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Abstract

Robot-mediated post-stroke therapy for the upper-extremity dates back to the 1990s. Since then, a number of
robotic devices have become commercially available. There is clear evidence that robotic interventions improve
upper limb motor scores and strength, but these improvements are often not transferred to performance of
activities of daily living. We wish to better understand why. Our systematic review of 74 papers focuses on the
targeted stage of recovery, the part of the limb trained, the different modalities used, and the effectiveness of each.
The review shows that most of the studies so far focus on training of the proximal arm for chronic stroke patients.
About the training modalities, studies typically refer to active, active-assisted and passive interaction. Robot-therapy
in active assisted mode was associated with consistent improvements in arm function. More specifically, the use of
HRI features stressing active contribution by the patient, such as EMG-modulated forces or a pushing force in
combination with spring-damper guidance, may be beneficial.
Our work also highlights that current literature frequently lacks information regarding the mechanism about the
physical human-robot interaction (HRI). It is often unclear how the different modalities are implemented by different
research groups (using different robots and platforms). In order to have a better and more reliable evidence of
usefulness for these technologies, it is recommended that the HRI is better described and documented so that
work of various teams can be considered in the same group and categories, allowing to infer for more suitable
approaches. We propose a framework for categorisation of HRI modalities and features that will allow comparing
their therapeutic benefits.
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Introduction
Stroke is one of the most common causes of adult dis-
abilities. In the United States, approximately 795,000 in-
dividuals experience a new or recurrent stroke each year,
and the prevalence is estimated at 7,000,000 Americans
over 20 years of age [1]. In Europe, the annual stroke in-
cidence rates are 141.3 per 100,000 in men, and 94.6 in
women [2]. It is expected that the burden of stroke will
increase considerably in the next few years [3]. The high
incidence, in combination with an aging society, indicates
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reproduction in any medium, provided the or
future increases in incidence, with a strong impact on
healthcare services and related costs.
Impairments after stroke can result in a variety of sen-

sory, motor, cognitive and psychological symptoms. The
most common and widely recognised impairments after
stroke are motor impairments, in most cases affecting
the control of movement of the face, arm, and leg on one
side of the body, termed as hemiparesis. Common prob-
lems in motor function after hemiparetic stroke are
muscle weakness [4-6], spasticity [4-6], increased reflexes
[4], loss of coordination [4,7] and apraxia [4]. Besides, pa-
tients may show abnormal muscle co-activation, impli-
cated in stereotyped movement patterns, which is also
known as ‘flexion synergy’ and ‘extension synergy’ [8,9].
Concerning the upper extremity, impaired arm and hand
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function contributes considerably to limitations in the
ability to perform activities of daily living (ADL). One of
the goals of post stroke rehabilitation is to regain arm and
hand function, since this is essential to perform activities
of daily living independently.

Stroke rehabilitation
Stroke rehabilitation is often described as a process of
active motor relearning that starts within the first few
days after stroke. Recovery is characterized by a high
inter-individual variability, and it occurs in different
processes. Some of the first events following nervous
system injury are recovery due to restitution of non-
infarcted penumbral areas, reduction of oedema around
the lesion, and resolution of diaschisis [10-12], and com-
prise spontaneous neurological recovery. A longer term
mechanism involved in neurological recovery is neuro-
plasticity, caused by anatomical and functional reorganisa-
tion of the central nervous system. Additionally, motor
recovery after stroke may occur through compensational
strategies. Compensation is defined as behavioural substi-
tution, which means that alternative behavioural strategies
are adopted to complete a task. In other words, function
will be achieved through alternative processes, instead of
using processes of ‘true recovery’ alone [11-13].

Treatment approaches
Many treatment approaches have been developed to aid
motor recovery after stroke. These interventions are
different in their approach to achieve functional gains.
For instance, in the 1950s and 1960s, the so-called neu-
rofacilitation approaches were developed. From these
approaches based on neurophysiological knowledge and
theories, the Bobath Concept, or neurodevelopmental
treatment (NDT), is the most used approach in Europe
[14-16]. This approach focuses on normalizing muscle
tone and movement patterns, guided by a therapist using
specific treatment techniques, in order to improve recov-
ery of the hemiparetic side. Gradually, focus shifted to-
wards the motor learning, or relearning approach [17].
Others have referred to these methods as the task-
oriented approach. These new methods of clinical practice
are based on the notion that active practice of context-
specific motor tasks with suitable feedback will support
learning and motor recovery [11,17].
Overall, there is a lack of convincing evidence to sup-

port that any physiotherapy approach is more effective
in recovery than any other approach [15,16,18]. How-
ever, in a review of Langhorne et al. [19], it is stated that
some treatments do show promise for improving motor
function, particularly those that focus on high-intensity
and repetitive task-specific practice. Moreover, research
into motor relearning and cortical reorganisation after
stroke has showed a neurophysiologic basis for important
aspects that stimulate restoration of arm function [20-23].
These important aspects of rehabilitation training involve
functional exercises, with high intensity, and with active
contribution of the patient in a motivating environment.

