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Abstract

human walking.

were recorded for offline assessment.

over 12 bits/min during slow walking (below 0.89 m/s).

EEG headset towards the real-life BCl applications.

Background: Bridging the gap between laboratory brain-computer interface (BCl) demonstrations and real-life
applications has gained increasing attention nowadays in translational neuroscience. An urgent need is to explore
the feasibility of using a low-cost, ease-of-use electroencephalogram (EEG) headset for monitoring individuals' EEG
signals in their natural head/body positions and movements. This study aimed to assess the feasibility of using a
consumer-level EEG headset to realize an online steady-state visual-evoked potential (SSVEP)-based BCl during

Methods: This study adopted a 14-channel Emotiv EEG headset to implement a four-target online SSVEP decoding
system, and included treadmill walking at the speeds of 0.45, 0.89, and 1.34 meters per second (m/s) to initiate the
walking locomotion. Seventeen participants were instructed to perform the online BCl tasks while standing or
walking on the treadmill. To maintain a constant viewing distance to the visual targets, participants held the
hand-grip of the treadmill during the experiment. Along with online BCl performance, the concurrent SSVEP signals

Results: Despite walking-related attenuation of SSVEPs, the online BCI obtained an information transfer rate (ITR)

Conclusions: SSVEP-based BCl systems are deployable to users in treadmill walking that mimics natural walking
rather than in highly-controlled laboratory settings. This study considerably promotes the use of a consumer-level

Keywords: EEG, Consumer-level EEG headset, SSVEP, BCl, Moving humans

Background

Bridging the gap between laboratory brain-computer
interface (BCI) demonstrations and real-life applications
has gained increasing attention nowadays in translational
neuroscience. A recent brain imaging study in mobile
humans suggested that the brain switches to a different
operating method while humans actively behave, move,
walk, and orient in ecologically-valid environments [1].
That is, there might be significant differences in how the
brain works in ecologically valid environments versus
highly controlled laboratory environments [2,3]. How-
ever, studies linking brain dynamics to cognitive func-
tions have been majorly devoted to the stationary and
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tethered individuals, in which the participants under-
went the experiments with highly-controlled settings in
laboratories. They were usually instructed to avoid any
task-irrelevant head/body movements. The laboratory-
oriented research might have a generalizability issue
when it is deployed in the real world. Therefore, study-
ing the brain dynamics associated with naturalistic hu-
man behaviors is of great importance in translational
neuroscience.

Promising advances in mobile electroencephalogram
(EEG) system have largely progressed in naturalistic
brain imaging. Wearing a lightweight mobile EEG head-
set allows EEG recording under naturalistic movements.
Several previous studies have proved the efficacy of
using either experimental prototype [4-6] or consumer-
level EEG headsets [7-13], e.g. the MindWave headset
(NeuroSky, Inc.) and the Emotiv EEG headset (Emotiv
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systems, Inc.) in cognitive neuroscience, neuroimaging,
and BCI domains. Nevertheless, until recently only scat-
tered studies [14-18] employed such mobile brain sens-
ing technology to explicitly assess EEG activities while
participants freely and actively adapt to and interact with
their naturalistic environments. Specifically, De Vos
et al. [17] recently demonstrated the feasibility of a mo-
bile auditory P300-based BCI system during natural
walking. Nevertheless, the obtained BCI performance, i.e.,
information transfer rate (ITR), needed to be improved to
satisfy performance requirement in practical applications.

The steady-state visual-evoked potential (SSVEP)-
based BCI has become a popular communication chan-
nel that allows users to interact with environments/
external devices due to its ease of use, minimal user
training, large number of commands and high ITR
[19-21]. However, most of previous works were rooted
in the SSVEP correlates of stationary and tethered sub-
jects who were instructed to attentively gaze at the visual
stimulation and avoid other gross movements. Recently,
sparse works which adopted a laboratory-grade EEG de-
vice focused on an offline assessment of the SSVEP dy-
namics during walking [15,18]. Alternatively to the use
of lab-graded headgear, few studies noticed the need of
realizing an SSVEP-based BCI using the consumer-level
headset [11-13]. Yet, these studies tested the efficacy
with highly movement-controlled subjects. No study has
reported the test of the consumer EEG headset for actu-
ating the online SSVEP-based BCI with natural head/
body positions and movements, i.e., in non-stationary,
non-tethered subjects.

