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Abstract

Background: Hantaviruses cause acute hemorrhagic fever with renal syndrome (HFRS). Currently, several types of
inactivated HFRS vaccines are widely used, however the limited ability of these immunogen to elicit neutralizing
antibodies restricts vaccine efficacy. Development of an effective vaccine to overcome this weakness is must.

Methods: In the present study, a recombinant pseudotyped lentivirus bearing the hantaan virus (HTNV) envelope
glycoproteins (GP), rLV-M, was constructed. C57BL/6 mice were immunized with the rLV-M and a series of
immunological assays were conducted to determine the immunogenicity of the recombinant pseudotyped
lentivirus. The humoral and cell-mediated immune responses induced by rLV-M were compared with those of the
inactivated HFRS vaccine.

Results: Indirect immunofluorescence assay (IFA) showed the rLV-M expressed target proteins in HEK-293cells. In
mice, the rLV-M efficiently induced GP-specific humoral responses and protection against HTNV infection.
Furthermore, the rLV-M induced higher neutralizing antibody titers than the inactivated HFRS vaccine control.

Conclusions: The results indicated the potential of using a pseudotyped lentivirus as a delivery vector for a
hantavirus vaccine immunogen.
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Introduction
Hantaviruses constitute a genus of the family Bunya-
viridae. Hantaviruses are spherical, enveloped viruses
with a genome consisting of three segments of single-
stranded, negative-sense RNA. The three segments are
designated as the small (S), medium (M) and large (L)
segments, which encode the nucleocapsid protein (NP),
the precursor to the virion envelope glycoproteins (GP),
and RNA polymerase, respectively [1]. The glycoprotein
precursor is co-translationally cleaved to generate the
glycoproteins Gn and Gc, which form heterodimers in
the endoplasmic reticulum [2].
Hantavirus infections are known to cause two serious

and often fatal human diseases, hemorrhagic fever with
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renal syndrome (HFRS) and hantavirus pulmonary syn-
drome (HPS) [3]. Four hantavirus species are responsible
for most cases of HFRS in Asia and Europe: Hantaan
virus (HTNV), Seoul virus (SEOV), Puumala virus
(PUUV) and Dobrava virus (DOBV) [4]. Most HPS cases
in North America are caused by Sin Nombre virus
(SNV) or in South America, Andes virus (ANDV) [5,6].
Although vaccination, along with public education and
rodent control measures, have coincided with a reduc-
tion in HFRS, now totaling less than 20,000 cases per
year, China still has the highest number of HFRS cases
and deaths in the world [7]. The majority of Chinese
cases are caused by HTNV and SEOV.
Cultured cell-derived inactivated vaccines against

HTNV and SEOV were developed in China, North
Korea and Korea [8]. These vaccines induce strong
humoral immune responses, but neutralizing antibodies
are difficult to elicit. [9]. Researches have hypothesized
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that glycoproteins play an important role in eliciting
neutralizing antibodies capable of protecting humans
and animals from Hantavirus infection [10]. Several lines
of evidence support this assumption. Firstly, monoclonal
antibodies (mAbs) directed against Gn and Gc, but not
NP, display neutralizing activity in vitro [11]. Secondly,
passive immunization with HTNV envelope glycopro-
tein-directed mAbs protects suckling mice from a lethal
dose of virus [12]. Thirdly, vaccination of animals with
glycoproteins of HTNV elicits neutralizing antibodies
and protects rodents against infection with HTNV
[13,14]. Thus, Hantavirus glycoproteins are considered
protective antigens, and are the main immunogen candi-
dates for genetically engineered vaccines targeting for
hantaviruses.
Lentiviral vectors (LVs) have been shown to be ex-