Rehabilitation robotics
Robot-mediated therapy for the upper limb of stroke
survivors dates back to the 1990s. Since then a number
of robotic devices have become commercially available
to clinics and hospitals, for example the InMotion Arm
Robot (Interactive Motion Technologies Inc., USA, also
known as MIT-Manus) and the Armeo Power (Hocoma,
Switzerland). Robotic devices can provide high-intensity,
repetitive, task-specific, interactive training. Typically,
such robots deliver forces to the paretic limb of the sub-
ject while practicing multi-joint gross movements of the
arm. Most of the robotic devices applied in clinical trials
or clinical practice offer the possibility of choosing among
four modalities for training: active, active-assisted, passive
and resistive. These terms relate to conventional therapy
modes used in clinical practice and refer to subject’s status
during interaction. Passive training for example refers
to subject-passive/robot-active training such as in con-
tinuous passive motion (CPM) devices. The choice of
modality (−ies) in each protocol is ultimately made by
researchers/therapists.
There is evidence that robotic interventions improve

upper limb motor scores and strength [24-26], but these
improvements are often not transferred to performance
of activities of daily living (ADL). These findings are
shared among the most recent studies, including the lar-
gest randomised controlled trial related to robot-therapy
to date [27]. A possible reason for a limited transfer of
motor gains to ADL is that the earlier studies on robot-
mediated therapy have only focused on the proximal
joints of the arm, while integration of distal with prox-
imal arm training has been recognized as essential to en-
hance functional gains [28,29].
Another issue involved in the limited transfer of motor

gains to ADL improvements in robot-mediated therapy
research may relate to the large variety of devices and
protocols applied across clinical trials. Lumping together
many devices and protocols does not provide knowledge
of the effectiveness of individual components, such as
which of the available therapeutic modalities result in the
largest effect [25]. Consequently, in literature there has
been a transition towards reviews focusing on selective as-
pects of robot-mediated therapy, rather than its overall ef-
fectiveness [30-33].
A major step in that direction is the description of differ-

ent control and interaction strategies for robotic move-
ment training. In a non-systematic review, Marshal-Crespo
et al. [34] collected a set of over 100 studies involving
both upper and lower limb rehabilitation. They made a
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first distinction between assistive, challenging and haptic-
simulating control strategies. They also described assistive
impedance-based controllers, counterbalancing, EMG-
based and performance-adapted assistance. Furthermore,
they highlighted the need for trials comparing different
interaction modalities. However, that review only included
articles up to the year 2008 while much more new infor-
mation has become available in the recent years.
Loureiro et al. [35] described 16 end-effector and 12

exoskeleton therapy systems in terms of joints involved,
degrees of freedom and movements performed [35]. How-
ever, this non-systematic review did not report about the
effects of the interventions or identify the interaction or
control strategies used. Specifically focusing on training of
the hand, Balasubramanian et al. [36] identified 30 devices
for hand function and described them in terms of degrees
of freedom, movements allowed, range of motion, max-
imum force (torque) and instrumentation. Among these
devices, eight showed an improvement in functional use
of the affected hand, in terms of increased scores on the
Action Research Arm Test, Box and Block test or Wolf
Motor Function Test [36]. Understanding and specifically
targeting mechanisms underlying recovery of the entire
upper limb after stroke is essential to maximize improve-
ments on function or even activity level.
This literature study works towards clarifying the

definitions adopted in robotic control and interaction
strategies for the hemiparetic upper extremity (including
both proximal and distal arm segments), and identifying
the most promising approaches. The objective of this sys-
tematic review is to explore and identify the human robot
interaction mechanisms used by different studies, based
on the information provided in literature. We propose a
framework to support future categorisation of various
modalities of human-robot interaction and identify a
number of features related to how such strategies are im-
plemented. In addition, we will compare clinical outcome
in terms of arm function and activity improvements asso-
ciated with those interactions, which allows us to identify
the most promising types of human robot interactions.

Methods
We conducted a systematic literature search on PubMed
with keywords including stroke, robot and arm, upper
limb, shoulder, elbow, wrist or hand. Detailed informa-
tion about the search strategy is provided in Additional
file 1: Appendix 1. We included full journal papers written
in English about robotic training of (any part of) the upper
limb. These included either uncontrolled (pre-post design)
or (randomised) controlled trials, in which a group of at
least four subjects received robot-mediated training. In
addition, training outcome must be statistically evaluated
(either pre- or post-treatment for the single group or a dif-
ference between groups). In cases where results from the
same subjects were presented (partially) in other studies
(e.g. a pilot study and the definitive protocol) we retained
the study with the largest number of participants or the
most recent study, if the number of participants were the
same. Also, we discarded those studies where other inter-
ventions were applied during robot-mediated exercise (e.g.
functional electrical stimulation). Two independent re-
viewers (AB and SN) conducted the search and selected
the appropriate articles by discarding those articles which
did not meet the selection criteria, based on title first, ab-
stract second and subsequently using full-text articles. In
case of doubt, the article was included in the next round
of selection. After full-text selection, the two reviewers
compared their selections for consensus. For each article,
only those groups of subjects that were treated with a
robotic device were included. Since some studies com-
pared several experimental groups that differed by subject
type, device used or experimental protocol, the number of
groups did not match the number of articles. Thus, we
refer to number of groups rather than number of studies.
For each group we filled a record in a structured table.

