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Abstract

Background: Using recordings from a five-pin surface sensor array, a template-based surface electromyogram
(sEMG) decomposition system has been developed to identify single motor unit discharge properties. However, the
reliability of such template based decomposition results has not been thoroughly examined except by the
developers. The focus of this study was to assess the validity of the motor unit decomposition technique, using
EMG recordings from the first dorsal interosseous muscle of able-bodied human subjects.

Methods: Two tests were utilized. In the first test, a spike triggered averaging (STA) analysis was used to derive
motor unit action potential (MUAP) parameters. We examined these STA derived MUAP shapes after firing times
were perturbed by added timing noise. In the second test, a cross-correlation analysis was performed between the
sEMG signal and MUAP trains constructed using STA estimates and their firing times.

Results: In the first test, we found that MUAP shape features deteriorated significantly when rather small (0.6-2 ms)
timing errors were added, affirming that the decomposed firing times are presumptively valid. The results of the
second test reveal that the cross-correlation index between the EMG and MUAP trains increased monotonically up
to 0.71 when the identified MUs were progressively added to reconstructed MUAP trains; however, this increment
disappeared when the firing times or the MUAP templates were shifted randomly.

Conclusions: Based on our STA selection criteria, our results suggest that the firing times and estimated MUAP
shapes for each MU generated by the decomposition algorithms are presumptively valid.
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Background
Single motor unit (MU) firing properties provide valu-
able information about the neuromuscular system and
are widely used in physiology [1], motor control [2], and
clinical [3] fields. Intramuscular electromyogram (EMG)
recordings are typically used to derive single MU acti-
vities. However, this intramuscular technique has several
limitations. Intramuscular recordings can detect only a
limited number of MUs at any given force level, data
collection and analysis is time consuming, and electrode
insertion can be painful. In contrast, non-invasive recor-
dings capable of extracting single motor unit activities
from the overlying skin surface have been developed.
With further development of high-speed computing
techniques, various methods of MU decomposition have
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been proposed, where single MU firings can be extracted
from intramuscular EMG or surface EMG (sEMG) in-
terference patterns using a range of decomposition
algorithms [4-9]. In our laboratory, we have focused on
testing a novel sEMG recording and decomposition
system [10]. The associated decomposition algorithm
represents an advance over earlier intramuscular MU
decomposition methods [6,11], and there have also been
several innovative updates in sEMG decomposition
methodology since its inception [12,13]. The output of
this decomposition algorithm provides the firing times
and action potential templates of a large number of
MUs extracted from the sEMG during a muscle contrac-
tion over a large force range. Although the approach is
promising, the accuracy of the decomposition results
has not been determined by sources outside of the de-
velopers, and the overall validity of the approach has
also been questioned [14]. Accordingly, the objective of
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the current study was to assess the overall validity of
this sEMG decomposition algorithm.
In earlier studies, the accuracy of the decomposition

results has been assessed using a reconstruct-and-test
approach by De Luca and colleagues [10,15]. Specifically,
the EMG signal was decomposed into constituent MU
action potential (MUAP) trains. A simulated EMG signal
was then constructed based on the decomposed unit
firing times and action potential templates, and the simu-
lated signal was decomposed again. The decomposition
results of the recorded and simulated EMG signals were
then compared to assess the accuracy of the algorithm.
In another validation protocol, the MU firing times were
randomized during the reconstruction of EMG signals to
further assess the decomposition results [16]. Although
these validation methods were based on simulated data
that inevitably contain simplifications compared with real
EMG data, the MUAPs and firing statistics were derived
from realistic EMG signals and thus represent realistic
characteristics of observed EMG signals [10,15]. However,
neither of these validation methods have been universally
accepted (see the discussions between [14] and [17]).
To address these concerns, the objective of this study

was to employ two sets of tests to examine and assess
the validity of decomposition results of the sEMG signal
recorded from the first dorsal interosseous (FDI) muscle.
We devised indirect methods of assessment, because the
recorded signal consisted of a large number of motor
units with a significant amount of superposition.
In the first set of tests, a spike triggered averaging

(STA) technique was used to reconstruct the action
potential shape [18-20]. This technique uses the de-
composition-based MU firing times as triggers for the
recorded raw sEMG signal. The formation of the decom-
position system template shape starts from uncontami-
nated instances of the basic MUAP shape in the
recorded EMG record. The template is then matched
across all viable MUAP candidates in the EMG signal
[6,11]. The template is a weighted average of the variations
of the MUAP shape across the EMG record. In contrast,
the STA derived template is working backwards using the
MU event times to derive the same MUAP shape as pro-
vided by the decomposition system. The assumption is
that if the system identified MU shapes do occur at the
system identified MU event times, then we will be able
to extract the same shape using STA.
The STA MUAP estimate was used for further analysis

