stably
expressing the MHV receptor glycoprotein (Caco-MHVR)
[31], were infected with MHV strain A59 (MHV-A59) at a
multiplicity of infection (m.o.i.) of 0.01 in the presence or
absence of the COX-1 and COX-2 inhibitors indometh-
acin and curcumine. The cells were incubated 1 h prior to
infection with the inhibitors, and were maintained in the
presence of the inhibitors from 30 minutes post infection
(p.i.). Cells were fixed at 6 h p.i. with ice-cold methanol,
and the number of MHV-infected cells were determined
by an indirect immunofluorescence assay (IFA) using
anti-MHV antibodies [32]. Possible cytotoxic effects of the
inhibitors and their solvents were tested, using cell prolif-
eration reagent WST-1 and lactate dehydrogenase cytotox-
icity detection kit (Roche Diagnostics) assays according to
the manufacturer's protocol. All inhibitors were used at
concentrations that were not toxic to the cells. In the pres-
ence of 20 µM indomethacin, MHV infection was reduced
by 57%, while curcumine reduced infection by 95% at a
concentration of 30 µM (Figure 1). Both drugs affected

MHV infection in a concentration-dependent manner
(data not shown).

Next, we determined the role of the different COX iso-
forms. The ability of specific COX-1 and COX-2 inhibitors
to reduce MHV infection was determined in a similar way
as described above. Both SC-560 and NS-398, which
inhibit COX-1 and COX-2, respectively, reduced MHV
infection by 65–75% at concentrations that were non-
toxic to the cells (1 µM and 0.055 µM respectively) (Figure
2A). Apparently, the activity of both enzymes is required
for efficient MHV replication in Caco-MHVR cells. RNA
interference technology was applied to confirm the obser-
vation that COX-2 activity is important for MHV replica-
tion. Parallel cultures of HeLa cells were transfected with
siRNAs (purchased from Dharmacon, Inc.) targeting
COX-2, firefly luciferase (FL) (positive control) or
GAPDH (specificity control) transcripts for degradation.
They were infected at 72 h posttransfection with MHV-
FLSrec [33], a recombinant MHV expressing the FL
reporter gene, the level of which is a reliable measure for

COX inhibitors are negatively affecting MHV infectionFigure 1
COX inhibitors are negatively affecting MHV infec-
tion. (A) Caco-MHVR cells were incubated with culture 
medium (containing a concentration of DMSO similar to that 
present in the inhibitor solutions), 20 µM indomethacin, or 
30 µM curcumine 1 h prior to inoculation with MHV-A59 
(m.o.i = 0.01). The cells were maintained in the presence of 
the inhibitors until they were fixed at 6 h p.i. Infected cells 
were detected by an indirect IFA using an anti-MHV serum 
and Texas Red conjugated secondary antibodies. Fluores-
cence was viewed with a Nikon Eclipse E800 microscope. 
The numbers of MHV-infected cells in the drug-treated cells 
are presented as a percentage of the average number of 
infected cells in the mock-treated (control) cell cultures. 
Data are presented as mean ± standard error of mean (n = 
6). For statistical analysis a one-way ANOVA with the Tukey-
Kramer test was performed using GraphPad Prism version 
3.00 for Windows (GraphPad Software). In all tests, P < 0.05 
was considered statistically significant.
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MHV replication [34]. Silencing of GAPDH, a cellular
housekeeping gene, did not affect FL expression compared
to mock-transfected (control) cells (Figure 2B). However,
HeLa cells transfected with siRNAs targeting the FL or
COX-2 transcripts showed a reduction in FL expression of
more than 90% and 65%, respectively. A taqman reverse
transcription (RT)-PCR targeting COX-2 mRNA revealed
that in cells treated with COX-2 siRNAs, COX-2 mRNA
levels were decreased with more than 70% compared to
control cells (data not shown). Therefore, these data show
the requirement of COX-2 activity for efficient MHV rep-
lication.

To determine which step of the MHV replication cycle was
affected by the COX inhibitors, the production of infec-
tious particles, of viral protein and of viral RNA was ana-
lyzed. For this purpose, Caco-MHVR cells were inoculated
with MHV-A59 (m.o.i. = 1) in the presence or absence of
indomethacin or curcumine. The amount of infectious
viral progeny present in cells and culture media was mon-
itored by determining the number of fluorescent focus-
forming units (ffu) at different time points p.i. Inhibition
of COX activity by curcumine and indomethacin resulted
in a significant decrease in the yield of infectious viral
progeny by more than 95% and 85%, respectively (Figure
3A). In addition, the amount of N protein present in cell
lysates was analyzed by Western blotting using a polyclo-
nal anti-MHV serum. N protein expression levels were

markedly reduced by curcumine (86% reduction), and to
a lesser extent by indomethacin (24%) (Figure 3B). Con-
sistent with these results, much smaller syncytia were
observed after infection of Caco-MHVR cells in the pres-
ence of the COX inhibitors (Figure 3C). Reduced expres-
sion levels of the MHV S protein, which is responsible for
cell-cell fusion in MHV-infected cells [35] are likely to
explain the lack of syncytium formation after COXs inhi-
bition. Finally, viral RNA synthesis was analyzed in the
presence of COX inhibitors. At 6 h p.i., total RNA was iso-