Since the outcome of an intervention can be influenced
by many factors, such as the initial level of impairment
or the frequency and duration of the intervention, this
table contains an extensive set of information (presented
in Additional file 2): device used; arm segments involved
in training; time post-stroke; number of subjects per group;
session duration; number of weeks training; number of ses-
sions per week; total therapy duration; modality (−ies) and
features of HRI; baseline impairment measured as average
Fugl-Meyer score; and clinical outcome in terms of body
functions and activity level. Arm segments involved were
categorised as one (single arm segment) or more (multiple
arm segments) of shoulder, elbow, forearm, wrist and hand,
in which forearm represents pro/supination movement at
the radio-ulnar joint. Time since stroke was categorised ac-
cording to Péter et al. [37], considering the acute phase as
less than three months post stroke, the sub-acute phase
as three to six months post stroke and the chronic phase
as more than six months post stroke.
The main focus of this work is on the interaction

between the subject and the robot. Table 1 categorises dif-
ferent ways of intervention commonly found in existing
robot-mediated therapy (termed as ‘training modalities’ in
this work). In active mode, performance arises from subject
contribution only, whereas in passive mode the movement
is performed by the robot regardless of subject’s response.
In assistive modality, both subject and robot contribution
affect movement performance. Passive-mirrored mode ap-
plies to bimanual devices, when the movement of the af-
fected side is guided based on active performance of the
unimpaired side. In active-assisted mode, the subject is
performing actively at the beginning of the movement and
the robot intervenes only when given conditions are met



Table 1 Training modalities in robot-mediated therapy

Modality Specifications Schema

Assistive Subject’s voluntary activity is required during the entire movement. Robots can
assist either providing weight support or providing forces aiming at task completion.

Active The robot is being used as a measurement device, without providing force to
subject’s limb.

Passive Robot performs the movement without any account of subject’s activity.

Passive-mirrored This is for bimanual robots, when the unimpaired limb is used to control the passive
movement of the affected side.

Active-assistive Assistance towards task completion is supplied only when the subject has not been
able to perform actively. At this stage, the subject experiences passive movement
of the limb.

Corrective Subject is stopped by the robot when errors (e.g. distance from a desired position)
overcome a predefined value and then asked to perform actively again.

Path guidance Robot guides the subject when deviating from pre-defined trajectory.

Resistive Robot provides force opposing the movement.
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(e.g. if the target has not been reached within a certain
time), leading to systematic success. In corrective mode in-
stead, in such a case the robot would stop the subject to let
then reprise active movement. In path guidance mode, the
subject is performing actively in the movement direction,
and the robot intervention is limited to its orthogonal
direction. Finally, in resistive mode, the robot makes the
movement more difficult by resisting the movement re-
ceived from the subject. We categorised each group ac-
cording to these modalities. Note that some terms refer
to the subject status (i.e. “passive” and “active”), others
to the robot behaviour (e.g. “resistive”).
However, these categories are not specific enough to

classify such different interventions. For example, in the
case of reaching movements, the assistive modality would
refer to both cases where the robot is providing weight
support or applying target-oriented forces. The terms
commonly describing modalities of robot-mediated ther-
apy (such as passive, active-assisted, resistive) had to be
revised to provide more specific definitions in order to
proceed with unambiguous classification. We therefore
categorised all the modalities in a different way, specific-
ally based on the features of their implementation. To do
so, we identified the following specific technical features
used to implement a certain modality (termed ‘HRI fea-
tures’ in this work): passive, passive-mirrored, moving
attractor, assistive constant force, triggered assistance,
pushing force (in case of delay), EMG-proportional, tun-
nels, spring-damper guidance, spring and damper against
movement. These categories are defined in detail in
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Table 2. Note that neither training modalities nor features
of HRI are mutually exclusive categories, since groups
might have been tested with several training modalities,
and each modality might involve the presence of more
than one HRI feature. We propose the classification of
training modalities and HRI features adopted in this work
as a framework for classification for future studies. This is
an open framework, so that as new modalities or features
are developed and tested, specific categories could be
added, to be further referred.
We related clinical outcome to factors as segments of

the arm trained, time since stroke and modalities and HRI
features. We assessed clinical outcome as whether re-
ported improvements were statistically significant or not,
for each measure. Outcome was considered separately for
body functions and structures (e.g., Fugl-Meyer, Modified
Ashworth Scale, kinematics) and activities (e.g., Action
Research Arm Test, Wolf Motor Function Test, Motor
Activity Log), according to ICF definitions [38]. We cate-
gorized each outcome measure to either body functions or
activities as defined by Sivan et al. [39] and Salter et al.
[40-42]. A group was considered to have shown improve-
ment when at least two-thirds of all the outcome mea-
sures within a specific category (of either body functions
or activity level) had improved significantly.

Results
In September 2013, our search led to a total of 423 pub-
lications. The first two rounds of filtering, based on title
Table 2 Features of modalities of human robot interaction an

Feature Specification

Passive, passive-mirrored The device is programmed to follow a desi
towards it.In the case of passive mirrored, t
In some cases, these trajectories can be set

Moving attractor In such a case the assistance is lower than
or smooth trajectory but the amount of ass
robot to the trajectory.

Triggered assistance The subject initiates a movement without a
task is not completed (e.g. time expired) an

Assistive constant force Force oriented towards the target or weigh

EMG-proportional The power of the EMG signal is used to co

Pushing force (in case
of delay)

A force aligned with the movement directi
scheduled motion pattern.