to derive decomposition related parameters. Two STA
features were extracted: (1) the correlation between the
STA estimates and the decomposition templates, and (2)
the waveform stability of the STA estimates. Gaussian
noise was then added to perturb the timing of the ori-
ginally decomposed firings in the STA analysis. We hy-
pothesized that features derived from the STA analysis
would show substantial changes (i.e., the STA would not
fit with the decomposition estimates and the waveform
would show high variation) if the decomposed firing
times are largely correct. Conversely, if the firing times
are already erroneous from the decomposition, we would
expect little changes in the STA features.
The second set of assessments involves a cross-

correlation analysis between the raw EMG signal and the
MUAP trains constructed using the STA estimates. Reli-
ably decomposed MUs were selected and MUAP trains
were constructed using the firing times and the STA
estimates. The MUAP trains from different MUs were
combined linearly, after which the combined MUAP trains
were correlated with the recorded raw EMG signal. We
hypothesized that the cross-correlation would increase
with the number of MUAP trains added together, if the
firing times were correct and the STA estimates represent
the true MUAPs. Additionally, if the firing times or the
MUAP templates were perturbed (i.e., the raw EMG did
not contain the reconstructed random MUAP trains), we
would expect low cross-correlations.
Using these tests we were able to validate the decom-

position results of the sEMG recorded from the FDI
muscle. The outcome of our first assessment showed
that the MUAP shape features of the STA estimates
were lost even if a small (0.5-2 ms) amount of timing
noise was added to the firing times. The second assess-
ment, the cross-correlation index between the raw EMG
and MUAP trains increased monotonically with an in-
creasing number of MUs added to the simulated
MUAP train. This incremental change was absent
when the firing times or the MUAP templates were
shifted randomly. The results of our analysis provide
support for the validity of surface EMG decomposition
systems, and also provide a potential tool for routine
assessment of the output of general MU decompo-
sition algorithms for surface EMG.

Methods
Participants
Eight right hand-dominant neurologically intact indivi-
duals (4 male, 4 female) volunteered to participate in
this study. The EMG activity of the FDI muscle was
recorded during isometric abduction of the right index
finger. The participants gave informed consent via pro-
tocols approved by the Institutional Review Board under
the Office for the Protection of Human Subjects at North-
western University.

Experimental setup
Participants were seated upright in a Biodex chair with
their upper arm resting on a support. To standardize
hand position and to minimize contributions of unre-
corded muscles, the forearm was immobilized in a brace
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and placed in a ring mount interface attached to an
elbow rest. The forearm was placed in full pronation and
the wrist was held neutral with respect to flexion/exten-
sion. The little, ring and middle fingers were extended
away from the index finger and strapped to the support
surface. The thumb was secured at an approximately 60
degree angle to the index finger. The index finger was
placed in line with the 2nd metacarpal and the long axis
of the forearm creating a neutral MCP joint angle. The
proximal phalanx of the index finger was cast and fixed
to a ring-mount interface attached to a six degrees-of-
freedom load cell (ATI, Inc.). The recorded forces from
the abduction/adduction direction were low pass filtered
(cutoff =200 Hz) and digitized at a sampling frequency
of 1 kHz. The subjects were instructed to produce re-
quired abduction forces while minimizing the off-axis
forces.

EMG recordings
The subject’s skin was prepared by cleaning the super-
ficial layers with adhesive tape, and the skin was then
cleaned with alcohol pads to ensure proper electric con-
tact and low baseline noise. sEMG was recorded from
the FDI (Figure 1A) using a surface sensor array (Delsys,
Inc.) that consisted of 5 cylindrical probes (0.5 mm
diameter) as shown in Figure 1A. The probes are located
at the corners and at the center of a 5 × 5 mm square.
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Figure 1 Surface EMG recording and decomposition. A: 5-pin sEMG se
interosseous muscle. C: Decomposed firing spikes and action potential tem
shown for comparison. The force trajectory is overlaid on top of the firing
Pairwise differentiation of the 5 electrodes yields 4 chan-
nels of sEMG signals (Figure 1B). The sEMG sensor and
a reference electrode were connected to 4 channels of a
Bagnoli sEMG system (Delsys, Inc.). The signals were
amplified and filtered with a bandwidth of 20 Hz to
2 kHz. The signals were sampled at 20 kHz and stored
on a computer for decomposition processing.

Procedures
For the first trial of the experimental session, subjects
were asked to perform maximal voluntary contractions
(MVCs) for 3 s. This maximum contraction was re-
peated 3 times in total, with 1 min rest between trials.
The largest value of the 3 trials was designated as the
MVC. The rest of the session consisted of a series of iso-
metric voluntary contractions during which the subject
was asked to follow trapezoid force trajectories displayed
on a computer screen, each at a different varying per-
centage of the MVC. The force output in one exemplar
trial is shown in Figure 1C (the black trace). The tra-
pezoid trajectory contains 5 segments: a 5 s quiescent
period for baseline noise calculation, an up-ramp in-
creased at a rate of 10% MVC/s, a constant force of the
prescribed % MVC for 12 s, a down-ramp decreased at
10% MVC/s, and a 3 s quiescent period. For the main
part of the experiment, the subjects performed 4 blocks of
trials with five repetitions of each block. Four constant
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force levels (20%, 30%, 40%, and 50% MVC) were tested,
and each block contained one force level. The order of the
force levels was randomized for each subject. A 30 s rest
period between repetitions was provided.

