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trends in bodyplan patterning of ectoprocta
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Abstract

Background: Ectoprocta is a large lophotrochozoan clade of colonial suspension feeders comprising over 5.000
extant species. Their phylogenetic position within the Lophotrochzoa remains controversially discussed, but also
the internal relationships of the major ectoproct subclades -Phylactolaemata, Stenolaemata, and Gymnolaemata -
remains elusive. To gain more insight into the basic configuration of ectoproct muscle systems for phylogenetic
considerations, we analysed the adult myoanatomy and the serotonergic nervous system as well as myogenesis in
budding stages of the ctenostome Hislopia malayensis.

Results: In adults, the serotonergic nervous system is restricted to the lophophoral base with a high concentration
in the cerebral ganglion and serotonergic perikarya between each pair of tentacles. Prominent smooth apertural
muscles extend from the basal cystid wall to each lateral side of the vestibular wall. The musculature of the
tentacle sheath consists of regular strands of smooth longitudinal muscles. Each tentacle is supplied with two
bands of longitudinal muscles that show irregular striation. At the lophophoral base several muscles are present: (i)
Short muscle fibres that proximally diverge from a single point from where they split distally into two separate
strands. (ii) Proximally of the first group are smooth, longitudinal fibres that extend to the proximal-most side of
the lophophoral base. (iii) Smooth muscle fibres, the buccal dilatators, traverse obliquely towards the pharynx, and
(iv) a circular ring of smooth muscle fibres situated distally of the buccal dilatators. Retractor muscles are mainly
smooth with short distal striated parts. The foregut consists mainly of striated ring musculature with only few
longitudinal muscle fibres in the esophagus, while the remaining parts of the digestive tract solely exhibit smooth
musculature. During budding, apertural and retractor muscles are first to appear, while the parietal muscles appear
at a later stage.

Conclusions: The apertural muscles show high similarity within Ectoprocta and always consist of two sets of
muscles. Gymnolaemates and Phylactolaemates show clear differences within their digestive tract musculature, the
former showing smooth and longitudinal muscles to a much greater extent than the latter. The complex
musculature at the lophophoral base appears promising for inferring phylogenetic relationships, but sufficient
comparative data are currently lacking.

Introduction
The lophotrochozoan phylum Ectoprocta consists of
benthic, colonial filter feeders that live on various sub-
strates. It currently contains over 5.000 extant and
approximately 20.000 described extinct species. They
are currently assigned to three taxa, whereby the

Phylactolaemata represent a small group of solely fresh-
water-inhabiting ectoprocts, while the Stenolaemata
(with the only remaining extant taxon Cyclostomata)
and the Gymnolaemata mainly constitute marine ani-
mals. Within the Gymnolaemata two distinct groups,
the Ctenostomata and Cheilostomata, are recognized
[1]. The relationships between these higher taxa are cur-
rently not well understood: The Phylactolaemata are
considered monophyletic, while the Cheilostomata and
Stenolaemata have been considered both monophyletic
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[2] or polyphyletic [3,4]. Due to their calcified protective
skeletons, the latter two taxa show a long fossil record
yielding more insight into their evolution. In contrast,
the fossil record of the non-mineralized Ctenostomata is
poor [5] and only represented by casts of borings (e.g.
[6]) and bioimmurations (i.e., overgrowth by encrusting,
mineralized organisms, cf. [7]).
There is a broad consensus that “Ctenostomata” is

paraphyletic and that ctenostome-like ancestors have led
independently to the origin of the calcified exoskeletons
of Cheilostomata and Stenolaemata [4,5,8,9]. Accord-
ingly, the ctenostomes are of particular interest for stu-
dies dealing with ectoproct evolution. Due to the
scarcity of their fossil record, the study of extant ctenos-
tome ectoprocts appears particularly promising for
further insights into ectoproct origins and phylogenetic
relationships. To date, ctenostome phylogenies are
mostly based on features of the cystid and colony mor-
phology [5,10], while details on the anatomy of the soft
body (polypide) remain less investigated and are thus
widely neglected in phylogenetic analyses.
Myoanatomical features and neurotransmitter distri-