Spring-damper guidance Elastic or visco-elastic force fields aim at red

Tunnels These can be displaced within the virtual e
a (large) threshold value. A tunnel can be s
which makes the haptic intervention discre

Spring against movement The device opposes movements through a

Damper against movement The device generates a force opposing the
effort of the subject, it also stabilizes the m

Not clear The information in the text (or its reference
to the physical interaction was “the robot a
to not providing details on the method of
and abstract, led to a set of 126 articles. After screening
full-text articles, 74 studies were included, with a total of
100 groups treated with robots. Of the 74 studies, 35
were randomised controlled trials and 39 were clinical
trials (pre-post measurement), involving 36 different de-
vices. Group sizes ranged from 5 to 116 subjects, with a
total of 1456 subjects. Table 3 presents a summarised
overview of all included studies, grouped by device. De-
tailed information for each group is given in the table in
Additional file 2: Appendix 2.
With respect to stages of stroke recovery (Figure 1a),

73 of the 100 groups included patients in the chronic
stage, 17 involved patients in the acute stage, and four
groups involved patients in the sub-acute stage. In six
cases subjects at different stages of recovery were in-
cluded in the same group or no information about time
since stroke was provided. The average FM score at in-
clusion among groups of acute subjects was 17.7 ± 12.7
and 25.9 ± 9.5 among chronic subjects. The higher aver-
age score for subacute subjects (29.3 ± 7.8) is possibly an
outlier due to the small number of observations.
When considering the arm segments (Figure 1b), we

observed that training involved shoulder movements
for 71 groups, elbow flexion-extension for 74 groups,
wrist movements for 32 groups, forearm pronation-
supination for 20 groups, and hand movements for 20
groups. Training rarely focused on a single part of the
arm, with four groups specifically trained for elbow
[86,90,92,93], five groups for wrist [73,85,87,88] and six
d their implementation in robot-mediated therapy

red trajectory/force profile with a strong attractor (up to 1000 N/m)
he desired input is given by the subject with the unimpaired hand.
by the therapist during a “learning” phase.

in passive control, the robot is still attracted towards a minimum jerk
istance can be modulated by varying the stiffness that attracts the

ssistance. The robot observes that the on-going performance if the
d intervenes taking the full control, as in the passive mode.

t support when movement is against gravity.

ntrol the actuators.

on assists the subject only if there is a delay in comparison with a

ucing the lateral displacement from a desired trajectory.

nvironment to produce a haptic feedback only if error overcomes
een like a lateral spring-damper system plus a dead band zone
te in time. This particular cueing of errors relates to a corrective strategy.

n elastic force-field pulling back to the start position.

movement based on current velocity. Although this increases the
ovement by damping oscillations.

s) did not allow classifying the article. As an instance, if the only mention
ssisted the subjects during the task”, this was considered not clear due
assistance.



Table 3 Overview of included studies: characteristics

Device Arm
segment

Phase # of
groups

References # of subjects
(total)

Training duration in
hours [mean (SD)]

Training
modalities

HRI feature

MIT-MANUS (InMotion2) S, E Acute 6 [43-48] 132 24.2 (10.9) P, As, AA,
PG

SDG, NC, P, PF, TA

Chronic 20 [48-59] 394 22.3 (17.0) As, AA, R, Ac SDG, MA, NC, PF, S,
TA

MIT-MANUS (InMotion2) S, E, F, W,
H

Chronic 3 [27,49] 64 24.0 (10.4) As, AA SDG, PF

MIT-MANUS
(InMotion2 + 3)

S, E, F, W Chronic 3 [59-61] 63 36.0 (0) As, AA, Ac SDG, NC, PF

Bi-Manu-Track F, W Acute 2 [62,63] 53 10.0 (0) P, PM, R P, PM, S

Chronic 5 [64-67] 48 26.8 (12.9) P, PM, R, Ac NC, P, PM, S

MIME S, E Acute 2 [68] 36 12.2 (5.1) P, PM, AA, R NC, P, PM,S

Subacute 3 [69] 24 15.0 (0) P, PM, AA, R SDG, P, PM, TA, D

Chronic 4 [70-72] 37 24.0 (0) P, PM, AA,
PG, R

SDG, P, PM, TA, D

1 DoF robotic device W Chronic 1 [73] 8 20.0 (0) P, AA, A P, TA

2 DoF robotic device S, E Chronic 1 [73] 12 20.0 (0) P, AA, A P, TA

3 DoF wrist robotic
exoskeleton

F, W Chronic 1 [74] 9 10.0 (0) As, Co, Ac MA,D

5DoF industrial robot S, E, W Acute 1 [75] 8 21.4 (0) P, AA, Ac P

Amadeo H Acute 2 [76,77] 14 9.2 (5.9) P, AA P, NC

Chronic 1 [78] 12 18.0 (0) AA NC, P

Mixed 2 [79] 15 15.0 (0) P, As, Ac NC, P

ACT3D S, E Subacute 2 [80] 14 Unknown As, R ACF

ARM-Guide S, E Chronic 1 [81] 10 18.0 (0) AA PF, TA

AMES W, H Chronic 1 [82] 5 65.0 (0) P P

BFIAMT S, E Chronic 1 [83] 20 12.0 (0) PM, C, R MA, PM, TW

Cyberglove, Cybergrasp +
Haptic Master

S, E, W, H Chronic 1 [84] 12 22.0 (0) AA ACF

CYBEX, NORM W Chronic 1 [85] Unknown
(27 in total)

Unknown P P

PolyJbot W Chronic 1 [85] Unknown
(27 in total)