The main objective of this study was to assess whether
or not a consumer-level headset can be used to perform
online SSVEP decoding in human walking. To this end,
the subjects were instructed to stand or walk on a
speed-controllable treadmill (0.45, 0.89, and 1.34 meters
per second (m/s)) in an attempt to initiate different
levels of walking locomotion while using the online BCIL.
As compared to the standing condition, the methods and
empirical results of moving subjects could shed the light
on principles regarding the utility of a user-friendly and af-
fordable commercial EEG headset for implementing real-
life BCI applications towards naturalistic environments.

Methods

Participant

Seventeen healthy participants (14 males and 3 females;
22-32 years of age; mean age, 26.76 years) with normal
or corrected-to-normal vision participated in this study.
They were randomly selected from the student volun-
teers at University of California San Diego (UCSD).
UCSD Human Research Protections Program approved
this study. Each participant read and signed an informed
consent before the experiment.
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EEG recording

This study employed a 14-channel Emotiv EEG headset
that sampled EEG signals at 128 Hz and band-pass fil-
tered them between 0.2 and 45 Hz. The electrodes were
positioned at AF3, F7, F3, FC5, T7, P7, O1, 02, P8, T8,
FC6, F4, F8, and AF4 in accordance with the modified
international 10-20 system. In addition, the angular
velocities were concurrently recorded by the built-in
two-channel gyroscope (Gyro-X: horizontal movement;
Gyro-Y: vertical movement) in order to characterize the
severity of the head movements during walking. The
Emotiv Control Panel software provides visual monitor-
ing of the electrode impedance. Once all electrodes had
good contacts with the scalp, a laptop (Thinkpad X230,
Lenovo Inc.) started to initiate the OpenViBE software
[22] for connecting to the Emotiv headset, and then acti-
vate the BCILAB toolbox [23] to stream EEG signals for
real-time frequency detection of the SSVEP signals.

Treadmill experiment setup

This study implemented a gaze-dependent SSVEP de-
coding system, which needed users to shift their visual
focus to visual targets to elicit SSVEPs [21]. This study
instructed participants to stand or walk on a treadmill at
speeds of 0.45, 0.89, and 1.34 m/s (i.e., 1, 2, and 3 mile(s)
per hour (MPH)) and intentionally gazed at a fixation
cross or one of four repetitive black/white visual flickers
(frequency: 9 Hz, 10 Hz, 11 Hz, and 12 Hz; size: 7 cm x
6 cm) concurrently presented on a 19-inch LCD monitor
with a 60 Hz refresh rate (Figure 1). The paradigm can
be used to implement a four-direction cursor control
system. The generation of visual stimuli conformed to
the approach that can be used to elicit SSVEPs at a flex-
ible frequency [6]. The horizontal and vertical intervals
between two stimuli were 19 ¢cm and 17 cm respectively.
The monitor was placed on a stand mounted above the
control panel of the treadmill and adjusted to the same
height as the participants’ eyes. The participants were
instructed to hold the treadmill hand grip during stand-
ing and walking to maintain a constant viewing distance
(~60 cm) between the subjects’ eyes and the monitor.
Each subject participated in four sessions (each corre-
sponded to one of four walking speeds from standing,
0.45 m/s, 0.89 m/s to 1.34 m/s) on the same day. Each
session repeated a run 10 times. In each run, a verbal
cue guided participants to shift their attention on the
five targets (i.e., fixation cross and four flickers) sequen-
tially. The participants were instructed to fixate at the
fixation cross for three seconds and then shift their gaze
to the flicker within 1.5 seconds after the verbal cue.
The averaged time for detecting each target was 4.25 sec-
onds (see below for more details on SSVEP detection).
Each run lasted ~26 seconds in total. Thus, each session
lasted around 4.3 minutes. Note the data within the
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Figure 1 The illustration of experiment setup for SSVEP
recordings.

periods of target-shifting were ignored in online SSVEP
detection, and data recorded as participants gazed at the
fixation cross were only used as baseline control in off-
line analysis. Each participant underwent a 4-session ex-
periment (in the order of standing 0.45 m/s, 0.89 m/s to
1.34 m/s without randomization) with a minute(s)
between-session rest to prevent visual and/or motor fa-
tigue. During the rest, the signal qualities of electrodes
were re-checked and adjusted via the Emotiv Control
Panel. That is, without the need of removing the headset
a syringe was used to drip a little more saline solution
to the sponges of the electrodes with poor conductivity.
The entire experiment for four sessions and between-
session rests lasted less than 30 minutes.