cellent delivery vehicles for antigens of infectious
diseases or cancers for vaccination purposes, capable
of eliciting effective cellular immunity and humoral
responses [15]. LVs are capable of delivering large an-
tigens to aid the induction of antigen-specific immun-
ity from antigen-presenting cells (APCs). Another key
feature of LVs is the low anti-vector immunity inher-
ent in host organisms, allowing LVs and transgene-
expressing cells to avoid rapid clearance. This results
in efficient antigen expression and presentation
in vivo and allows for the possibility of multiple
rounds of immunizations [16]. It has been previously
shown that the direct injection of antigen-expressing
Figure 1 Immunofluorescence detection of HTNV Gn and Gc expressi
treated with mouse monoclonal antibody 6F7 or LV48A to detect Gn or Gc
demonstrate the positive fluorescence signals. Normal HEK 293 cells were u
HEK 293 cells.
LVs has been very effective in generating neutralizing
antibodies against WNV [17].
In this study, we constructed a recombinant pseu-

dotyped lentivirus, rLV-M, expressing the HTNV GP.
C57BL/6 mice immunized with rLV-M developed HT
NV-specific cellular and humoral immune responses.
Neutralizing antibodies were produced at high titers and
protected mice from infection with HTNV to a certain
extent. We believe that rLV-M demonstrates the poten-
tial of using a pseudotyped lentivirus as a delivery vector
for a hantavirus vaccine immunogen.

Results
Expression of HTNV Gn and Gc by recombinant
pseudotyped lentivirus
HEK293 cells were infected with the recombinant
pseudotyped lentivirus rLV-M expressing HTNV GP.
After 48h expression of both Gn and Gc was detected
by IFA (Figure 1).

Titration of recombinant pseudotyped lentivirus
containing HTNV glycoproteins
HEK293 cells were infected with rLV-M, and GFP-
expressing cells were detected by fluorescence micro-
scope 48 h after infection. The 10-4 dilution was used to
calculate the titer since the number of GFP-positive cells
fell into the desired range of 1–10. The number of GFP-
positive cells was four, calculated as follows: 4×104+3

TU/ml. Thus the titer of rLV-M was 4×107 TU/ml.
on in HEK 293 cells infected by rLV-M. Infected HEK 293 cells were
respectively. TRITC-conjugated goat anti-mouse antibody was used
sed as negative control. (A) rLV- M-infected HEK 293 cells; (B) normal



Table 1 Neutralizing antibody titer detection in the
serum of immunized mice (n=8)

Mouse rLV-M rLV-ZsGreen HFRS vaccine NS

1 1:80 - 1:20 -

2 1:80 - 1:10 -

3 1:160 - 1:20 -

4 1:80 - 1:20 -

5 1:160 - 1:10 -

6 1:80 - 1:20 -

7 1:160 - 1:20 -

8 1:80 - 1:20 -
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Induction of humoral immune responses by rLV-M
immunization
In all mice immunized with rLV-M or HFRS inactivated
vaccine, similar levels of anti-GP antibodies were
detected after the third immunization (Figure 2A) and
the geometric mean titers (GMT) were 1:134.543 and
1:146.721, respectively. NP-specific antibodies were only
detected in the mice inoculated with HFRS inactivated
vaccine (Figure 2B). Neither GP-specific antibody nor
NP-specific antibody was detected in the rLV- ZsGreen
or NS group. These results indicate that rLV-M was able
to induce GP-specific antibodies in mice.
Neutralizing antibody titers were detected by the cell

microculture neutralization test. As shown in Table 1,
all eight mice immunized with rLV-M developed
Figure 2 HTNV GP- and NP-specific antibody titer in the serum
of immunized mice (n=8). Anti-GP and NP antibodies were
measured using ELISA. (A) HTNV GP specific antibody. (B) HTNV NP
specific antibody. Similar levels of anti-GP antibodies were detected
in mice immunized with rLV-M and HFRS inactivated vaccine.
NP-specific antibodies were only induced in mice inoculated with
the HFRS inactivated vaccine.
neutralizing antibodies after the third immunization, and
the neutralizing titers ranged from 1:80 to 1:160, which
were much higher than those induced by the HFRS vac-
cine (p<0.05). Neutralizing antibodies were not detected
in mice immunized with rLV-ZsGreen and NS. The re-
sults suggest that immunization with rLV-M elicits neu-
tralizing antibodies more efficiently than the inactivated
vaccine.