Unknown AA EMG

EMG-driven system E Chronic 1 [86] 7 30.0 (0) AA EMG

W Chronic 2 [87,88] 15 42.0 (0) As, AA, R EMG, S

H Chronic 1 [89] 10 20.0 (0) As, Ac EMG

AJB E Chronic 1 [90] 6 18.0 (0) AA EMG

Hand mentor robot
system

W, H Mixed 1 [91] 10 30.0 (0) P, AA, Ac P, TA

Myoelectrically
controlled
robotic system

E Chronic 2 [92,93] 14 16.0 (5.7) As, AA, R EMG, S

Gentle/S S, E Mixed 2 [94] 31 9.0 (6.4) P, AA, Co,
Ac

NC, P

Haptic Knob F, W, H Chronic 1 [95] 13 18.0 (0) P, AA, R MA, P

HWARD W, H Chronic 3 [96,97] 36 22.8 (0.6) AA, Ac P, TA

Braccio di Ferro S, E Chronic 1 [98] 10 11.3 (0) P, AA, Co, R,
Ac

CF, T,D
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Table 3 Overview of included studies: characteristics (Continued)

MEMOS S, E Acute 1 [99] 9 16.0 (0) P, AA, Ac P, TA,

Chronic 3 [99-101] 49 16.0 (0) P, AA, Ac P, TA

MEMOS, Braccio di Ferro S, E Subacute 1 [102] 20 15.0 (0) AA, Ac TA

Chronic 1 [102] 21 15.0 (0) AA, Ac TA

REHAROB S, E Mixed 1 [103] 15 10.0 (0) P P

NeReBot S, E, F Acute 2 [104,105] 28 18.3 (2.4) P, As P, PF

REO™ Therapy System S, E Acute 1 [106] 10 11.3 (0) P, As NC, P

ReoGo™ System S, E Chronic 1 [107] 19 15.0 (0) As, AA, PG,
Ac

NC

T-WREX S, E, W, H Chronic 2 [108,109] 19 21.0 (4.2) As, Ac ACF

Pneu-WREX S, E, H Chronic 1 [110] 13 24.0 (0) As, AA, Ac ACF, NC

VRROOM, PHANTOM,
WREX

S, E Chronic 1 [111] 26 12.0 (0)

UL-EX07 S, E, F, W Chronic 2 [112] 10 18.0 (0) PM, As PM, MA, SDG,
ACF

BrightArm S, E, W, H Chronic 1 [113] 5 12.0 (0) As ACF, NC

Linear shoulder robot S Chronic 1 [114] 18 Unknown As, AA TA,ACF

L-Exos S, E, F Chronic 1 [115] 9 18.0 (0) As, PG MA, ACF

Abbreviations:
Upper extremity segment:
• S = Shoulder
• E = Elbow
• F = Forearm
• W=Wrist
• H = Hand
Human Robot Interactions (HRI):
• P = Passive
• PM = Passive-Mirrored
• S = Spring against movement
• MA =Moving attractor
• TA = Triggered assistance
• PF = Pushing force (in case of delay)
• EMG = EMG-proportional
• T = Tunnels
• SDG = Spring-damper guidance
• ACF = Assistive constant force
• D = Damper against movement
• NC = Not Clear
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groups for hand [76-79,116] movements. Training of
movements involving the entire upper limb (as those
performed during ADL) is not highly recurrent (seven
groups) [27,49,84,108,109,113].
We then considered the modalities used, and Figure 2

shows an overview of the frequency of usage of each
modality. In 63 groups more than one modality was used.
Training included active-assistive modality in 63 groups.
Twenty-eight groups were trained in assistive modality.
Passive training was included in 35 groups. Active and re-
sistive modalities were involved less frequently, in 29 and
22 groups, respectively. The passive-mirrored modality
was used in 14 groups, path guidance in seven groups and
corrective strategy in five groups.
We also considered these frequencies with respect to

the stage of recovery. Passive and passive-mirrored mo-
dality are more recurrent for acute than for chronic
subjects (with 77 and 24% of the groups of acute trained
with these modalities, versus the respective 21 and 11%
of chronic subjects). Similarly, modalities more suitable
for less impaired subjects as resistive and active are
more recurrent among chronic (23 and 30% of the cases,
respectively) than within acute subjects (18% for both
modalities). Instead, the choice among modalities was
not affected by the level of impairment (as measured by
FM score). As an instance, subjects trained with passive
modality had an average FM of 27.1 ± 12.8 at inclusion
versus 23.9 ± 9.6 of those who did not receive this treat-
ment. Subsequently, we considered the HRI features. In
26 groups there was no clear description or reference to
the intervention. Passive and passive mirrored modalities
showed the same frequency as reported for the previous
classification (35 and 14 groups) as the definition of
these categories coincides in the two classifications.



Stage of recovery

Acute

SubAcute

Chronic

Mixed

Arm segments

Shoulder

Elbow

Forearm

Wrist

Hand

Full arm

a) b)

Figure 1 Fraction of groups classified by time since stroke (a) and by segments of the arm trained (b).
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Triggered assistance, spring-damper along movement
and a pushing force followed in order of frequency
after passive training (with respectively 26, 18 and 15
groups). Assistance was delivered as a constant force in
twelve groups, as a force proportional to the distance
from a moving attractor in seven groups and propor-
tional to the EMG activity in eight groups. Resistance
was implemented as elastic forces in ten groups and vis-
cous in eight groups. All included studies, except for
one, fell in the definitions we provided a priori for cate-
gorizations. Recently, a particular paradigm of HRI
(error-augmentation) showed clinical benefits [111], but
it did not fit in any of the modalities we described a
priori. In this modality, the robot tends to displace the
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Figure 2 Frequency of each modality among the reviewed groups.
subject’s hand from the optimal trajectory by applying a
curl force field to the hand. This constitutes a new, dif-
ferent modality, which benefits could be investigated as
more studies using it become available.
We then considered the outcome measures, although

the positive outcome of an intervention depends on
many factors such as the initial level of impairment of
the subjects, frequency and duration of the treatment,
baseline impairment (for which detailed information is
available in Additional file 2: Appendix 2). Overall, 54 of
99 groups (55%) showed significant improvements in
body functions. Twenty-two of the 54 groups who
measured outcomes related to the activity level (41%),
showed improvements on this level. With respect to
lity

