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H5-based DNA constructs derived from selected
highly pathogenic H5N1 avian influenza virus
induce high levels of humoral antibodies in
Muscovy ducks against low pathogenic viruses
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Abstract

Background: H5 low pathogenic avian influenza virus (LPAIV) infection in domestic ducks is a major problem in
duck producing countries. Their silent circulation is an ongoing source of potential highly pathogenic or zoonotic
emerging strains. To prevent such events, vaccination of domestic ducks might be attempted but remains
challenging. Currently licensed vector vaccines derived from H5N1 HPAIV possess clade 0, clade 2.2 or clade 234
HA sequences: selection of the best HA candidate inducing the largest cross protection is a key issue. For this
purpose, DNA immunization of specific pathogen free Muscovy ducks was performed using different synthetic
codon optimized (opt) or native HA genes from H5N2 LPAIV and several HSNT HPAIV clade 2.1, 2.2.1 and 2.34.
Humoral cross-immunity was assessed 3 weeks after boost by hemagglutination inhibition (HI) and virus
neutralization (VN) against three French H5 LPAIV antigens.

Findings: Vaccination with LP H5N2 HA induced the highest VN antibody titre against the homologous antigen;
however, the corresponding HI titre was lower and comparable to HI titres obtained after immunization with
opt HA derived from clades 2.3.4 or 2.1. Compared to the other HPAIV-derived constructs, vaccination with clade
2.3.4 opt HA consistently induced the highest antibody titres in Hl and VN, when tested against all three H5
LPAIV antigens and H5N2 LPAIV, respectively: differences in titres against this last strain were statistically
significant.

Conclusion: The present study provides a standardized method to assess cross-immunity based on HA
immunogenicity alone, and suggests that clade 2.3.4-derived recombinant vaccines might be the optimal candi-
dates for further challenge testing to vaccinate domestic Muscovy ducks against H5 LPAIV.
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Dedication

The final revision and preparation for publication of this
report is dedicated to the memory of our late colleague
Olivier Guionie, who untimely died on the 9™ of July 2013.

Findings

Avian influenza virus (AIV) infection is a worldwide major
concern for both animal and human health. Infection of
domestic poultry by H5 and H7 highly pathogenic (HP)
AIV has caused high mortality outbreaks in susceptible
species and heavy economic losses following depopulation
in infected areas. By contrast, AIV only rarely caused se-
vere clinical signs or mortality following infection in do-
mestic duck species. However, some of the reported
outbreaks actually took place after evolution of the virus
from low pathogenic (LP) to HP phenotype by nucleotide
insertion in the hemagglutinin gene, following introduc-
tion and circulation of the virus in terrestrial domestic
species [1]. To control and prevent silent AIV circulation,
compulsory active surveillance of domestic bird flocks
focused on H5 and H7 AIV has been implemented, and
results from these serological surveys in the European
Union show that domestic ducks and geese have the high-
est apparent seroprevalence for H5 and H7 subtypes [2].
Direct transmission of AIV from birds to humans has also
been observed and results generally in mild infections with
LPAIV H7, H9 and H10 subtypes, or severe and frequently
fatal disease with HPAIV H5N1 and recently LPAIV
H7N9, which raises again concern for uncontrolled evolu-
tion of LPAIV towards potentially zoonotic emerging
strains (or even panzootic if the virus can acquire through
mutation or reassortment an ability to transmit easily be-
tween humans) [3,4]. To prevent such events in the con-
text of high prevalence of subclinical infection in duck-
producing countries, reduction of LPAIV transmission be-
tween highly receptive domestic ducks would be essential
and may be achieved using vaccination, in addition to bio-
security measures [5]. For LPAIV infection control in
ducks, inactivated whole virion vaccines would have draw-
backs: the vaccinal immune response is delayed and does
not allow any easy differentiation from a post-infectious
immune response (in the face of various circulating
strains). On the contrary, recombinant hemagglutinin-
derived vector-based vaccines are live vaccines that may
allow a more rapid onset of immunity [6]. Since the AIV-
specific post-vaccination immune response is directed
against only one of AIV proteins, the hemagglutinin (HA),
a straightforward strategy based on serological detection
of antibodies against conserved internal antigens of AIV is
also available to differentiate infected birds [7,8]. Most
commercially available licensed recombinant vaccines
were derived from H5N1 HPAIV and constructed using
the original clade 0 A/goose/Guandong/96, a clade 2.3.4
or a clade 2.2 H5 insert sequence [8-10]. Two other
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licensed recombinant H5 influenza vaccines also exist but
rely on respectively older or more phylogenetically distant
strains: HPAIV H5N8 or LPAIV H5N2 HA sequences
[11,12]. All the licensed vector vaccines mentioned above,
which used Newcastle disease virus (NDV), fowlpox virus
or turkey herpesvirus as a backbone, were extensively
tested in chicken against different clades of H5N1 HPAIV
[13-16]. However, to our knowledge their efficacy is not
documented in domestic ducks against LPAIV.