bution, for example serotonin or FMRF-amide, have
recently been used for phylogenetic inferences among
lophotrochozoans [11-13]. Thereby, several immunocy-
tochemical investigations have dealt with the neuromus-
cular system of different ectoproct larval types [14-21],
whereas no such study is as of yet available for adult
ectoprocts. Data on the development of the zooids and
the ontogenetic appearance of certain muscle systems
have been used to elucidate ectoproct internal relation-
ships [3,22-25]. Myoanatomical details of the digestive
tract have also been proposed to be useful to discrimi-
nate certain subtaxa [26,27]. By contrast, characters of
the nervous system have never been considered on a
broad, comparative scale for systematic or phylogenetic
deductions.
Hislopiid ctenostomes comprise only seven freshwater

species and are the sole family within the superfamily
Hislopioidea. The latter belongs to the paraphyletic ‘car-
nosans’, which are regarded as primitive within the
Euctenostomata (sensu [25]), and which have retained a
simple colonial morphology similar to the proposed
cheilostome-like ancestor (see e.g. [5,9,22,25,28]). Their
supposedly relatively basal position within Euctenosto-
mata (Figure 1; [5,10,22,25]) renders the Hislopiidae an
important model taxon for inferring ectoproct phylo-
geny and evolution. To gain more insight into the basic
configuration of ectoproct muscle systems and to evalu-
ate their potential use for phylogenetic studies, we ana-
lyzed the adult myoanatomy and serotonergic nervous
system as well as myogenesis during budding in Hislopia
malayensis Annandale, 1916.

Materials and methods
Animals
Colonies of Hislopia malayensis Annandale, 1916 were
collected from the pond of the Faculty of Fisheries of
the Kasetsart University in Bangkok (see [29]). Speci-
mens were fixed in 4% paraformaldehyde in 0.01 M
phosphate buffer (PBS) containing 0.01% NaN3 for
1 hour at room temperature. Subsequently, they were
rinsed three times for 20 min and stored in the same
solution.

Immunocytochemistry and confocal microscopy
Some colonies were dissected prior to staining to
increase tissue permeability. For F-actin staining, speci-
mens were permeabilized in PBS containing 4% Triton-
X (PBT) for 1 hour, followed by overnight incubation in
a 1:40 dilution of AlexaFluor 488 phalloidin (Molecular
Probes, Eugene, OR, USA) in PBT at 4°C. Then, the spe-
cimens were rinsed three times in PBS. For staining of
the serotonergic nervous system, pieces of H. malayensis
colonies were transferred to 6% normal goat serum
(NGS; Sigma-Aldrich, St. Louis, MO, USA) in PBT
(block-PBT) overnight at 4°C. Subsequently, a polyclonal
rabbit anti-serotonin antibody (Zymed, San Francisco,
CA, USA) was applied at a concentration of 1:400 in
block-PBT for 24 hours at 4°C. Then, the specimens
were rinsed several times in block-PBT for 6 hours at 4°
C prior to application of a secondary fluorochrome-con-
jugated antibody (goat anti-rabbit AlexaFluor 594, Mole-
cular Probes) in block-PBT at a concentration of 1:200
for 24 hours at 4°C. Specimens were then washed three
to four times in PBS for about 6 hours. Negative con-
trols were performed by omitting the primary antibody
and yielded no signal. Nuclei were stained by adding a
few drops of DAPI (Invotrogen, 3 μg/ml) for 15-20 min-
utes, followed by three short washes in PBS. Specimens
were mounted in Fluoromount G (Southern Biotech,
Birmingham, AL, USA) on standard microscope slides.
Analysis and image acquisition was performed on a

Leica DM IRBE microscope equipped with a Leica TCS
SP2 confocal unit (Leica Microsystems, Wetzlar, Ger-
many). Confocal image stacks were recorded with
0.5-1μm step size along the Z-axis. Images stacks were
captured as maximum intensity projections or further
processed as volume renderings with Amira 4.1 software
(Mercury Computer Systems, Chelmsford, MA, USA).