Indomethacin and curcumine inhibit MHV replication at the level of RNA synthesisFigure 3
Indomethacin and curcumine inhibit MHV replica-
tion at the level of RNA synthesis. Caco-MHVR cells 
were incubated with and maintained in culture medium con-
taining DMSO, 20 µM indomethacin, or 30 µM curcumine as 
described in figure legend 1. After 1 h, the cells were inocu-
lated with MHV-A59 (m.o.i. = 1). At 6 and 9 h p.i., superna-
tants were collected and cells were harvested to isolate 
infectious viral particles, proteins and total RNA. (A) Caco-
MHVR cells were inoculated with serial dilutions of com-
bined supernatants and cleared cell homogenates from 
mock-treated (black bars), indomethacin-treated (grey bars) 
and curcumine-treated (white bars) cultures collected at 6 
and 9 h p.i. The amount of ffu in the samples was determined 
with an indirect IFA as described in the legend of Figure 1 (n 
= 3). (B) Protein samples were analyzed on a SDS-15% poly-
acrylamide gel followed by Western blotting using the poly-
clonal anti-MHV serum. The N protein levels and the 
percentage of reduction (normalized for β-tubulin expression 
(data not shown)) in drug-treated cells compared to mock-
treated cells are indicated. (C) The size of the observed syn-
cytia was measured by counting the number of nuclei per 
syncytium of MHV-infected cells in the absence or presence 
of 20 µM indomethacin. (D) The expression levels of the N 
gene of MHV were determined by Taqman RT-PCR using 
primers 2915 (5'-GCCTCGCCAAAAGAGGACT-3') and 
2916 (5'-GGGCCTCTCTTTCCAAAACAC-3') and a dual 
labeled probe (5'-6-FAM-CAAACAAGCAGTGCCCAGT-
GCAGC-TAMRA-3'). The relative amount of viral RNA in 
the drug-treated cells was expressed as a percentage of the 
average amount of viral RNA in the mock-treated cells.
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Blocking COX-1 or COX-2 activity by specific inhibitors, or by siRNAs targeting COX-2 mRNA reduce MHV infectionFigure 2
Blocking COX-1 or COX-2 activity by specific inhibi-
tors, or by siRNAs targeting COX-2 mRNA reduce 
MHV infection. (A) Caco-MHVR cells were incubated with 
COX-1 (SC-560; 1 µM) or COX-2 (NS-398; 0.055 µM) 
inhibitor 1 h prior to inoculation with MHV-A59 (m.o.i. = 
0.01) and were maintained in the presence of the inhibitors 
until they were fixed. The numbers of MHV-infected cells 
were determined with an indirect IFA and are presented as 
described in the legend of Figure 1. (B) HeLa cells were 
transfected with 10 nM siRNAs, targeting the indicated tran-
scripts, 72 h prior to inoculation with MHV-FLSrec. Cell via-
bility was measured for 30 minutes at 6 h p.i. using a WST-1 
assay as described previously [37], after which the intracellu-
lar luciferase levels were determined as relative light units 
(RLU). Luciferase levels in siRNA-transfected cells are 
expressed as a percentage of the levels in the mock-trans-
fected (control) cells and were corrected for the percentage 
of viable cells (n = 3).
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lated and viral RNA synthesis was monitored by Taqman
RT-PCR using a probe and primers that detect the N gene
(details in legend Figure 3). Indomethacin and curcumine
both inhibited viral RNA synthesis in a dose-dependent
manner (Figure 3D). These results indicate that the COX
inhibitors interfere with viral RNA and protein synthesis
and consequently affect the production of infectious par-
ticles. In agreement with our findings, a recent study
described the potent antiviral effect of indomethacin on
SARS and canine coronavirus (CCoV) replication [36].

To study the kinetics of inhibition of MHV replication in
more detail Caco-MHVR cells were inoculated with MHV-
A59 (m.o.i. = 0.01) for 2 h at 4°C to allow binding of the
virus to the cells without entry. After removing any
unbound viral particles, the cells were placed at 37°C to
induce virus entry and 20 µM indomethacin was added at
the time points indicated (Figure 4). MHV infection was
significantly reduced, as measured by the indirect IFA
described above, if indomethacin was added up to 1 h
after the cells were placed at 37°C. The maximum inhibi-
tory effect was obtained when indomethacin was added
immediately after the cells were placed at 37°C. No signif-
icant inhibition of the infection was observed if
indomethacin was added 2 h after the cells were placed at
37°C. This result demonstrates that COX activity plays an
important role early in the virus infection cycle, at a post-
binding step. Thus, COX activity might either be required
for efficient entry or for an initial step in RNA replication.

Similarly, rotavirus replication was also negatively
affected by the addition of COX inhibitors early, but not
late in the infection cycle [15]. In conclusion, our results
clearly show that COX activity is required for efficient
virus replication in vitro early during MHV infection.
These findings may offer new possibilities for anti-CoV
therapy.
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