In order to investigate which available recombinant vec-
tor vaccines would be efficient to vaccinate ducks against
H5 LPAIV, a pre-screening strategy was used in this study,
focusing on humoral immunity induced by DNA vaccin-
ation using H5 sequences. Several sequences were selected
to retain only recent strains isolated from the first spread
of Asian H5N1 HPAIV in 2003 and later on, which were
subsequently used in licensed vector vaccines: these were
clade 2.1, clade 2.2.1 and clade 2.3.4 H5 HPAIV strains
(Table 1). Some of the tested sequences were artificially
codon optimized to match chicken codon bias: previous
studies had shown a positive effect of HA gene codon
optimization on the induced antibody titres [17,18] and
these findings were confirmed in the present study when
comparing levels of antibodies induced against native and
optimized clade 2.2.1 HPAIV sequences, in serological
tests using a homologous H5 antigen (data not shown).

One hundred and twenty 5-week-old SPF Muscovy
ducks were split in seven groups immunized with differ-
ent plasmid DNA preparations, as described in Table 1,
following a homologous prime-boost scheme. DNA was
administered in the external thigh muscle with a needle-
free insulin injection Medi Jector Vision system (Medi-Ject
Corporation, Minneapolis, USA) as already described [19].
Animal experiment procedures on duck vaccination and
protection studies were submitted to the French public
regulatory control body, and approved by the French
Ministry of agriculture, in accordance with European direc-
tives and national regulations. The six viral H5 sequences
detailed in Table 1 were cloned in the pcDNA 3.1(-) vector
(Invitrogen) and were selected from: (i) one LP H5N2
French strain [20,21] showing large cross-reactivity by
hemagglutination inhibition [HI] test against French H5
LPAIV, which serves as a reference in the screening study;
(i) two HP H5NI1 clade 2.2.1 viruses isolated in France in
2006 [22], as native sequences; (iii) three prototype HP
H5NT1 strains belonging to three different clades (selected
as explained above), whose sequence were codon opti-
mized for chicken usage and synthesized by Geneart AG
(Germany). The original cleavage sites of the native and
codon optimized (opt) HPAIV H5 sequences were modi-
fied as a LP site. Sera from the immunized Muscovy ducks
were collected three weeks after boost and were tested
against French H5 LPAIV strains in HI test following
international standards [23] and in virus neutralization
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Table 1 DNA constructs and administration schemes used in immunization studies

Group (number of ducks)

Treatment®/origin/clade-genotype'
gene for DNA immunization

Accession number'©
and reference

b) of the HA

H5N2 LP (15)
Opt 2.1 (30)
221Gl (15)
22.1G2(15)
Opt 2.2.1 (15)
Opt 234 (15)

Negative control (15)

N (LP H5N2)/A/duck/France/05057b/2005
Opt mut (HP H5N1)/A/chicken/Indonesia/7/03/2.1
N mut (HP H5N1)/A/common pochard/France/06167/06/2.2.1 G1
N mut (HP H5N1)/A/swan/France/06299/06/2.2.1 G2
Opt mut (HP H5N1)/A/turkey/Turkey/1/05/2.2.1
Opt mut (HP H5N1)/A/duck/Laos/3295/06/2.34

AJ972673 [20]
ABO30346
AM498628 [22]
EF395820 [22]
ABD73284
ACH68553

No HA gene® -

Prime immunization was done at five weeks and boost at eight weeks of age with 100 ug DNA per duck in all groups. Bleeding was done three weeks after

the boost.