Online SSVEP detection

The 14-channel EEG data in the 0.2-45 Hz frequency
range (Emotiv default setting) were submitted to the
process of frequency detection based on canonical
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correlation analysis (CCA) [19,24] which has been
proved highly efficient for enhancing the signal-to-noise
ratio (SNR) of SSVEP signals [18,19,24]. CCA is a multi-
variate statistics method to maximize underlying correl-
ation between two given multivariate signals x and y. To
this end, CCA seeks the weight vectors w, and w, to
project the input signals into X and Y, respectively, lead-
ing to the maximum canonical correlation p according
to the following equation:

E[wlxy"w,]

\/ E[wlxxTw,]E [wyT nywy}

maxy, w, p(X,Y) =

In this experiment, x refers to the n-second EEG sig-
nals (n is a self-regulated variable described below), and
y refers to a set of reference signals generated as follows:

sin(27fn)
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where fand f; are the target and sampling frequency, re-
spectively. Ny, is the number of harmonics, and N is the
number of sampling points. The CCA calculates the ca-
nonical correlation between the given EEG signals x and
the reference signals y at each target frequency. The final
decision of SSVEP frequency was made upon the max-
imum correlation among the reference signals. This
study set the target frequency fas 9, 10, 11 and 12 Hz
and the N, as two for generating template signals based
on fundamental frequency and second harmonics with
respect to the target frequency. Particularly, this study
adopted the procedure of self-regulating data length [21]
to sequentially accumulate the acquired EEG signals for
improving the SNR of SSVEPs. This process used EEG
data within several windows ranging from 2 to 8 seconds,
with an increment of 0.25, for CCA calculation (e.g,, 2,
2.25, 2.5... 8 s windows). Only if the detected frequency
of the SSVEPs within four consecutive windows matched
the target frequency, the detection pipeline would con-
sider the target correctly classified. This detection pipeline
was similar to the idea used in an adaptive P300 BCI [25].
Otherwise, the target would terminate as an incorrect de-
cision. Note that, to eliminate the distraction from online
feedback, this study did not present feedback to the sub-
jects. The detection accuracy, decision time and ITR [26]
were used to evaluate the SSVEP decoding performance.
This study also saved the EEG data during the online ex-
periments for further offline analysis.
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Offline data analyses