Exclusively that

Included that
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time after stroke and observed that among acute stroke
patients, 59% of the groups showed improvements on
body functions, and 33% on activity level. In chronic
stroke patients, 53% of the groups improved on body
functions, and 36% on activity level. For the sub-acute
phase, two out of four groups improved on body func-
tions, and two out of three groups improved on activity
level.
Table 4 Outcomes per training modality and features of HRI

% of groups improved at body functions

Training modality Multiple
modalities

Only that
modality

Features of HRI whe

Passive 56 (19 of 34) 50 (2 of 4) P (2 of 2)

Passive-mirrored 43 (6 of 14) 0 (0 of 2)

Assistive 57 (16 of 28) 33 (2 of 6) NC (2 of 2)

Active-assistive 58 (36 of 62) 58 (14 of 24) TA (5 of 14) EMG (
SDG (3 of 14) PF +
(1 of 14) CF (1 of 1

Path guidance 86 (6 of 7) N/A

Corrective 80 (4 of 5) N/A

Resistive 64 (14 of 22) 0 (0 of 1)

Active 61 (17 of 28) N/A

Feature of HRI Multiple
features

Only that
feature

Passive 56 (19 of 34) 60 (3 of 5)

Passive-mirrored 43 (6 of 14) 0 (0 of 1)

Moving attractor 43 (3 of 7) 0 (0 of 1)

Triggered assistance 60 (15 of 25) 50 (7 of 14)

Assistive Constant
force

42 (5 of 12) 20 ( 1 of 5)

Emg-proportional 100 (8 of 8) 100 (5 of 5)

Pushing force (in case
of delay)

60 (9 of 15) N/A

Spring-damper
guidance

61 (11 of 18) N/A

Tunnels or walls 100 (2 of 2) N/A

Spring against
movement

60 (6 of 10) 0 (0 of 1)

Damper against
movement

75 (6 of 8) N/A

Not clear 46 (12 of 26) 50 (5 of 10)

Abbreviations:
Human Robot Interactions (HRI):
P = Passive
PM = Passive-Mirrored
S = Spring against movement
MA =Moving attractor
TA = Triggered assistance
PF = Pushing force (in case of delay)
EMG = EMG-proportional
T = Tunnels
SDG = Spring-damper guidance
ACF = Assistive constant force
D = Damper against movement
NC = Not Clear
About outcome for arm segments trained, improvements
on body function seemed to be equally distributed between
different parts of the arm, but we observed that training of
the hand seems to be most effective on the activity levels,
with 60% of the groups showing improvements.
Table 4 shows the outcome for different modalities

and features of HRI. When relating clinical outcome to
specific training modalities, most of the studies (63 of
% of groups improved at activity level

n improved Multiple
modalities

Only that
modality

Features of HRI when
improved

44 (10 of 23) 33 (1 of 3) P (1 of 1)

15 (2 of 13) 0 (0 of 2)

38 (6 of 16) 0 (0 of 3)

4 of 14) PF +
SDG + NC
4)

48 (15 of 31) 36 (4 of 11) TA (2 of 4) CF (1 of 4)
NC (1 of 4)

50 (2 of 4) N/A

50 (1 of 2) N/A

42 (5 of 12) N/A

60 (9 of 15) N/A

Multiple features Only that feature

44 (10 of 23) 50 (2 of 4)

15 (2 of 13) 0 (0 of 1)

33 (2 of 6) 0 (0 of 1)

43 (6 of 14) 44 (4 of 9)

17 (1 of 6) 50 (1 of 2)

33 (1 of 3) 33 (1 of 3)

33 (2 of 6) N/A

38 (3 of 8) N/A

0 (0 of 1) N/A

20 (1 of 5) N/A

60 (3 of 5) N/A

50 (7 of 14) 100 (2 of 2)
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the 100 groups) included multiple modalities in one
training protocol. Among them, those including path-
guidance (six of the seven groups) and corrective mo-
dality (four of the five groups) resulted in the highest
percentage of groups improved for body functions (86%
and 80%, respectively). However, this may be affected by
the limited number of groups. Besides, these groups did
not show persistent improvements on activity level. It is
noteworthy that the most consistent improvements on
activity level were reported for training including the ac-
tive modality (nine of the 15 groups; 60%).
The effect of a single training modality (i.e., only one

modality applied in a training protocol) was investigated
in the remaining 37 groups: 24 groups applied only the ac-
tive assistive modality, four groups trained with passive
movement only, six groups applied only assistive training,
two groups with passive mirrored and one group with re-
sistive modality only. The active-assisted modality seemed
to have the most consistent impact on improvements in
both body functions and activities: 14 of the 24 groups
(58%) [43,44,49,60,84,86,88,90,96,100,101] showed signifi-
cant improvements in body functions. Regarding activities,
four of the 11 groups (36%) [43,79,84,96] measuring activ-
ity level showed significant improvements after active-
assisted training. Training exclusively in passive mode was
associated with improvement in body functions for two of
four groups (50%) [76,103] and in activities for one of
three groups (33%) [103]. With the exclusive assistive mo-
dality, two of the six groups (33%) showed significant im-
provements in body functions [50,61]. In passive-mirrored
mode (two groups) and resistive mode (one group), none
of the groups showed significant improvements in either
body functions or activities.
We also considered whether the inclusion of a modal-