Results
Myoanatomy of adult Hislopia malayensis
Colonies of Hislopia malayensis form simple encrusting
sheets on a variety of artificial or natural substrates [30].
Its individual zooids are flat and oval-shaped and are
interconnected by rosette-shaped communication pores.
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Each zooid consists of a more or less rigid, chitinous to
hyaline protective cystid and a flexible polypide that
contains all major organs of the zooid (Figure 2). On
each side of the zooid a series of four to five parietal
muscle bundles are associated with the cystid wall. They
originate from the basal attachment site and traverse the
coelomic cavity to the frontal cystid wall, where the ori-
fice is situated (Figure 3a, b). The inner plug of each
communication pore shows a high number of actin-

filaments, which is highest in its periphery and decreases
towards the center (Figure 4h).
In retracted zooids the polypide is attached to the

cystid by an almost rectangularly invaginated vestibulum
that extends from the orifice on the frontal cystid wall
to the diaphragm at the distalmost end of the invagi-
nated tentacle sheath (Figure 2). Prominent apertural
muscles extend from the basal cystid wall to each lateral
side of the vestibular wall. They consist of smooth

Figure 1 Phylogenetic system of the Ctenostomata, modified after (a) Jebram (1986) and (b) Todd (2000). (a) The phylogenetic
reconstruction of Jebram is mainly based on cystid and muscle differentiation. (b) The work of Todd (b) has in particular included characters of
fossil ctenostomes.
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muscle fibres and extend along the entire length of the
vestibular wall (Figure 3a, b; 4b). On the frontal and lat-
eral side, the vestibular wall shows a regular net of
smooth ring and longitudinal musculature, whereas
diagonal and longitudinal muscles are present on the
basal side (Figure 4b). A sphincter at the diaphragm

(diaphragmatic or atrial sphincter) separates the vestibu-
lum from the space enclosed by the tentacle sheath, the
atrium (Figure 2;3a;4f). The tentacle sheath stretches
from the diaphragm to the lophophoral base. Its muscu-
lature consists of regular strands of smooth longitudinal
muscles that run from its distalmost end approximately

Figure 2 Schematic overview of a retracted Hislopia malayensis zooid showing the main components of the polypide. The orifice at the
distal end of the zooid reaches into the vesitbulum, which is separated from the proximally situated tentacle sheath by the diaphragm. Within
the tentacle sheath the tentacle crown (i.e. the lophophore) is situated. The mouth opening is situated at the lophoral base and leads into the
broad pharynx which is followed by an elongated, tube-like esophagus. The latter continues into the prominent proventriculus from where the
digestive tract leads into the voluminous caecum. From the caecum the intestine leads into the anus, which terminates in the tentacle sheath.
Abbreviations: a - anus, at - atrium, cae - caecum, cw - cystid wall, d - diaphragm, es - esophagus, int - intestine, lb - lophophore base, o -
orifice, pv - proventriculus, t - tentacle, ts - tentacle sheath, v - vestibulum, vw - vestibular wall.
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to the region of the anal area (Figure 4f). At its proximal
end, the tentacle sheath continues into the lophophore.
Each tentacle is supplied with two bands of longitudinal
muscles that show irregular striation (Figure 4b, c, e). A
distinct concentration of actin is present at the distal tip
of each tentacle (Figure 4c). Proximally, the longitudinal
tentacle musculature extends to the lophophoral base.
At the lophophoral base four groups of muscles are pre-
sent: Below the musculature of each tentacle, short mus-
cle fibres are found that proximally diverge from a
single point from where they split distally into two sepa-
rate strands. These muscle elements are approximately
V-shaped with some fibres traversing medially (Figure
4a, e). A second set of muscles is situated proximally to
the first group and consists of smooth, longitudinal
fibres that extend to the proximal-most side of the
lophophoral base (Figure 4a, e). From that point smooth
muscle fibres, the buccal dilatators, traverse obliquely
towards the pharynx (Figure 4a, e). At the site of the
cerebral ganglion, two pairs of buccal dilatators are pre-
sent. The first pair inserts more proximally on the phar-
ynx, whereas the second pair attaches more distally to