The offline analyses aimed to explore the dynamics of
the background EEG activity and the SSVEP amplitude
acquired by the consumer headset under different walk-
ing speeds. The background EEG spectrum in the
fixation-cross condition, which can be regarded as base-
line power for the SSVEP conditions under each walking
speed, was necessary to reveal the underlying brain
activity associated with the walking locomotion. In
addition, since this study adopted treadmill walking to
systematically test the effects of different degrees of head
movements on the SSVEPs, it is important to report the
intensity and frequency of the head movements. To this
end, we applied the spectrum analysis to the 2-channel
gyroscope signals (horizontal and vertical axes) along
different walking speeds. The detailed steps are described
as follows. This study applied a 1 Hz high-pass finite im-
pulse response (FIR) filter to the EEG signals to remove
low-frequency drifts, resulting in a signal bandwidth of 1
to 45 Hz for the spectral analysis. The 128-point short-
time Fourier transform (STFT) with a Hamming window
of length 128 samples and 25% overlap was then applied
to estimate the EEG spectrogram at a 1 Hz frequency
resolution. The grand average power spectral density
(PSD) of each channel can be derived for each condition.
Note that, to dissociate the reactive SSVEP from the back-
ground EEG activities and walking related noises, this
study estimated the relative power of SSVEPs by subtract-
ing the power spectrum in the fixation-cross condition
from those of the SSVEP conditions at each of the walking
speeds. In addition, this study calculated the scalp distri-
butions of the spectral power to form topographic maps
using the EEGLAB toolbox [27]. The spectrogram of the
recorded 2-channel Gyro signals was estimated using the
same procedure as for EEG data (but without filtering).
Lastly, this study employed a paired ¢-test to access the
differences of SSVEP amplitudes and online performance
between two walking conditions (standing, 0.45 m/s,
0.89 m/s, and 1.34 m/s).
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Results
The impacts of walking movements on the EEG spectra
Figure 2 shows the averaged PSD of O1 and O2 chan-
nels across all subjects. In general, walking locomotion
induced wideband noise to the EEG spectra, very likely
arising from electrode shift with respect to the scalp and
electromyography (EMG) activities from facial, neck,
and scalp muscles during walking. This phenomenon led
to power lifting proportional to walking speeds. Fast
walking especially induced large augmentation of low-
frequency power around 2 Hz. In addition, the SSVEP
amplitudes under the standing and walking conditions
exhibited salient peaks at the fundamental and second
harmonics of the flickering frequencies, which appeared
to monotonically attenuate as walking speed increased.
To estimate SSVEP amplitudes under different walking
speeds, this study alleviated the wideband noise by sub-
tracting the power in the fixation-cross condition from
that of the SSVEPs in the flickering conditions. Figure 3
shows that the SSVEP signals at the O1-O2 pair declined
evidently as walking speed increased, leading to signifi-
cant amplitude drops (p < 0.05) between standing versus
walking (0.45, 0.89, and 1.34 m/s). No significant differ-
ences were found between the three walking speeds.
Figure 4 illustrates an example of 2-channel gyroscope
time course of a representative subject and averaged
spectral profiles of 17 subjects across all conditions
along the horizontal (Gyro-X) and the vertical (Gyro-Y)
planes associated with walking locomotion under differ-
ent walking speeds. As can be seen, compared with the
standing condition, the low-frequency power (1 to 5 Hz)
of the angular-velocity deviations tended to progressively
augment as walking speed increased. Especially, the ver-
tical head displacements (Gyro-Y) showed a big jump at
2 Hz while walking at 1.34 m/s. This result could be at-
tributed to the fact that natural walking posture was typ-
ically accompanied by head bobbing (Gyro-Y) and head
swaying (Gyro-X) while fast walking exhibited bigger
head bobbing than head swaying.
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Figure 2 The average power spectral density of O1 and 02 channels across 17 subjects in response to the fixation-cross and visual
targets flickering at 9, 10, 11, and 12 Hz while standing still or walking on the treadmill with the speeds of 0.45, 0.89, and 1.34 m/s.
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Figure 3 The averaged power of SSVEP signals at O1 and 02
channels across 17 subjects under different walking speeds
after alleviating the wideband noise by subtracting the power
in the fixation-cross condition from that of the SSVEPs in the
flickering conditions. The thin lines indicate the significant
difference between speeds (p < 0.05 or < 0.01), whereas the error
bars represent the standard error of the SSVEP amplitudes.

Figure 5 plots the topographic maps of the relative
low-frequency power (1-5 Hz) and the SSVEP am-
plitudes (9-12 Hz) (derived from flickering minus
fixation-cross) under different walking speeds. As afore-
mentioned, the head movements during walking resulted
in power increase at frequencies from 1 to 5 Hz. The
topographic maps showed that the EEG power augmen-
tations, which mainly distributed over the fronto-central
areas versus the posterior areas, more and less positively
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correlated with the waking speed. Furthermore, the
SSVEP maps clearly showed that the induced occipital
SSVEP amplitudes tended to be weaker during fast walk-
ing. It is worth noting that since the topographic
spectrum maps were interpolated on a sparse 14-
channel montage with the absence of centro-parietal
electrodes, the results did not lead to the implication of
spectral changes in the sensorimotor cortex during
walking.