Decomposition algorithm
In order to clarify the relation between the decomposed
MUAP templates and the STA derived MUAP shapes, a
brief summary of template formation and matching used
in the decomposition algorithm follows.
The decomposition algorithm consists of two stages.

The first stage involves MUAP template creation, mat-
ching, and updating [10]. In the first step the algorithm
identifies as many template shapes as possible from all
possible candidates derived from the original continuous
signal. The algorithm searches for occurrences of uncon-
taminated shapes, which are then used to initiate a MU
template. Second, matching of the MUAP templates
goes through a maximum a posteriori probability classi-
fier that uses the information of the correlation between
the templates and the EMG signal, the amplitude of
action potential, and the remaining energy of the EMG
signal. Lastly, variations in the shape of the MUAP tem-
plate (as identified through the matching procedure) are
documented as different versions of the same template.
The output to the user is a weighted average of the dif-
ferent variations of MUAP templates. The decomposed
MUAP templates (Figure 1C) provide information regar-
ding the MUAP shape, but not necessarily the actual
amplitude voltage of the MUAP because of the weigh-
ting process.
The second stage identifies MUAPs within complex su-

perpositions in the EMG signal. Multiple MUAP tem-
plates are iterated through a discrimination analysis to
calculate the combination of MUAP templates that best
matches the signal shape while also satisfying the criteria
that the coefficient of variation of the inter-spike intervals
(ISIs) of these MUs is at a minimum. It is worth noting
that not all the MUAPs embedded in the EMG signal are
identifiable, especially for those small MUAPs that are
blurred by background noise and extensive superposition.
The decomposition system output consists of the MUAPs
that were most reliably identified, and the algorithm is not
residual based. Thus the residual signal varies according
to the recording circumstances, including experimental
protocol. Detailed information for the decomposition
algorithm is described in [10].

Spike triggered averaging derived MUAP features
Spike triggered averaging (STA) analysis aligns segments
of EMG signals based on MU firing events. This method
provides the ability to attenuate non-time-locked activities
from the complex interference pattern and extract action
potentials related exclusively to the triggering events. In
this study, STA analyses were performed to assess the sta-
bility of the MUAP that include:

1) The correlation between the STA and the
decomposed action potential templates provided by
the decomposition algorithm. A comparison of the
STA and the decomposed templates is shown in
Figure 1C.

2) The variability in the STA derived MUAP peak-peak
amplitude across epochs/segments of the EMG
signal. The stability of the MUAP peak-peak
amplitude, instead of the entire MUAP waveform,
was assessed, because the MUAP amplitude provides
key information about the physiological properties of
the MU (e.g., MU size).

The STA analysis of sEMG involved three stages of
processing.
First, the STA was performed on the individual four

sEMG channels. The firing times identified from the de-
composition system were used as triggers for the STA
calculation. This resulted in one representative wave-
form estimate for each algorithm identified MU in each
channel (Figure 1C). The time interval used to derive
the action potential estimate was set at 10 ms prior to
and after the estimated firing time; the firing time was
placed at the algebraic center of the time window. The
MU firing events of the entire trial were used for the
MUAP estimation.
Second, two separate STA features were calculated to

determine which MUs would be retained for EMG re-
construction. These features were designed to assess the
stability of the waveform over the trial duration.
For the first feature, the STA estimated MUAP was

calculated based on a window (EMG segment) length of
4 s, and the MUAP variation across segments was then
calculated. This window yielded approximately 50–100
firing events in each window, and the window was shifted
over the sEMG signal, using a step size of 0.5 s. The num-
ber of steps ranged from 24 to 36 depending on the force
level and recruitment threshold of individual MUs. The
coefficient of variation (CV: standard deviation norma-
lized by the mean) of the peak-peak (P-P) amplitude of
the MUAP templates, for each step change, was calculated
as a measure of the stability of the waveform average. The
P-P amplitude was the difference between the maximal
positive and negative peaks of the MUAP.
For the second feature, the MUAP estimates derived

using the STA method were compared with the decompo-
sition based templates (a 20 ms segment). The maximum
linear correlation coefficient between the STA estimate
(calculated over the entire trial duration) and the decom-
position estimated templates was computed as a second
measure of the reliability of the waveform average. The
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STA derived template was shifted 10 ms backward and
forward one data sample at a time (0.05 ms sample inter-
val) relative to the decomposition template to find the
maximum correlation coefficient. The decomposition esti-
mated templates are derived via a weighted average of the
various templates used to represent each MU; the STA es-
timates were calculated directly from the raw EMG data.
A high correlation between these two estimates signifies
the reliability of the STA waveform average.
Third, the calculated features of the STA estimates

were used as criteria to select MUs. Specifically, the
MUs with CV of P-P amplitude < 0.2 and a correlation
coefficient > 0.7 were selected for later calculation. The
average CV and average correlation coefficient across
the 4 channels was calculated provided that the 4 chan-
nels give rise to similar values of these features.