The percentages of amino acid identity and the corresponding differences between all six H5 sequences are displayed in Additional file 1: Tables S2 and S3.

@N = native; opt = chicken codon optimized; mut = mutated cleavage site HP — LP.

®\When relevant.

©Genbank.

@The most represented subgroup in 2006 French outbreaks.
©Empty pcDNA3.1(-).

(VN) test using an adapted technique [24]. For HI tests, a
technical detection limit of 2 log, titre was achieved, and
the OIE-recommended positivity threshold of 4 log2 was
used to interpret results [23]. For VN tests, the detection
limit was at 3 log, titre, and no consensus positivity
threshold exists. HSN2 A/duck/France/05057b/2005 was
used in both VN and HI tests, whereas H5N1 A/duck/
France/05066b/2005 and H5N3 A/duck/France/070090b/
2007 were used in HI test only: these LP viruses were iso-
lated from French domestic duck flocks and selected as
representative of circulating French H5 LPAIV strains ac-
cording to cross reactivity patterns against reference sera
[20,21]. Percentages of amino acid identity and correspond-
ing differences between H5 sequences used in the present
study are displayed in Additional file 1: Tables S2 and S3.

Empty pcDNA 3.1(-) did not induce measurable HI
and VN titres (data not shown), confirming all other
measured titres were a direct result of the immune
response elicited following expression in the ducks of
the H5 inserted DNA constructs.

Vaccination with LP H5N2 HA induced positive HI
antibody titres and detectable neutralizing antibodies
in all vaccinated ducks, using the homologous LP anti-
gen, with the highest mean VN titre (8.5 log,) com-
pared to all tested HPAIV-derived HA (Figure 1).
However, the corresponding mean HI titre (5.9 log,)
using the same LP antigen was lower than the VN
titre. The former was of intermediate value between
HI titres obtained after vaccination with opt 2.3.4 HA
and opt 2.1 HA, and was still significantly higher than

HS5N2 LP antigen
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Figure 1 Compared serological responses following immunization with different H5 DNA constructs. HI test (left) and VN test (right) were
performed against LP H5N2 A/duck/France/050570/2005 [20,21]: geometric mean titres (logs) are displayed with corresponding standard deviations
(error bar). A dashed line indicates the positivity threshold (24 logs) in HI test, and the detection threshold (23 log,) in VN test. The number of positive
sera in HI test and of detected sera in VN test, over the total number of testable sera, is given above the corresponding bar for each group. For a given
histogram, bars with different capital letters are statistically different, using Student-Newman-Keuls test following GLM procedure (SAS version 9.1, SAS
Institute Inc, Cary, NC, USA) at risk a = 0.05. For the overall analysis of variance, p-values are mentioned in brackets above each histogram. For statistical
analysis, sera with undetected antibody levels were given an arbitrary integer value immediately below the detection threshold of the respective test:
respectively equal to 1 log, and 2 log, for HIl and VN tests. *: HA in the DNA construct and in the antigen strain are homologous.
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HI titres obtained with native or optimized clade 2.2.1
HA (Figure 1).