the pharynx (Figure 4e). A circular ring of smooth mus-
cle fibres is situated in the region of the mouth, medially
to the proximal-most part of the lophophoral base, and
slightly above the pharynx (Figure 4e). The retractor
muscles of the polypide originate from the proximal
cystid wall and insert at the entire lophophoral base
except for the ganglion area (Figure 3a; Figure 4a, e).
The fibres of the retractor muscles appear smooth for
most of their length. In some cases, however, the distal-
most part of the fibres appears cross-striated (Figure
4g). The pharynx below the mouth opening is provided
with several narrow bands of circular musculature
which shows distinct cross-striation (Figure 3a;4e). The
pharynx continues into the esophagus, which is an elon-
gated tube. Similar to the pharynx, its musculature is
mainly composed of obliquely striated ring musculature
(Figure 2;3a;4a, e), but few delicate longitudinal muscle
fibres could be observed as well (Figure 4d). The follow-
ing cardia or proventriculus is bulbous and possesses
densely packed smooth ring musculature (Figure 3a;4a, i).
The digestive tract continues into the voluminous cae-
cum which for the most part carries bands of smooth

Figure 3 Maximum-intensity projections of confocal laserscanning image stacks providing an overview of the muscle system of a
single zooid of Hislopia malayensis. (a) F-actin staining. Solely the parietal muscles are associated with the cystid. Most muscles of the zooid
are present at the distally situated aperture, which continues proximally into the polypide. Prominent retractor muscles run from the distal end
of the zooid to the lophophoral base. From the lophophoral base the digestive tract starts with the pharynx, followed by the esophagus, which
both possess mostly striated ring musculature. The adjoining proventriculus is the most prominent region of the digestive tract and possesses
only smooth ring musculature. The caecum carries several distinct ring muscles and two longitudinal muscles at its proximal tip. The intestine
possesses only smooth, longitudinal musculature. (b) Different zooid of H. malayensis similar as in (a) but also with cell nuclei stained with DAPI
to provide a clearer picture of the cystid wall and its outlines. Also note the early bud on the right side. Abbreviations: am - apertural muscles,
cae - caecum, clm - caecal longitudinal muscle, cp - communication pore, cw - cystid wall, ds - diaphragmatic sphincter, es - esophagus (cardia),
int - intestine, lb - lophophore base, o - orifice, pm - parietal muscles, pv - proventriculus, rm - retractor muscles, ts - tentacle sheath,
v - vestibulum, vwm - vestibular wall musculature, yb - young bud.
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Figure 4 Myoanatomical details of the polypide of Hislopia malayensis. All but (a) are maximum-intensity projections of confocal
laserscanning image stacks. (a) Volume rendering of the confocal stack of the myoanatomy of a dissected polypide showing most of the
musculature of the digestive tract. (b) Oblique view on the vestibular wall showing apertural muscles and vestibular wall muscles. Diagonal
vestibular wall muscles can be distinguished on the basal side. (c) Detail of the tentacle musculature and muscular concentration at the tentacles
tips (open arrowheads). (d) Musculature of the esophagus showing thin longitudinal muscle fibres. (e) Lophophoral base musculature and parts
of the digestive tract. Asterisk marks a second pair of buccal dilatators. (f) Detail of the tentacle sheath musculature and apertural muscles. (g)
Magnified view of the distal portion of the retractor muscles displayed in (e). (h) Muscular elements of a rosette plate between individual zooids.
(i) Musculature of the proventriculus and adjacent parts of the digestive tract. Double arrowheads marks fine longitudinal muscle fibres in the
caecum. Abbreviations: a - anal area, am - apertural muscles, bd - buccal dilatators, brm - ring muscle at the lophophore base, cae - caecum, clm
- caecal longitudinal muscle, ds - diaphragmatic sphincter, dvm - diagonal vestibular wall musculature, es - esophagus, int - intestine, lb -
lophophore base, les - longitudinal musculature of the esophagus, llb - longitdunal muscles at the lophophore base, pm - parietal muscles, pv -
proventriculus, rm - retractor muscles, tm - longitudinal tentacle muscles, ts - tentacle sheath, vlb - v-shaped muscles at the lophophore base,
vwm - vestibular wall musculature, yb - young bud.
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ring musculature (Figure 3a, b;4a, e, i). From the proxi-
mal end of the caecum two prominent longitudinal mus-
cles extend distally. Halfway of the stomach they split
into two bundles (Figure 3a, b;4e). A few sparse longitu-
dinal muscle fibres are also present between the circular
muscle bands (Figure 4i). The intestine, which adjoins
the stomach, carries smooth longitudinal muscles over
its entire length and terminates in the tentacle sheath
(Figure 3a;4a, f, i).