STA calculations using altered MU firing times: validation
of identified firings
If the action potentials are correctly identified, a distur-
bance of the timing of firings should significantly change
the STA waveform, because it is calculated from the
identified firing times for each MU. Conversely, if the
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firing times are already incorrectly identified, disturbed
firing times should have little effect on the STA features
(i.e., P-P amplitude and CV values).
To test this hypothesis, different levels of Gaussian

noise (each generated independently) were added to the
identified firing times of each MU such that each indi-
vidual firing time is shifted randomly. Specifically, the
noise had a zero mean and a standard deviation (SD)
that was scaled with the SD of the ISIs of MU firings.
The scaling of the SD ranged from 0 to 0.6 with an in-
crement of 0.1. The exemplar MU spike trains (original
decomposition spike train denoted by vertical bars vs.
noisy spike train denoted by circles) are shown in
Figure 2A. In this example, the scaling factor of the
SD of the noise was set at 0.1. The SD of ISI of these
MUs ranged from 6 to 18 ms. Consequently, the SD
of the added firing noise ranged from 0.6 to 1.8 ms.
The STA analysis was then performed based on the
firing times with noise added. A comparison of the de-
composed action potentials from 4 channels of an exem-
plar MU, the STA estimates using the original firing times,
and the estimates using noisy firing times are shown in
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and decomposition templates as well as the CV of MUAP
amplitude) were calculated to examine the influence of
possible timing errors on STA estimates. During this set
of assessment, all the decomposed MUs were used.

Cross-correlation validation of the identified firings and
template shapes
When the interference sEMG patterns are decomposed
into constituent MUAP trains, each MUAP train con-
tains key information about the EMG signal, provided
that the firing times are identified correctly, and the
estimated MUAP templates represent the true MUAP
shape. Therefore, one would expect measurable corre-
lation between the interference EMG signal and MUAP
train derived from the decomposed MUs and firing
times, and this correlation should become stronger when
more MUAP trains are combined together. Conversely,
if the identified firing times or the estimated MUAPs did
not match the true firings and the true MUAP shapes
of the MUs that constitute the EMG signal, we would
expect a low correlation between the EMG signal and
the combined MUAP trains of multiple MUs.
We performed a cross-correlation analysis to test this

hypothesis. This analysis consists of several steps:

1) MUs with stable STA derived MUAP shapes were
selected based on the STA features. Specifically,
the MUAPs with CV of P-P amplitude < 0.2 and a
correlation coefficient > 0.7 were selected for later
calculation.

2) MUAP trains were constructed using the firing
times of the selected MUs and the STA derived
MUAPs.

3) MUAP trains of different MUs were combined
one at a time and the cross-correlation between
the combined MUAP trains and the raw EMG
was calculated. The MUAP trains were combined
in two separate ways (from the first to the last
recruited MUs and from the last to the first
recruited MUs) to examine the order effect on
the cross-correlation.

4) To further validate the identified firing times,
Gaussian noise (a zero mean and SD = 0.1 * SD of
ISIs) was added to the identified firing times to
disturb the timing. We expect a low cross-correlation,
if the original firing times were correctly
identified.

5) To further validate the estimated MUAP shapes,
instead of using the original STA MUAP template,
we randomly assigned a template from other MUs
and constructed the MUAP trains. We expect a
reduced cross-correlation between the random
MUAP train and the EMG signal, if the original STA
templates were estimated accurately.
In summary, we examined 4 ways of combining the
MUAP trains when performing the cross-correlation
with the raw EMG signal:

1) Using original firing times and original STA
templates and combining MUAP trains from the
first to the last recruited MUs (MU index from
small to large (S-L)).

2) Using original firing times and original STA
templates and combining MUAP trains from the last
to the first recruited MUs (MU index from large to
small (L-S)).

3) Construct MUAP trains using noisy firing times and
original STA templates.

4) Construct MUAP trains using original firing times
and randomly shuffled STA templates.