Frequency of IFN-γ, IL-2, IL-10 and IL-4-secreting cells in
splenocytes after immunization with rLV-M
The frequencies of IFN-γ, IL-2, IL-4 and IL-10-secreting
cells in splenocytes of immunized mice were determined
by the ELISPOT assay. Immunization with rLV-M
induced a significantly higher frequency of GP specific
IL-4 and IL-10-secreting cells than immunization with
rLV-ZsGreen control and NS (Figure 3), and an equiva-
lent level to the inactivated vaccine group. However, the
IFN-γ and IL-2 levels did not change significantly for
the rLV-M immunization group (Figure 4).

Evaluation of the protective efficacy of rLV-M in mice
To assess the protective immunity induced by rLV-M,
mice were challenged with HTNV ten days after the
final booster immunization. According the result of the
study made in our laboratory before, we found that viral
antigens could be detected from the liver and spleen
samples early after infection in the C57BL/6 mice [18].
So we measured the HTNV specific antigen present in
the livers and spleens by ELISA after 3 days. As shown
in Figure 5, although the level of antigen found in the
rLV-M immunized mice were higher than the inactivated
vaccine group but significantly lower than the rLV-
ZsGreen and NS control groups (p<0.05). This suggested
that the rLV-M induced immunity could limit HTNV
infection.

Discussion
Vaccination is the most cost-effective means for
preventing the spread of viral infectious diseases. In the
case of HFRS, great effort has been spent on the



Figure 3 Frequency of antigen-specific IL-10- or IL-4-secreting T cells in splenocytes of immunized mice (n=4). Number of GPspecific
IL-4-secreting T cells (A) and IL-10-secreting T cells (B) were evaluated using ELISPOT assays. Results are shown as the mean value of the number
of spots observed for 106 spleen cells, obtained from triplicate wells. The rLV-M induced effective IL-10 and IL-4 responses, which were higher
than the rLV-ZsGreen control and NS group (*p<0.05), and equivalent to the inactivated vaccine group.
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development of effective vaccines. Several types of
inactivated vaccines for HFRS have been licensed in
china [19] however inactivated vaccines are poorly im-
munogenic and elicit few neutralizing antibodies [20].
Increasing an emphasis is being placed on developing
genetically engineered vaccines. Glycoproteins have be-
come a major candidate for the HFRS genetically
engineered vaccine immunogen. Previous studies have
found that DNA vaccines that express the Gn and Gc
glycoproteins of hantaviruses can elicit neutralizing anti-
bodies against these proteins and can confer protection
against infection in Syrian hamsters [21-23]. Similarly,
vaccination with Gn/Gc protein expressed in insect cells
(baculovirus recombinant virus system) elicited neutral-
izing antibodies and protected hamsters from infection
with HTNV [12]. In both the vaccinia and baculovirus
systems, vaccination with Gn/Gc provided more com-
plete protection than Gn or Gc alone [12]. Neutralizing
antibody responses to Gn/Gc in the aforementioned
vaccine studies correlated with protection, suggesting
that neutralizing antibodies play an important role in
preventing hantavirus infection. Passive transfer of neu-
tralizing monoclonal antibodies specific to either Gn or
Gc protected hamsters against HTNV infection [12,24],
supporting the idea that neutralizing antibodies alone
can confer protection.
This is not the first pseudotype preparation for hanta-