Comparisons of serological response induced by vaccin-
ation schemes with the different selected HPAIV-derived
DNA constructs showed that opt 2.3.4 HA immunization
gave the highest serum antibody titres in both VN and HI
tests against LP H5N2 antigen (6.5 log, for both tests;
Figure 1). All ducks vaccinated with opt 2.3.4 HA were
also positive in HI test and had detectable neutralizing
antibodies (Figure 1). For the last four constructs (opt
2.1 HA, opt 2.2.1 HA, 2.2.1 G1 HA and 2.2.1 G2 HA),
VN and HI titres against LP H5N2 antigen, ranging re-
spectively from 3.4 to 4.3 log, and 3.4 to 5.0 log,, were
significantly lower than titres induced by opt 2.3.4 HA.
Accordingly to these differences in antibody titres, vac-
cination with these last four constructs did not con-
stantly induce positive titres in HI test or detectable
neutralizing antibodies: from nearly 10% ([4% - 31%]
95% confidence interval [CI]) to slightly more than 50%
([27% - 79%] 95% CI) of the vaccinated ducks were
negative in HI or VN test against LP H5N2 antigen
(Figure 1). However, HI titres obtained for opt 2.1 HA
(5.0 log,) were not significantly different from homologous
HI titres (induced by LP H5N2 HA).

HI tests performed against LP H5N3 (Figure 2) showed
significantly higher HI titres obtained for opt 2.3.4 and
opt 2.2.1 HA than for opt 2.1 and LP H5N2 HA (5.1
and 4.7 log, respectively) and these differences were
reflected in the number of positive sera in HI test: only
following opt 2.3.4 and opt 2.2.1 HA vaccination were
all ducks positive. HI tests against LP H5N1 (Figure 2)
did not show any overall significant differences in anti-
body titres between the three optimized HP HA and LP
H5N2 HA and all vaccinated ducks were positive irre-
spective of the DNA construct used: HI titres ranged
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from 6.4 to 7.3 log,, but the highest observed mean titre
was obtained following opt 2.3.4 HA immunization.

In this study, the broadness of antibody response in SPF
Muscovy ducks, following immunization with DNA encod-
ing several H5 genes from different pathotypes and origins,
was assessed so that the best insert could be determined
on this criterion. This approach helps overcome interfer-
ence of other Al proteins often encountered when extrapo-
lating HA-induced cross immunogenicity results from sera
prepared following immunization with whole virions. DNA
immunization would better mimic vaccination with a viral
vector expressing HA alone. This limitation to humoral
immunity testing alone was implemented since the present
DNA vaccination study would only serve to screen differ-
ent H5 inserts to limit any further full challenge protection
studies only to the relevant H5 sequence inducing the
broadest cross-reactive antibodies.

Ducks generally develop poor HI systemic antibody
response to experimental and natural Al infection, not-
ably with H5 LPAI [25-27] (and unpublished data from
the French NRL for avian influenza), with few individual
antibody responses and low titres close to the positive
threshold. Antibody titres against influenza were also
highly variable in a post-vaccination surveillance study
in France in 2006. Following vaccination with an inacti-
vated H5N2 vaccine in free-range domestic ducks, sera
were collected in flocks where unvaccinated sentinel
birds had remained negative and were tested against the
vaccinal antigen: HI titres ranged between 0 and 9 log,
with a mean titre of 6 log, [28]. Other experimental
studies have shown that vaccination against influenza in
ducks with inactivated vaccines eventually requires higher
antigen doses and multiple injections to be immunogenic
and protective [29]. Depending on the type of vaccine used
(inactivated or recombinant vector vaccine), experimental
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Figure 2 Compared serological responses in Hl tests, following immunization with different H5 optimized DNA constructs. HI tests were
performed against LP H5N1 A/duck/France/05066b/2005 and LP H5N3 A/Muscovy duck/France/070090b/2007 [20,21]: see Figure 1 for legend. NS
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post-vaccination mean HI antibody titres against an
antigen homologous to the vaccine usually remain low
in Muscovy ducks, ranging from <2 to 5.4 log, follow-
ing a single injection [30-32]. These titres could in some
instances be raised following boost injection to moder-
ate or high values of 3.4 to 7.5 log, [30,31]. This could
be due to a distinctive feature of duck immunoglobulin
(Ig) Y (bird IgG equivalent) that co-exists as full-length
IgY and Fc-truncated IgY(AFc), with variable ratios accord-
ing to the individual and time of the immune response
[33]. HI titre variability between ducks might correspond
to the variable switch from full-length IgY to the truncated
form: lack of Fc could potentially decrease steric hin-
drance of IgY that may be necessary for the inhibition of
hemagglutination.