Results
Influence of ‘noisy’ firing times on STA correlation
We examined the impact of imposed Gaussian timing
shifts of firing times on the correlation between the STA
and the decomposition-derived templates. Figure 3 illus-
trates the changes in the correlation between the STA
and the decomposition estimates when the timing of fir-
ing was disturbed. Figure 3A shows the correlations of
an exemplar trial at 40% MVC steady hold. The MU
index was ordered based on recruitment, and each sym-
bol represents an individual MU. As shown in the graph,
most of the MUs had correlations (shown in filled sym-
bols) higher than 0.7 when the STA was estimated using
the originally decomposed firing times. In contrast, the
correlations (shown in open symbols) were reduced sub-
stantially when Gaussian noise (SD = 0.1 * SD of ISIs)
was added to the firing times. When different amounts
of firing noise was added (Figure 3B), the correlations
(open symbols) remained low regardless of the noise
level.
To our surprise, the correlations did not show a

systematic change with the amount of noise added.
Additionally, the noise had little effect on some MUs;
namely, the correlations remained more or less the
same at different noise levels in those MUs (MU 4, 6,
7, and 8) that already had low correlations between
decomposition and STA estimates using the original
firings.
The STA correlation of a second exemplar trial at 50%

MVC is shown in Figure 3C. Similar to the first trial,
most analyzed MUs had correlations (filled symbols)
higher than 0.7, and the correlations (open symbols)
were also reduced substantially when a small amount of
noise (SD = 0.1 * SD of ISIs) was added. The different
noise levels (Figure 3D) had similar influence on the cor-
relation results. Because the firing times are shifted in a
stochastic way (Gaussian distribution with zero mean),
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the actual timing shifts may be minimal for some MU
(e.g. MU 3 in Figure 3C); as a result, the change of cor-
relation is minimum.
A paired t-test was performed on the difference in the

correlation coefficients between the original and noisy
firing condition for individual trials. The average cor-
relation was calculated across different noise level con-
ditions, given the similar noise influence. Because the
correlation values are bounded by 0 and 1, a logit trans-
formation was performed on the correlation prior to the
t-test. As shown in Table 1, the reduction of correlation
due to timing shift was significant (p < 0.05) for all 8
trials of all the 8 subjects.
Table 1 P-values of t-tests on the correlation coefficient resul

%MVC 20% 20% 30% 30%

Subject 1 7.51E-06 4.32E-06 4.07E-07 1.51E

Subject 2 1.31E-08 9.74E-08 1.42E-09 8.57E

Subject 3 3.60E-10 6.02E-10 9.22E-11 6.27E

Subject 4 5.45E-12 1.58E-10 2.63E-12 2.73E

Subject 5 1.54E-07 1.01E-07 2.12E-08 1.17E

Subject 6 2.67E-07 4.66E-08 7.45E-07 8.32E

Subject 7 1.28E-07 2.27E-07 4.69E-08 2.29E

Subject 8 4.78E-08 3.08E-12 4.76E-10 3.63E
Influence of noisy firings on STA shape variation
Figure 4 displays the changes in the CV of P-P amp-
litude of the STA MUAP estimates (same trials as in
Figure 3) when the timing of firing was disturbed.
Figure 4A shows the CV results of an exemplar trial at
40% MVC. As shown in the graph, most of the MUs had
CVs (filled symbols) lower than 0.2, when the STA de-
rived MUAP template was estimated using the original
firing times. In contrast, the CVs (open symbols) increased
substantially (larger than 0.2) when a small amount of
noise (SD = 0.1 * SD of ISIs) was added to the firing times.
Similar to the correlation results, when different amount
of firing noise was added (Figure 4B), the CVs (open
ts

40% 40% 50% 50%

-04 1.06E-05 3.12E-06 1.01E-06 2.66E-06

-08 3.59E-06 2.32E-07 1.23E-08 2.38E-08

-09 5.68E-10 1.48E-05 2.28E-05 2.29E-07

-09 4.78E-07 2.30E-10 9.30E-09 5.36E-10

-05 5.49E-07 1.49E-07 6.78E-08 6.95E-08

-08 4.15E-07 4.05E-06 1.24E-07 2.90E-08

-08 1.36E-08 3.97E-09 2.36E-06 3.22E-06

-11 1.72E-09 1.60E-07 5.44E-08 9.67E-09
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symbols) remained high (more or less at the same level)
regardless of the noise level.
The CV of the MUAP P-P amplitude of a second ex-

emplar trial at 50% MVC is shown in Figure 4C. As for
the first trial, most MUs had CVs (filled symbols) lower
than 0.2, and the CVs (open symbols) also increased
substantially when a small amount of noise was added.
The different noise levels (Figure 4D) had similar influ-
ence on the CV values. A paired t-test was performed to
examine the changes of CV (original vs noisy firing
condition). The average CV was calculated across diffe-
rent noise level conditions. Because CV values are lower
bounded by 0, a logarithmic transformation was per-
formed prior to the t-test. As shown in Table 2, the incre-
ment of CV due to noisy firings was significant (p < 0.05)
for the 8 trials of all the 8 subjects.
Table 2 P-values of t-tests on the correlation coefficient resul