Myogenesis in budding zooids
Buds start as distal or lateral outgrowths of the cystid of
a zooid that soon become constricted off from the
mother zooid (Figure 3b). Further development leads to
a tube-like elongation of the cystid, slightly broadened
at its distal tip. In the middle of the bud the polypide
anlage develops. The retractor and apertural muscles are
first to appear in the bud. The anlagen of the retractor
muscles are V-shaped: Proximally, they originate from
the cystid wall from a single site, whereas distally the
bundles split and insert at the developing polypide. The
apertural muscles form as two small bands on each side
of the prospective aperture (Figure 5a).
In a later budding stage with distinct tentacle anlagen,

the cystid has broadened distally. The retractor and
apertural muscles have only slightly changed, but pos-
sess more muscle fibres (Figure 5b). Additional muscles
have not formed at this stage of budding. Further in
development, the cystid widens even more on its lateral
sides. Compared to the previous stage, the widening has
also progressed towards the proximal pole of the zooid.
Three to four distinct parietal muscle bands appear lat-
erally to the developing polypide. Besides the much
enlarged retractor and apertural muscles, musculature of
the digestive tract has started to form (Figure 5c). In the
oldest stage analysed, the cystid exhibits the oval shape,
characteristic of adults. The developing polypide already
shows most of the adult musculature. In addition, differ-
entiation and regionalization of the digestive tract has
commenced and its corresponding musculature has
started to form. The lophophoral base and the tentacles
already show all muscular elements that occur in the
adults. The apertural muscles are prominent and ring
musculature of the duplicature as well as the diaphrag-
matic sphincter is present. Only the tentacle sheath is
still devoid of muscles (Figure 5d).

Serotonergic nervous system
The serotonergic nervous system in adult zooids is
restricted to the lophophoral base of each polypide (Fig-
ure 6a, b). The highest concentration is found in the
cerebral ganglion, from where neurites extend circum-
pharyngeally. On the oral side there are three serotoner-
gic perikarya at the base of each pair of tentacles, which

are connected to the circumpharyngeal neurites to form
a nerve ring. At the remaining tentacles, neuronal peri-
karya are present as well. These are, however, more
apart than the three oral ones and are directly con-
nected to the ganglion via delicate neurites. From each
perikaryon short neurites extend into each of the two
tentacles.

Discussion
Homology of apertural muscles and their phylogenetic
significance
Apertural muscles are present in all three ectoproct sub-
taxa, the Phylactolaemata, the Stenolaemata (with the
sole extant taxon Cyclostomata) and the Gymnolaemata,
which include the Ctenostomata and Cheilostomata. A
review of the existing literature shows that their termi-
nology is utterly confusing and inconsistent. Common
terms found for apertural muscles are for example “par-
ieto-vaginal muscles” [26], “parieto-diaphragmatic mus-
cles” [31], “parieto-atrial muscles” [32], “parieto-
vestibular muscles” [33], “pyramidal muscles” [34] or
“longitudinal parietal muscles” [35]. The latter term has
been established according to the notion that apertural
muscles are derived parietal muscles [28,33] and is also
frequently used in more recent compendia on ectoprocts
[35-37]. A comparison of these muscles is most easily
performed among retracted zooids (Figure 7). In all
ectoproct subtaxa, retracted zooids show a distalmost
invaginated portion of the cystid wall, termed the vestib-
ular wall, which is separated from the proximally adjoin-
ing tentacle sheath by a diaphragm. At the diaphragm a
strong sphincter is present in all three subtaxa (Figure
7).
The Phylactolaemata, the suggested sistergroup of the