virus vaccine candidate. It has been reported that a VSV
pseudotype including HTNV Gn and Gc (VSV-G*HTN)
was constructed to study the antigenicity of HTNV
glycoproteins. The VSV system has the ability to grow to
high titers in a variety of cell lines and allows the gener-
ation of recombinant viruses that express foreign pro-
teins [25,26] In this study, an HTNV pseudotyped
lentiviral vector carrying HTNV Gn and Gc was devel-
oped and the lentiviral vector system also has its own
advantages. The HIV-derived lentiviral packaging system
we used in this study was named ‘third-generation self-
inactivating LV’. The features attributed to this designa-
tion include (i) Tat and the four accessory genes of HIV
were deleted from the viral packaging system, consisting
of four plasmids used to transfect the 293T packaging
cell line [27]; and (ii) inclusion of a 400-nucleotide dele-
tion in the 3’long terminal repeat (LTR), which is copied
to the 5’LTR upon reverse transcription, thereby
abolishing the 5’LTR promoter activity and reducing the
risk of vector mobilization with the wild-type virus [28].
Since the original lentivirus envelope protein (gp120)
restricts infection to only a subset of T cells, is unstable,
and complicates production of LVs, vectors are pseu-
dotyped with vesicular stomatitis virus glycoprotein
(VSV-G). LVs have been validated as highly efficient and
robust mediators for gene transfer in a wide variety of
in vitro and in vivo settings [29,30]. Furthermore, such
lentiviral vectors represent powerful and safe gene
transfer tools since they can be easily produced at high
titers and the generation of replication-competent retro-
viruses is very unlikely [14]. These advantages make the
lentiviral vector system an excellent choice.
In this study, the pseudotyped lentivirus rLV-M was

successfully applied as an HTNV vaccine for the induc-
tion of protective immunity in mice. We found that the
rLV-M was able to induce higher titers of neutralizing
antibody than the HFRS inactivated vaccine, and con-
ferred protective immunity for hantavirus challenge
in the mouse model. A recombinant retrovirus-based
pseudotype including hepatitis C virus (HCV) glycopro-
teins has been reported to induce HCV-specific cellular
and neutralizing immune responses in mice [31]. Simi-
larly, a VSV pseudotype including HTNV Gn and Gc
(VSV-G*HTN) was able to induce neutralizing anti-
bodies and confer protective immunity for hantavirus



Figure 4 Frequency of antigen-specific IFN-γ- or IL-2-secreting
T cells in splenocytes of mice immunized (n=4). Number of GP
specific IFN-γ-secreting T cells (A) and IL-2-secreting T cells (B) were
evaluated using ELISPOT assays. Results are shown as the mean
value of the number of spots observed for 106 spleen cells, obtained
from triplicate wells. The IFN-γ and IL-2 levels did not change
significantly in the rLV-M group.
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challenge in the mouse model [32]. The results of these
reports confirm that recombinant pseudotyped virus can
induce effective immune responses than inactivated
virus, probably because they display viral envelope glyco-
proteins in a native conformation.
GP and NP are both the major structural proteins of

HTNV. NP is most immunogenic and can elicit high
titer and a long-lasting antibody responses. Furthermore,
NP contains antigenic sites associated with the cytotoxic
T-lymphocyte (CTL) response [33] and can induce a
significant cellular immune response [34,35]. GP is pre-
sumed to be the major target neutralizing antibodies
during Hantavirus infection, and plays an important role
in eliciting protective humoral immune responses. How-
ever, GP immunogenicity is weak, the antibodies elicited
by GP are produced later, and the titer is low [11,36].
We found that recombinant pseudotyped lentivirus
rLV-M could stimulate murine spleen cells to secrete
IL-4 and IL-10 in a higher level, whilst the levels of
secreted INF-γ and IL-2 did not differ significantly from
the rLV-ZsGreen control group. This suggests that the
protective efficacy elicited by rLV-M was primarily
dependent on the humoral immune response.
Neutralizing antibodies can bind extracellular free virus

and eliminate the ability of virions to infect target cells.
Neutralizing antibodies are presumed to play an important
role in clearance of free virus, and to be the major media-
tors of the protective humoral immune response. One of
the main indexes of antiviral vaccination (especially acute
viral infection) effectiveness is its ability to induce neutral-
izing antibodies, especially high titers of neutralizing
antibodies. Lentiviral vectors can infect dividing and non-
dividing cells, accommodate large fragments of exogenous
gene, express target genes for extended periods, and
are not inherently immunogenic [16]. Iglesias et al. [17]
constructed a lentiviral vector-based vaccine containing
West Nile virus (WNV) envelope glycoprotein and suc-
cessfully induced a specific humoral response and protec-
tion against WNV infection in a mouse model of WNV
encephalitis. In this study, the HFRS inactivated vaccine
was used as one of the controls. In comparison to the
inactivated vaccine immunized group, mice immunized
with rLV-M induce the same titer of specific antibodies
and higher titer of neutralizing antibodies. The results
highlight the potential of using the pseudotyped lentivirus
as a tool for developing a vaccine that may induce neutral-
izing antibody more efficiently.
Because there are no disease models for hantavirus