%MVC 20% 20% 30% 30%

Subject 1 1.23E-03 1.83E-04 2.88E-03 7.18E

Subject 2 5.71E-08 1.55E-04 1.92E-10 3.29E

Subject 3 1.54E-04 3.61E-07 4.57E-08 1.19E

Subject 4 9.48E-10 5.03E-04 1.85E-06 1.53E

Subject 5 1.84E-06 1.80E-04 6.26E-05 8.08E

Subject 6 4.95E-05 9.80E-04 9.61E-06 7.70E

Subject 7 3.31E-02 1.67E-07 1.75E-07 1.00E

Subject 8 2.83E-05 3.61E-08 9.36E-06 1.94E
Cross-correlation between STA and raw EMG
The cross-correlation function values between the raw
EMG signal and MUAP trains constructed using STA
MUAP estimates are shown in Figure 5. Each line trace
represents one individual trial. For the first subject
(Figure 5A), when the MUAP trains were combined
from early to late recruited MUs (MU index from small
to large), the cross-correlations (open circles) increased
almost linearly from 0.1 up to 0.66. When the MUAP
trains were combined from late to early recruited MUs
(MU index from large to small), the cross-correlations
(open squares) also increased monotonically from 0.2 up
to 0.66. Because the later recruited MUs tends to be lar-
ger units, as expected from the size principle, [21], and
these units contains more information on the raw EMG
compared with the earlier recruited smaller ones, the
ts

40% 40% 50% 50%

-05 1.15E-04 6.83E-06 6.27E-03 2.70E-07

-06 6.40E-07 5.87E-07 3.68E-09 2.31E-07

-05 7.27E-04 6.17E-03 1.46E-06 1.38E-03

-06 2.48E-05 4.26E-06 2.84E-04 1.07E-02

-06 5.64E-06 3.11E-06 5.49E-08 6.02E-07

-04 1.17E-04 4.74E-05 4.34E-07 1.35E-05

-04 3.65E-04 4.58E-05 3.60E-04 9.47E-04

-10 2.12E-10 4.81E-05 8.30E-07 9.02E-08
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cross-correlation functions (open squares) had initially
high values and rose at a faster rate than the open cir-
cles, but eventually plateaued at a value of 0.66. The
different trials from 20% to 50% MVC showed similar
cross-correlation function results.
In contrast, when the MUAP train was constructed

using noisy firing times (SD of noise = 0.1 * SD of ISIs),
the cross-correlations (triangles) were below 0.2 even
after all the MUAP trains were combined. Similarly,
when the MUAP templates were randomly shuffled be-
tween the various identified MUs during the construction
of MUAP trains, the cross-correlations (crosses) fluctuated
between −0.2 to 0.2.
The second subject (Figure 5B) demonstrates similar

results. The cross-correlations (open circles and squares)
increased from 0.06 up to 0.6 when the MUAP trains
were constructed using the original firing times and STA
estimated templates. When the firing times (triangles) or
the action potential templates (crosses) were disturbed,
the cross-correlations were below 0.3. As for subject 2,
the initial increase of cross-correlation in the shuffled
template condition is likely due to the fact that some
MUAPs shared similar shapes in the particular electrode
configuration (position and orientation over the FDI
muscle). As a result, the shuffling of MU templates has
only a moderate effect on the changes in correlation.
To quantify these observations across these four con-

ditions of all the 8 subjects, the cross-correlation at each
condition was summarized when the first 5 MUAP trains
had been added and was compared with the cross-cor-
relation when all the MUAP trains had been added
(Figure 5C). A two-way ANOVA [(4 MUAP train forma-
tion conditions (small-large, large-small, noisy firing, and
shuffled MUs) × 2 MUAP train numbers (5 MUs and all
MUs)] was performed on the correlation values. A sig-
nificant interaction between the MUAP train forma-
tion condition and the MUAP train number was evident
(p < 0.05). Post-hoc pairwise multiple comparisons with
Bonferroni’s correction method were then performed to
examine the changes between individual conditions. Spe-
cifically, the correlation value was significantly higher
when MUAP trains were added based on original firings
than based on noisy firings and shuffled MUs (p < 0.05).
When 5 MUAPs were added, the correlation value was
significantly higher when MUAP trains were added from
large to small than from small to large (p < 0.05).

Discussion
The objective of this study was to assess the overall
reliability of a sEMG discrimination method based on
MU template recognition, and the general validity of
placement of the accompanying spike trains that emerge
as the output of the high-yield sEMG decomposition
algorithm [10].
We performed two different tests to assess the validity

of the decomposition of the sEMG recorded from the
FDI muscle. In the first series of tests, the spike-triggered
averaging (STA) technique was used to extract the action
potential features from the raw recorded EMG utilizing
the individual MU event times output from the decom-
position algorithm. Subsequently the MU timings were
altered and the STA analysis was repeated. The results
show that the MUAP shape features are lost i.e., the
correlation between the STA derived template and the
decomposition template declines and the coefficient of
variation of the STA estimated template increases,
even for a small amount of added timing error. To our
surprise, the change in the STA features was not sensitive
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to the amount of added timing noise. Meanwhile, there
are also MUs that show minimal change in STA features
when different amount of noise is added, possibly due to
inaccurate firing identification or excessive superposition.
In the second set of tests, a cross-correlation analysis

was performed between the recorded EMG signal and
MUAP trains constructed using the STA derived MUAP
estimates combined with the algorithm derived MU tim-
ings. The results reveal that the cross-correlation index
between the raw EMG and constructed MUAP trains
increases monotonically when more MUs are added to
the MUAP trains; however, this increment is absent
when the firing times or the MUAP templates were al-
tered, which suggests that the firing times and estimated
MUAPs are valid.