ity led to different outcome for subjects at different
phases of recovery. Due to the small number of observa-
tions for subacute subjects, we neglect those results. In-
stead, for acute subjects we found that modalities with
better outcome on body functions were active (2 out of
3 groups, 67%), assistive (4 out of 6 groups, 67%), active-
assistive (5 out of 10 groups, 50%) and passive (6 of 13
groups, 46%). For subjects in acute phase, inclusion of
passive mirrored and resistive modality did not lead to
improvements in body functions (in none of the 4 and 3
groups, respectively). These results differ from subjects
in chronic phase, where inclusion of passive-mirrored
modality led to improvement in 75% of the groups (6
out of 8), while the inclusion of resistive modality was
effective on 71% of the groups (12 of 17). The path guid-
ance modality led to the best results for chronic patients
(6 out of 6 groups improved on body functions). Results
for other modalities are similar among them, with all the
other modalities being effective on about 60% of the
groups. The effectiveness is generally lower on the activity
level. For acute subjects, there are not many observations
for most of the modalities. Instead, for chronic subjects
the inclusion of active modality (62%, 8 out of 13 groups)
seemed to perform better than all the others, which were
effective in about 40% of the cases. Exclusion to this is the
passive-mirrored mode, for which only 1 of the 8 groups
(12.5%) improved on activity level.
When we considered the specific HRI features used in

the 14 groups who improved on body functions with
active-assistance as single modality, five groups used trig-
gered assistance, four groups EMG proportional, four
groups a pushing force in combination with spring-damper
guidance movement, and one group an assistive constant
force. The four groups in active-assisted mode who im-
proved on activity level used triggered assistance (two
groups), assistive constant force (one group), and for one
group it was not clear which feature of HRI was used.
When considering the clinical outcomes associated with

those HRI features within the whole studies reviewed, as
for the modalities most of the studies included multiple
features of HRI in one training protocol (58 groups).
Regarding multiple features of HRI applied in training
protocols, those including EMG-proportional, tunnels and
damper against movement resulted in the highest percent-
age of groups improved for body functions (100%, 100%
and 75%, respectively). This is followed by spring damper
guidance, pushing force, triggered assistance and spring
against movement, showing an improvement in body
functions in 61% (11 of 18 groups), 60% (9 of 15 groups),
60% (15 of 25 groups) and 60% (6 of 10 groups) respect-
ively. However, the limited number of groups might be
affecting this result, especially concerning outcomes at
activity level.
The effect of a single feature of HRI (i.e. only one

feature of HRI applied in a training protocol) was inves-
tigated in the remaining 42 groups. The most common
single HRI feature was triggered assistance (TA), which
was used in 14 groups. However, only seven of these
showed significant improvements in body functions
[43,44,96,97,100-102], and in the case of activities, four
of the nine groups who measured outcomes on activity
level (44%) improved [43,96,97]. The EMG-proportional
feature the sole was used in five groups, all showing im-
proved body functions (100%) [85,86,88,90,116], but only
one of two groups showed improved activities [116]. A
constant assistive force only was used in five groups, of
which only one group showed improvements in both body
functions and activities [84]. So, when focusing on single
features, EMG proportional feature seems most promis-
ing, followed by passive and triggered assistance. However,
the other HRI features that had good results in combined
protocols with multiple features (tunnels, damper against
movement, spring damper guidance and pushing force)
have not been investigated as single feature of HRI at all.
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Nevertheless, a common aspect can be derived from the
features with most consistent effects, indicating that the
active component is promising for improving arm func-
tion. For activities, no conclusive answers can be drawn,
because of the limited number of studies who have inves-
tigated this effect using a single feature at this point. This
is also true for analysis of the relation of separate training
modalities/HRI features with mediating factors such as
initial impairment level, frequency and duration of train-
ing, etc.

Discussion
Our results highlight that robot-therapy has focused mostly
on subjects in chronic phase of recovery, while considerably
less studies involved subjects in acute and in sub-acute
phases (73, 17 and four groups, respectively). However, our
results indicate that patients across all stages of recovery
can benefit from robot-mediated training.
Despite the evidence that training the hand (alone) is

accompanied with improvement of both hand and arm
function, we observed that many robot-therapy studies fo-
cused on proximal rather than on distal arm training.
Also, only a limited number of studies focused on training
the complete upper limb involving both proximal and dis-
tal arm movements, while there is evidence of benefits for
training arm and hand together rather than separately
[117]. Additionally, it is known that post-stroke training
should include exercises that are as “task-specific/func-
tional” as possible to stimulate motor relearning, which
further supports inclusion of the hand and with proximal
arm training [28,29]. Additionally, to allow proper investi-
gation of the effect of such functional training of both
proximal and distal upper extremity simultaneously,
outcome measures at activity level have to be addressed
specifically, besides measurements on the level of body
functions. However, in all but one study [91] outcomes re-
lated to body function were measured, but the effects of
robotic training on activities were assessed in only 54 of
100 groups. This prevents adequate interpretation of the
impact of robotic therapy and associated human robot in-
teractions on functional use of the arm at this point.
When focusing on the modality of interaction, we ob-

served that training protocols only occasionally included
only one training modality, which makes it difficult to
examine the effect of one specific modality. This also
hindered a detailed analysis of separate effects per train-
ing modality and especially their relation with mediating
factors such as initial impairment level, frequency and
duration of training, etc.
Only a limited number of studies aimed at comparing