in adult rodents, we evaluated whether our recombinant
pseudotyped lentivirus could protect against infection
rather than prevent disease. After infection with the
HTNV 76–118 strain, the HTNV specific antigen in the
livers and spleens of mice was detected by ELISA [18].
Although the level of antigens in the rLV-M immunized
mice were higher than the inactivated vaccine group,
they were significantly lower than the rLV-ZsGreen
and NS control groups. This suggested that neutralizing
antibodies in rLV-M immunized mice can effectively
limit the infection. We found that the immune
protective effect induced by rLV-M was weaker than
the inactivated vaccine group, probably because that
inactivated vaccine simultaneously induced humoral and
cellular immune responses whilst rLV-M only induced
humoral responses.
Clearly more studies are needed to explore the

potential of the pseudotyped lentivirus system in devel-
opment of a genetically engineered vaccine for HFRS.
However we have demonstrated that this system can in-
duce a strong neutralizing antibody response to HTNV
glycoproteins.



Figure 5 Detection of HTNV antigen in the livers and spleens of mice (n=4). HTNV antigen was detected by ELISA. Mice tissue suspensions
were diluted 1:80. Data is presented as the mean of A490. The level of HTNV antigens in the rLV-M immunized mice were higher than the
inactivated vaccine group but significantly lower than the rLV-ZsGreen and NS control groups (*p<0.05).
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Materials and methods
Cells, virus and antibodies
The human embryonic kidney cell line 293 (HEK 293,
ATCC, Rockville, MD, CRL 11268) and 293T cells (ATCC,
Rockville, MD, CRL 1573) were maintained in Dulbecco
modified Eagle medium (DMEM, Gibco, Grand Island,
USA) supplemented with 10% fetal bovine serum (FBS,
HyClone, Logan, UT). The E6 clone of Vero cells (ATCC
C1008; Cell Repository line 1586) were maintained in
RPMI-1640 (Invitrogen, Carlsbad, USA) supplemented with
10% fetal calf serum (FCS, Gibco, Grand Island, USA).
All cells were incubated at 37°C in 5% CO2. The HFRS
inactivated vaccine (YOUERJIAN®) was purchased from
Zhejiang Tianyuan Bio-Pharmaceutical Co. Ltd. (Zhejiang,
China).
Monoclonal antibodies (mAb) 1A8 (specific to the

HTNV NP), 3G1 (with a high neutralizing activity
against HTNV) were prepared in our laboratory [37]. The
mAb 6F7 (specific to the HTNV Gn protein) and LV48A
(specific to the HTNV Gc protein) were kindly provided by
Hang C.S. (Chinese Center for Disease Control and Preven-
tion) [38]. Sp2/0 ascites and HTNV 76–118 strain were
provided by our laboratory. Purified GP and NP of HTNV
were purchased from Lanzhou Biological Product Academy
(Lanzhou, China).

Animals
Six- to eight-week-old female C57BL/6 mice were pur-
chased from the animal research center of the 4th Military
Medical University (Xi'an, China). Mice were housed in
isolated and ventilated cages, and all animal research was
conducted in accordance with procedures described in the
Guide for the Care and Use of Laboratory Animals (NIH
Publications No. 80–23, revised 1978). The animal work
was approved by the Fourth Military Medical University
Medical Ethics Committee. The approval number was
XJYYLL-2012564.
Construction of lentiviral expression vector and
recombinant pseudotyped lentivirus
The HTNV glycoprotein precursor coding region (M) was
designed according to previously cloned cDNA of isolate
76–118 (GeneBank accession number: Y00386) [39] and
synthesized in the pMD19-T simple vector with the desired
restriction enzyme sites by the Takara company. The vector
was excised using EcoRI and BamHI and subcloned into
the lentiviral expression vector pLVX-mCMV-ZsGreen1
(Biowit Technologies Ltd, China). ZsGreen1 is a human
codon-optimized variant of the reef coral Zoanthus sp.
green fluorescent protein (GFP), ZsGreen. The vector
expresses the proteins from a bicistronic mRNA transcript,
allowing ZsGreen1 to be used as an indicator and marker.
The reconstructed vectors were named pLVX-M. Packaging
plasmids pGag/Pol (coding for HIV-1 Gag-Pol), pRev (cod-
ing for HIV-1 Rev) and pVSV-G (coding for the G protein
of VSV), were purchased from Biowit Technologies Ltd.
80% confluent 293T cell monolayers in 10cm plates were