Changes of STA due to timing noise
We did not expect that a small shift of the spike timing
(by 0.6-2 ms) could substantially change the properties
of the STA derived MUAP estimates. Such a high sensi-
tivity of the STA estimates to the timing errors can arise
from the particular characteristics of the recorded action
potentials. Specifically, the diameter of the recording
electrodes is 0.5 mm and the inter-electrode distance is
3.6 mm (center to corner electrodes) or 5 mm (corner to
corner electrodes). This electrode design gives rise to
sharp action potential waveforms that are broadly com-
parable to some recorded intramuscular EMG signals;
namely the peak-peak duration of the action potential in
FDI muscle is approximately 2–3 ms (Figure 2B), and
the main lobe of the action potential is approximately
5 ms. Therefore, the action potential characteristics can
give rise to the high sensitivity of STA to spike timing
positioning.
In the STA process, when different sharp action po-

tentials from the same MU are aligned based on the
spike timing, a 0.6-2 ms of timing shift can lead to align-
ments of different phases of the action potentials, and
ultimately lead to amplitude cancellation as shown in
Figure 2B. The same reasoning can also explain the fact
that the changes in the STA features are not sensitive to
the amplitude of timing noise. If a 0.6-2 ms of timing
shift can lead to complete amplitude cancellation, a lar-
ger degree of timing shift is unlikely to worsen the con-
dition; as a result, similar effect of the different amount
of timing noise is observed.
The significant changes of the STA features due to

added timing noise suggests that the decomposed firing
times are reliable for most of the MUs (Table 1). Con-
versely, there are MUs that show poor features extracted
from our STA estimates (low correlation and high var-
iability) computed using the original firing times (e.g.,
MU 4, 6, 7, and 8 in Figure 3A), and the timing noise
has little effect on the STA derived features of these
MUs. These results suggest that if the decomposed firing
times are inaccurate the timing noise will not change the
STA features, which confirms our prediction that the
MUs with high correlation and low variability have reliable
MUAP shapes as well as firing times. Based on these re-
sults, we can set MU selection criteria; namely, the MUs
that have a correlation higher than 0.7 (the upper bound
calculated from the noisy firings) and a CV smaller than
0.2 (the lower bound calculated from the noisy firings)
can be retained (Table 1) for further analysis.

Are these algorithms based on circular reasoning?
Skeptics could argue that since our STA estimates are
derived from the sEMG signal using the decomposed
MU firing times, that emergence of a consistent shape
and a high correlation with a decomposition based
template is inevitable. Therefore, the assembled STA
features do not validate the accuracy of the identified
firing times.
We believe that it is inevitable only if the decompos-

ition algorithm produces a valid output, or a valid set of
MUAP trains. First, the STA estimated action potential
shape disappears when intentionally erroneous spike
timings are used as the triggering signals. When a small
(almost invisible from Figure 2A) amount of timing
noise is injected to the firing times, the STA estimates
do not represent the action potential shape features as
shown in Figure 2B. These results suggest that the STA
features are highly sensitive to spike timing errors. Se-
cond, STA does not always give rise to consistent action
potential shapes. For example, the STA features are poor
(i.e., low correlation and high variability) for some MUs,
possibly due to spike identification errors (although ex-
tensive superposition can also be a factor), affirming that
the STA shape estimate is not automatic. By setting up
selection criteria, the STA analysis can exclude the iden-
tified MUs with possible errors in spike timings.
Finally, as explained in the Introduction, the decom-

position algorithm derives MUAP template shapes from
the uncontaminated instances of individual MUAPs and
updates the shapes as they vary across the trial, and a
weighted average of these variations is output as the
MUAP template. The event times are based on the iden-
tification of the occurrences of the original shape and its
variations. We are then working backwards, to use the
event times and derive the shapes. As we have shown in
this study, if there are significant errors in the identifica-
tion of MUAP event times, then we will not be able to
derive the STA MUAP shape that is highly correlated
with the decomposition based template.