The online SSVEP detection performance

Figure 6 shows the online SSVEP decoding performance
in terms of detection accuracy (%), decision time (sec),
and ITR (bits/min) at different walking speeds. In gen-
eral, the classification accuracy was significantly higher
than the chance level (25%) under all conditions. The av-
eraged BCI performance progressively decayed as walk-
ing speed increased from 0.45 to 1.34 m/s (accuracy:
7349 +26.52%, 71.83 £23.17%, 56.57+16.56%; ITR:
14.04 + 10.10, 12.37 £9.19, 5.53 +4.57; with the repre-
sentation of the mean value plus/minus standard devi-
ation), as compared to the standing condition (accuracy:
76.60 + 21.74%, ITR: 14.38 + 9.04). The significant drops
(p <0.05) in accuracy and ITR were only found between
the 1.34 m/s condition versus the other three conditions.
The decision time was found to slightly increase as walk-
ing speed increased, but there was no significant differ-
ence (p>0.05) between speeds (standing: 4.34 +0.08 s;
0.45 m/s: 4.37 £ 0.10s; 0.89 m/s: 4.36 £0.09 s; 1.34 m/s:
4.38 £ 0.07 s).
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Figure 4 The left panel illustrates an example of 5-second time course of 2-channel gyroscope signals (GyroX: horizontal plane, GyroY:
vertical plane) associated with different walking speeds from one representative subject. The right panel shows the averaged spectral
profiles of 17 subjects across all stimulus conditions under different speeds.

4 5 0 5 10 156
Frequency (Hz)




Lin et al. Journal of NeuroEngineering and Rehabilitation 2014, 11:119
http://www.jneuroengrehab.com/content/11/1/119

Page 6 of 8

1-5Hz

X X
Q6

Standing

9-12 Hz

0.45m/s 0.89m/s

®

Figure 5 The topographical mapping of the relative low-frequency power (1-5 Hz) and SSVEP amplitude (9-12 Hz) (derived from
flickering minus fixation-cross) under different walking speeds. The topographic legend indicates the channel locations of the 14-channel
Emotiv EEG headset. The units of color bars represent the original EEG power in the dB scale. Note that these 14-channel interpolated maps (with
the absence of the centro-parietal electrodes) do not imply spectral changes in the centro-parietal regions during walking.
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Discussion

This study aimed to assess whether or not a consumer-
level headset can be used to perform online SSVEP de-
coding for users in naturalistic positions, postures and
movements. To this end, this study preliminarily tested
the validity of an online four-target SSVEP decoding sys-
tem outside standard laboratories by using a speed-
controlled treadmill experiment that generated different
degrees of head movements in moving humans. The on-
line performance appeared to decrease as participants
switched from standing to walking. A significant drop
(p<0.05) in accuracy and ITR was found during fast
walking at 1.34 m/s (c.f Figure 6). The reason might be

SSVEP detectability
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Figure 6 The online SSVEP decoding results in terms of
averaged accuracy (%), decision time (sec), and ITR (bits/min)
at the different walking speeds. The error bars represent the
standard deviation of the online results.

attributed to the fact that the SSVEP amplitude was nega-
tively correlated with the walking speed (c.f Figures 3 and
5). The amplitude of SSVEP has been found to be largely
modulated by visual spatial attention [28]. As a conse-
quence, the loss of focus could reduce visual attention and
thereby lead to the decreased SSVEP amplitude. This very
likely happened in treadmill walking. Fast walking obvi-
ously initiated rapid head bouncing especially in fast walk-
ing (cf Figure 4). Such phenomenon was also confirmed
by the participants of this study reported somehow more
difficult in focusing on the flickering targets during walk-
ing, especially at the speed of 1.34 m/s. However, since the
treadmill walking protocol adopted in this study did not
randomize the walking speeds, we cannot completely rule
out the possibility that the visual- or motor-fatigue could
also contribute to the SSVEP deterioration. Currently, lit-
tle is known about the interference of fatigue on SSVEP
amplitude in an SSVEP experiment where multiple ses-
sions are separated by inter-session breaks. A further
study is needed to address the impact of fatigue on the
BCI performance, which might likely happen in real-life
applications.