two or more different robotic treatments. The first of
those studies hypothesized benefits of inserting phases
of resistive training in the therapy protocol [51]. Subjects
were assigned to different groups, training with active-
assistive modality only, resistive only or both. There were
no significant effects from incorporating resistance exer-
cises. Another study [69] compared a bimanual therapy
(in passive mirrored mode) with a unimanual protocol
which included passive, active-assistive and resistive
training. Again, there were no significant differences be-
tween groups in terms of clinical scores. In a different
study, active-assistive training delivered with an EMG-
controlled device showed larger improvements (in Fugl-
Meyer, Modified Ashworth Scale and muscle coordination)
with respect to passive movement in wrist training [85].
Assistive forces may also be provided as weight support. In
this case, subjects benefitted from a progressive decrease of
such assistance, along therapy [80].
Even though there are a limited number of studies com-

paring separate training modalities, the available data indi-
cated that robot-mediated therapy in active assisted mode
led most consistently to improvements in arm function.
Whether this mode is actually the most effective one can-
not be stated at this point due to lack of a standard defini-
tions used by different studies. It is remarkable that the
application of two of the least adopted modalities, i.e. path
guidance and corrective, did consistently result in im-
proved clinical outcome. Although this effect might be
due to the small number of studies which included them,
this suggests that one way to be pursued in future research
in order to improve the results of robotic rehabilitation is
utilising robot’s programmable interaction potentials,
rather than just mimicking what a therapist can do (pas-
sive, active-assisted, even resistance to some extent). Ex-
perimental protocols including more than one modality
should also be sought, and the combined effect of differ-
ent modalities should be investigated. As an instance,
patients might switch from passive toward active mo-
dality as recovery progresses.
With respect to the specific strategy (HRI feature) for

providing assistance when applying active assistive train-
ing, the findings from this review indicate that a pushing
force in combination with lateral spring damper, or EMG-
modulated assistance were associated with consistent im-
provements in arm function across studies, while triggered
assistance showed less consistent improvement. It is sug-
gested that modalities that stress the active nature of an
exercise, requiring patients to initiate movements by
themselves and keep being challenged in a progressive
way throughout training (i.e., taking increases in arm func-
tion into account by increasing the level of active partici-
pation required during robot-therapy), do show favourable
results on body function level.
The training modalities referred mainly to the descrip-

tion given by the authors of the reviewed studies, but in ab-
sence of a uniform definition for identifying robot-human
contributions, groups often named the mechanisms used
according to their preference and understanding of these
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mechanisms. Attention to the interaction mechanism be-
tween a person and robot is sometimes so limited that
often authors did not even mention such mechanisms in
their publications (this happened for 26 out of 100 groups).
Given a commonly accepted categorisation for these
modalities, researchers are then able to compare useful-
ness of different human-robot interaction mechanisms.
It is thought that by providing a common-base for inter-
action, a larger body of evidence can be provided, i.e. via
a data-sharing paradigm, to understand the full poten-
tial of robot-mediated therapy for improving arm and
hand function after stroke. Ultimately, this can support
better integration of robot-mediated therapy in day-to-
day therapeutic interventions.
About the effectiveness of different modalities, consid-

ering that cortical reorganization and outcome after
stroke rehabilitation is positively associated with active,
repetitive task-specific (i.e., functional) practice [28,29],
human robot interactions stressing these features are
preferred. In addition, there is a strong computational
basis to push towards delivering minimally assistive ther-
apy [118]. In contrast to this, passive movement is very
recurrent, as it may provide more severely impaired sub-
jects with the opportunity to practice. If this is the case,
one way to improve the outcome of the therapy in this
situation is to tailor the exercise to individual needs
while stimulating active contribution of the patient as
much as possible, rather than passively guiding to system-
atic success. Nevertheless, due to the large variety and het-
erogeneity in training modalities applied (i.e. contents of
the intervention), it wasn’t possible to draw conclusions
about the role of these additional mediating factors per
training modality. More research about comparing differ-
ent training modalities (with only one specific modality
per group) is needed to answer more specifically which
training modality would result in largest improvements in
arm function and activities after robot-mediated upper
limb training after stroke.

Conclusions
Our review shows that most of the literature about robot-
mediated therapy for stroke survivors refers to subjects in
chronic phase. In the same way, training most frequently
targeted the proximal arm.
Regarding the human-robot interaction, there has been

poor attention in documenting the control strategy and
identifying which strategy provides better results. This is
hampered by the ambiguity in definitions of HRI method
employed. While each robot would incorporate a lower-
level control, interaction between robot and human is
often made possible by incorporating an interaction mo-
dality, which is not standardised across different studies.
Therefore, we have proposed a categorisation of train-

ing modalities (Table 1) and features of human-robot
interaction (Table 2) as an open framework to allow
groups to identify the type of mechanism used in their
studies, allowing better comparison of results for par-
ticular training modalities.
Even though only limited studies specifically investi-

gated different control strategies, the present review in-
dicates that robot-therapy in active assisted mode was
highly predominant in the available studies and was as-
sociated with consistent improvements in arm function.
More specifically, the use of HRI features stressing active
contribution by the patient (e.g. EMG-modulated control,
or a pushing force in combination with spring-damper
guidance) in robot-mediated upper limb training after
stroke may be beneficial. More research into comparing
separate training modalities is needed to identify which
specific training modality is associated with best improve-
ments in arm function and activities after robot-mediated
upper limb training after stroke.
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