However, quality of the humoral immune response
could also be influenced by the way vaccine antigen up-
take by dendritic cells takes place and by the more or
less efficient presentation to immune effector cells. DNA
vaccines may actually stimulate the immune system in a
more uniform and balanced way, and elicit less variable
antibody titres. The level itself of obtained HI titres is
comparable to previous experimental studies with clas-
sical inactivated or vector vaccines, since the present
prime-boost DNA immunization model with a specific
needle-free injection device was able to induce HI anti-
bodies in most ducks with a mean titre around 6 log,
following LP H5N2 HA immunization. Indeed, all ducks
vaccinated with this HA were positive in HI test against
the homologous LP H5N2 antigen or a heterologous LP
H5N1lantigen, and a majority of them (12 out of 15)
were positive in HI test against a LP H5N3 antigen
(Figures 1 and 2). Homogeneous levels of antibody ti-
tres were also obtained, ensuring a low standard devi-
ation between ducks of the same group and allowing
comparison between immunogenic DNA inserts. How-
ever, boost injection was essential, as titres obtained
with only a prime were too low and did not allow com-
parisons to be made between DNA constructs. Deter-
mination of an optimal dose of injected DNA was also
influent on the level of antibody titres: prime-boost in-
jections of different doses of LP H5N2 HA DNA con-
struct (50, 100, 150, 200 and 250 pg) were tested. Mean
HI titres against LP H5N2 antigen were significantly
smaller for the 50 pg dose compared to the other
groups, which had similar titres (data not shown): a
100 pg dose was therefore kept as optimal for the
present study. Finally, a good correlation was also ob-
served between HI and VN tests against LP H5N2 antigen
(Pearson correlation coefficient =0.72) with VN giving
similar or significant higher titres (1.1 log,) than HI,
strengthening the extrapolation of cross-immunogenicity
results based on HI tests and their interpretation as pos-
sible cross-protection. Such data demonstrate the interest
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of DNA immunization for exploring both aspects and
assessing cross-immunity based on HA immunogenicity
alone.

A positive effect of codon optimized HA gene on anti-
body titres in immunized birds was found in previous
studies [17,18]. However, in the present study, no statis-
tically significant effect of codon optimization on cross-
immunogenicity against a distant LP H5N2 antigen was
observed for clade 2.2.1 HA: there was only a slight
increase of at least 0.8 log, and 0.7 log, in respectively
HI and VN test between native and codon optimized
HA gene immunization.

Given the available licensed vector H5 vaccines, DNA
inserts derived from clade 2.3.4 HPAIV appear to be an
optimal choice if reduction of LPAIV infection is sought
as an additional goal in vaccinating domestic ducks. Based
on serological tests against three different representative
French H5 LPAIV strains, DNA immunization with opt
2.34 consistently induced either the highest HI antibody
titres (against a LP H5N2 antigen) or at least equivalent
HI titres (against LP H5N1 and LP H5N3 antigens)
compared to other tested HPAIV-derived HA. However,
the choice of a relevant H5 insert is not the only way to
optimize vaccination against LPAIV in ducks. Since
LPAIV have a marked intestinal tropism in aquatic
birds, it would also probably be valuable to develop and
test vector vaccines based on enterotropic viruses. Not-
ably, a recently devised duck enteritis virus (DEV) bearing
a clade 2.3.4 H5 insert would be a relevant candidate [34].
DEV has a strong intestinal tropism and induces latent re-
activating infections: both features would probably further
enhance local immune responses in ducks. However, this
vaccine is still experimental and is not available for direct
infectious challenge tests to validate our present screening
study.

Additional file

Additional file 1: Table S2. Percentage of amino acid identity between
different H5 sequences used in immunization studies and in serological
test antigens. Table S3. Amino acid differences between H5 sequences
used in immunization studies and in serological test antigens, according
to their position.
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