co-transfected with pLVX-M and the packaging vectors
using HET transfection reagents (Biowit Technologies Ltd,
China), as recommended by the manufacturer and incu-
bated for 12 h at 37°C in 5% CO2. After removing the flask
and adding 10 ml of fresh medium, the cells were incubated
for 24h. The culture supernatant was clarified by low-speed
centrifugation and stored at −80°C. The recombinant
pseudotyped lentivirus was designated rLV-M. The empty
vector control lentivirus, rLV- ZsGreen, was prepared in
the same way.
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Titration of recombinant pseudotyped lentivirus
The viral titers were determined using the Lentiviral
Rapid Titer Kit (Biowit Technologies Ltd, China) as
recommended by the manufacturer. After infection with
10μl of serially diluted virus stock, the fluorescent
GFP-expressing HEK293 cells were counted under a
fluorescence microscope (Olympus, Japan). The follow-
ing formula is used to calculate the titer: N×10m+3TU/ml
(N denotes the number of GFP-positive cells and 10m the
highest dilution).

Immunofluorescence staining of the protein Gn and Gc
expressed by recombinant pseudotyped lentivirus
The expression of Gn and Gc was detected by an indirect
immunofluorescent antibody (IFA). HEK293 cells, grown
on 24-well plates, were infected with virus stock at a multi-
plicity of infection (MOI) of 10 TU/cell. After 48h, the
HEK293 cells were fixed with methanol for 20 min. Then
treated with mouse monoclonal antibody 6F7 against Gn or
mouse monoclonal antibody LV48A against Gc for 1 h
at 37°C. After washing with PBS, rhodamine (TRITC)-
conjugated goat polyclonal antibodies against mouse im-
munoglobulin G (IgG; Biaworld), diluted 1:200, were added
to the well. After 1 h incubation at 37°C, cells were washed
and treated with dihydrochloride salt (DAPI; Beyotime) and
examined with a fluorescence microscope.

Immunization of mice
C57BL/6 mice were divided into four groups including one
experimental group and three control groups (n = 8 per
group). The experimental groups were injected intramuscu-
larly in the hind limb with 100 μl inoculum containing
107 TU of rLV-M per mouse; the control groups were
injected with 100 μl normal saline (NS) or 100 μl 107 TU of
rLV-ZsGreen or 10 μl HFRS inactivated vaccine per mouse,
respectively. The HFRS vaccine was an HFRS bivalent
inactivated vaccine for humans, and the immunization dose
was calculated according to the ratio of human and mouse
body surface area [40]. All immunizations were given three
times at 2-week-intervals. Mice sera were collected indi-
vidually via tail vein puncture at 2, 4 and 6 weeks from the
first day of immunization.

Detection of HTNV-specific antibodies and neutralizing
antibody
HTNV NP- and GP-specific antibody titers were deter-
mined by an indirect enzyme-linked immunosorbent assay
(ELISA). Purified NP or GP was used as the coating anti-
gen. Serial dilutions of sera beginning with 1:10 were added
to the plates. Anti-NP mAb 1A8 or HFRS patient serum
diluted at 1:100 were used as positive controls. HRP-
conjugated anti-mouse or anti-human antibodies were used
as the detecting antibodies and OPD was used as the
substrate. To make the reaction reacted just enough, the
colorimetric reaction was stopped by adding 2 M H2SO4

about 20 min after added to the plates and the optical
density (OD) at 490 nm was determined using a standard
ELISA plate reader. The antibody titers were defined as the
reciprocal of the serum dilution with the highest positive
response.
The cell microculture neutralization test was perfor-