Another interesting finding was that the increase of
the gait cadence in our study (up to 1.34 m/s) accom-
panied larger head bobbing as well as moderate head
swaying, resulting in head movements of 1-5 Hz (c.f
Figure 4). Such head movements inevitably swayed the
headset and vyielded a corresponding low-frequency
power fluctuation spreading over the whole head (c.f
Figure 5), which was analogous to the evidence that gait-
related artifacts significantly affected the EEG spectral
power in the 1.5-8.5 Hz frequency range during walking
(below 1.25 m/s) and running (1.9 m/s) [3]. Such 1-
5 Hz mechanical artifacts produced by head movements
during steady walking (tested up to 1.34 m/s in this
study) should not affect the SSVEPs (9—12 Hz frequency
range). In this regard, methods for movement artifact
suppression [3] might not be able to improve the SSVEP
detection performance in this study. However, the arti-
facts could contaminate other event-related potentials
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(ERPs) used in other types of BCIs. For example, P300
waveform is majorly composed of frontal theta (4-7 Hz)
and posterior delta activations (<4 Hz) [29]. This gait-
related low-frequency contamination could cause a deteri-
oration of P300 quality during naturally walking [14,17].

Lastly, one might concern the adopted treadmill-
walking protocol prone to constrain the walking loco-
motion. This study instructed the subjects to hold the
hand-grip while walking on the treadmill (c.f Figure 1).
It was not only to insure the subjects’ safety while pro-
ceeding with fast walking on the moving belt (1.34 m/s),
but also to maintain their viewing distances to the display
monitor while walking. Such hand-grip holding might re-
sult in dissimilar walking locomotion with less body and
head movements compared to natural walking patterns in
daily life. However, according to the measurements from
the gyroscope (c.f Figure 4), the treadmill-initiated walk-
ing locomotion evidently engaged pronounced head
movements as compared to a standing posture. Unlike the
previously laboratory-oriented BCI demonstrations with
stationary subjects, this study was a valuable step towards
the transition to real life applications.

Although the empirical results in this study demon-
strated the applicability of using the consumer-level
Emotiv headset to decode SSVEPs in moving humans,
the obtained satisfactory performance might not assure
that the headset could be perfectly suitable for all BCI
applications. First, given the sparse 14-channel montage,
the unavailability of midline and centro-parietal regions
might hinder the measurements of good-quality P300
waveforms [14]. Second, the EEG quality measured by
the designed saline electrodes highly depends on the
moisture level of saline liquid, leading to progressive
quality deterioration in a long-term use. Third, unlike
the non-prep, dry electrodes [4], the pads of the saline
electrodes might meet difficulties in having good con-
tacts to hair-covered sites on the scalp. However, despite
these potential drawbacks and inferior signal quality
compared to medical-/laboratory-grade devices [30], the
advantage of ease-to-use still could facilitate the BCI ap-
plications for non-critical applications in entertainment
and game control.

Future efforts can be devoted to improve the online
performance for freely moving humans. Wei et al. [31]
recently proposed a new SSVEP detection method, namely
differential canonical correlation analysis (dCCA), to im-
prove the detectability of high-frequency SSVEPs as com-
pared to the standard CCA. Thus, a natural next step is to
employ the dCCA to improve the effectiveness of the
SSVEP decoding. Another direction is to incorporate
the consumer-level EEG headset with a head-mounted
display device (presenting visual stimuli) to establish
ubiquitous mobile BCI systems in ecologically valid
environments.
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Conclusions

This study implemented the first online SSVEP decoding
system in walking humans using a low-cost, easy-to-use
commercial EEG headset, providing principles towards
translating laboratory-oriented BCI demonstrations to
practical BCI applications in daily life. The empirical re-
sults showed that the Emotiv EEG headset enabled
SSVEP decoding with ITRs above 12 bits/min during
slow walking (below 0.89 m/s). The ITR reported in the
present study is comparable to the previous studies with
stationary subjects. For example, a four-class SSVEP-
based BCI speller using a commercial EEG system ob-
tained an average ITR of 13 bits/min across a total of
106 subjects [32]. This study evidently demonstrated
that SSVEP-based BCI systems are deployable to users
in natural head/body positions and movements rather
than in severely restrict movements within highly con-
trolled laboratory environments.
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