Cross-correlation between raw EMG and MUAP trains
The combined MUAP trains from the decomposed MUs
should represent the raw EMG signals, provided that the
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firing times and AP estimates are accurate. Indeed, our
results show that the cross-correlation between the
EMG signal and the reconstructed MUAP trains in-
creases monotonically with an increasing number of
MUAP trains. When the MUs were added based on the
recruitment order (small to large), the cross-correlation
was initially small and increased in a smaller rate than
the condition where the MUs were added in a reverse
order (large to small), likely because large MUs con-
tain more correlated information with the raw EMG
signal. These results suggest that the decomposed fi-
ring times and MUAP templates are reliable. Our
results are further confirmed by shifting the firing
times by a small amount (approximately 0.6-2 ms)
and by randomly shuffling the MUAP templates bet-
ween MUs during the construction of MUAP trains.
The cross-correlations in these perturbed condition
are considerably lower, suggesting that the perturbed
MUAP trains do not represent the raw EMG signal
any more.
The cross-correlation calculated based on the original

firings and templates tends to plateau around 0.6 – 0.7,
which is lower than 1. This effect can arise from several
factors. First, only the MUs that passed the selection cri-
teria were used to construct the MUAP trains, and the
excluded MUs may still contain information of the EMG
signal. Second, during the decomposition, not all the
MUs embedded in the raw EMG are identifiable by the
algorithm [16], especially for the small MUs under the
influence of baseline noise and extensive superposition.
Therefore, the residual of the EMG also contains infor-
mation of the EMG signal. Lastly, the STA estimates
give a single average waveform, and the action potential
waveforms in a particular MUAP train are all identical.
However, the action potential shape may change slightly
spike-by-spike in the real signal [22,23]. This simplifi-
cation of the reconstructed signal can also limit the
cross-correlation values. Nevertheless, a cross-correlation
around 0.6-0.7 is still relatively high, considering that all
the combined MUAP trains only account for partial
energy of the EMG signal and that the interference
EMG has substantial superposition in relatively mode-
rate to high force levels (20-50% MVC).

Limitations
The series of tests used in this study affirm the general
validity of the decomposed MUs; however, the accuracy
of the timing for a particular firing event of a MU train
is not assessed. In MU studies, the mean firing rate or
the average ISI of a time segment is typically the variable
of interest [24]. The STA approach in the current study
provides a general assessment of the decomposed spike
trains and ensures the reliability of the estimated variables
(e.g., mean firing rates).
One way to assess the accuracy of individual firing
events is the two-source method [12,17,24]. In this
method, sEMG and intramuscular EMG are recorded
simultaneously, and the decomposition results of the
sEMG and intramuscular EMG signals are compared.
While this method provides distinct examples of the al-
gorithm reliability and can be used to compute accuracy,
the two-source method has limitations when compared
to the current validation method. For example, the
muscle force is constrained to very low levels to avoid
superposition such that the decomposition results of the
intramuscular EMG can be trusted. As a result, the ac-
curacy of the sEMG decomposition at moderate to high
force levels (the more challenging condition for the algo-
rithm) is unknown. Indeed, the current study provides
the accuracy assessment of the decomposition in these
more challenging conditions. The two-source method
validates a small subset (i.e., a small fraction) of MUs
decomposed by the sEMG algorithm, and the accuracy
of the uncommon MUs is unknown. Similarly, one can-
not use the two-source method in a daily basis when
using the sEMG decomposition system. It is well known
that the signal quality (e.g., the background noise level
or the signal stability recorded in clinical populations)
can influence the reliability of the decomposition re-
sults. Hence, the accuracy of the decomposition in dif-
ferent conditions cannot be guaranteed even after the
algorithm has been validated by the two-source me-
thod in one condition. In contrast, the STA analysis
provides a potential tool and allows us to routinely as-
sess the overall accuracy of all the decomposed MUs
at any force levels recorded in different conditions.
Nonetheless, the two-source validation is still necessary
in future studies to examine the accuracy of individual
spike timings in order to fully confirm the decompo-
sition accuracy.
Our STA analysis detects spurious firings (i.e., identi-

fied firings that do not exist in the real spike train) and
position errors (i.e., inaccurate placement of spike ti-
ming) in the decomposition outputs. In contrast, a spike
omission will not influence the STA estimate, because
that action potential is missed and will not be taken into
account during the averaging calculation. Therefore, the
frequency of spike omission in a MUAP train is not di-
rectly assessed here. However, the spurious firings are as
frequent as spike omissions for a particular MUAP train
[15,17]. In a recent simulation study, we have found that
the STA estimates start to deteriorate when 6% of spuri-
ous events are added to the spike trains [19]. As a result,
when a large number of spike omissions occur, the
equally frequent spurious firings can lead to changes in
STA features, and, subsequently, the MU can be exclu-
ded based on the selection criteria (e.g., correlation coef-
ficient < 0.7 and CV of amplitude > 0.2).
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Conclusions
This study used two sets of analyses based on STA esti-
mates to evaluate the overall validity of a sEMG decom-
position method. Our results reveal that the identified
firing times and estimated MUAPs are reliable in sEMG
signals recorded from FDI muscles at low to moderate
force contraction levels. Additionally, the STA analysis
provides a tool to detect possible identification errors
and select reliably decomposed MUs from MU decom-
position algorithms in general.
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