med on monolayers of Vero E6 cells grown in a 96-well
tissue culture plate with the HTNV 76–118 strain. Cells
grown in RPMI-1640 medium supplemented with 10% FCS
were plated at a density of 2 × 104 cells per well 18–24 h
before testing. The 0.22μm filtered sera were serially diluted
twofold from 1:10 in RPMI-1640 containing 2% FCS. The
100 TCID50 HTNV was mixed with the diluted sera and in-
cubated at 37°C for 90 min. Then, the mixture was applied
to cell monolayers and incubated at 37°C for 90 min. After
removing the mixture and adding fresh medium, the cells
were incubated for a further 9–11 days. Thereafter, the cells
were lysed by three consecutive freeze–thaw cycles. HTNV
antigen in the cell lysates was detected by sandwich ELISA
[20]. The mAb 1A8 was used as a coating antibody, and
HRP-conjugated 1A8 was used as the detecting antibody.
The mAb 3G1 and Sp2/0 ascites were used as positive and
negative controls, respectively. The absorbance at 490 nm
was read with a standard ELISA plate reader. The neutraliz-
ing antibody titer was defined as the maximum dilution of
serum that inhibited HTNV infection in 50% of the cells.
This cell microculture neutralization test was established

by our laboratory and has the same validity in measuring
neutralizing antibody titers as the plaque assay [41].
Furthermore, our ELISA-based neutralization test is more

convenient in operation and more stable in results [41]. It
was also used in other experiments in our laboratory
reported before [40,42].

Detection of cytokines secreted by T cells
To determine the fraction of T cells capable of responding
to IFN-γ stimulus, an enzyme-linked immunosorbent
(ELISPOT) assay was performed on single-cell suspension
of spleen using the murine IFN-γ ELISPOT kits
(Mabtech, AB, Sweden). Ten days after the final booster
immunization, four immunized mice were sacrificed.
The spleens were removed and purified in lymphocyte
separation medium (Sigma, USA). A cytokine-specific
antibody against mouse IFN-γ was immobilized on a 96-
well ELISPOT plate, and incubated overnight at 4°C.
Splenocytes were plated in triplicate at 1×106 cells per well
in 100μl of media and co-incubated with purified HTNV
GP antigen in a 5% CO2 incubator for 18 h. Splenocytes
stimulated with concanavalin A (ConA, Sigma, USA) were
used as a positive control, and splenocytes incubated with
100μl 2% FCS DMEM were used as negative or back-
ground controls. After removing the cells, the plates were
incubated with biotinylated anti-mouse IFN-γ detection
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antibody for 2 h at room temperature (RT). After washing,
plates were incubated for 1 h with streptavidin-enzyme
conjugate at 37°C. Spots were developed with the TMB
substrate after 5–15 min incubation at RT. The reaction
was stopped by washing the plate with deionized water,
and the plates were dried in the dark. Spots were counted
using an ELISPOT reader system (Cellular Technology
Ltd.), and the results were expressed as the mean number
of specific IFN-γ spot-forming cells per 1 × 106

splenocytes. The procedure for the detection of IL-2,
IL-4 and IL-10 were similar to IFN-γ.

Challenge with HTNV and detection of HTVN-specific
antigens in livers and spleens of mice
Based on previous work in our laboratory [18], ten days
after the final booster immunization, mice were injected
intramuscularly (caudal thigh) with 1×105 FFU (focus
forming units) of HTNV. 3 days after HTNV inocula-
tion, mice were sacrificed. The spleens and livers were
removed, ground in PBS, lysed by three consecutive
freeze-thaw cycles and precipitated by centrifugation.
HTNV antigen in the supernatant was detected by the
sandwich ELISA previously described [20].

Statistical analysis
Statistical analysis was performed using Graphpad software
version 5.0. One-way ANOVA was used to determine
statistically significant differences among the experimental
groups. Student's t-tests were used to determine significant
differences between experimental and control groups.
P-values of 0.05 or less were considered to be statistically
significant.
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