remaining ectoprocts [38,39], have two different aper-
tural muscle systems: the duplicature bands and the ves-
tibular dilatators (Figure 7a, b). The duplicature bands
are peritoneal bands containing longitudinal muscles
fibres that emerge from the lateral bodywall and insert
either directly at the diaphragm (as in the lophopodids:
Figure 7b; Lophopus: [34,40]; Lophopodella: [41]) or at
the tentacle sheath below the diaphragm in the remain-
ing taxa (Figure 7a; Cristatella: pers. obs., Fredericella:
[34], Pectinatella: [33,34,42]; Plumatella: [34,43]; Sto-
lella: [44]). Vestibular dilatators consist of separate mus-
cle fibres that traverse the coelom distally of the
duplicature bands. In all phylactolaemates they are
loosely arranged and run from the lateral bodywall
towards the vestibular wall. They attach to the entire
area of the vestibular wall, starting at the area of the
diaphragm and projecting up to the distal parts of the
vestibular wall.
Cyclostome ectoprocts show a peculiar coelomic con-

dition. In contrast to all other ectoprocts, the peritoneal
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Figure 5 Myogenesis during the budding process of Hislopia malayensis. Maximum-intensity projections of confocal laserscanning image
stacks. (a) Early budding stage showing the polypide anlage and the first anlagen of the developing apertural and retractor muscles at its distal
and proximal side, respectively. (b) More advanced budding stage with distinct tentacle anlagen (asterisk), in which the cystid of the bud has
widened distally and the apertural and retractor muscle anlagen have grown and are more pronounced. (c) Advanced budding stage where first
anlagen of the digestive tract musculature have formed and the parietal muscles are present laterally of the polypide anlage. Both, the apertural
and the retractor muscle anlagen are most prominent. The former consists of loosely smooth muscle fibres, whereas the prospective retractor
muscles have differentiated into two elongated muscle fibre bundles. (d) Almost completely developed zooid where most parts of the digestive
tract, especially the most prominent proventriculus, are formed similar to the adult. Compare to Figures 3 and 4 for details on the musculature
of adult specimens. Abbreviations: am - apertural muscles, ama - apertural muscle anlage, cae - caecum, ds - diaphragmatic sphincter, dt - distal
tip of the cystid of the bud, dtm - developing digestive tract musculature, ep - epizooic organism, int - intestine, lb - lophophore base, pa -
polypide anlage, pma - parietal muscle anlage, pm - parietal muscles, pv - proventriculus, rm - retractor muscles, rma - retractor muscle anlage,
vwm - vestibular wall musculature.
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layer of the endocyst is detached from the epidermis to
form a coelomic sac, the membranous sac, around the
polypide (Figure 7c; [33,45]). However, topographically
similar to the duplicature bands of phylactolaemates,
cyclostomes possess an attachment organ. It consists of
ligaments that attach the polypide and membranous sac
to the skeletal walls of the zooid (Figure 7c; [45,46]).
Supposedly homologous structures of the phylactolae-
mate vestibular dilatators are present as few muscle
fibres ("musculi extensores vestibuli” sensu [47], “longi-
tudinal ectodermal muscle” sensu [45]), that run from
the distalmost bodywall (i.e., terminal membrane in
cyclostomes) to the diaphgram (Figure 7c).
In principle, the Gymnolaemata (Cteno- and Cheilosto-

mata) also possess two muscular systems. First, homologs
of the duplicature bands, which are most commonly
termed “parieto-vaginal bands”, second, vestibular
muscles that are always prominent in cteno- and
cheilostomes.
Protoctenostome, i.e. benedeniporoidean [25], polypide

morphology is only insufficiently known. ‘Parieto-vaginal
muscles’ were mentioned for Benedenipora catenata
[48], but their description and illustration are too
incomplete for drawing any comparisons. The vestibular
muscles in ctenostomes usually form two portions, a
small proximal portion of muscular bundles that insert
at the diaphragm, the parieto-diaphragmatic muscles,
and a large distal portion that attaches to the vestibular
wall. The latter muscles are often referred to as parieto-

vaginal muscles. To avoid confusion with the parieto-
vaginal muscle bands, we refer to them as “distal vestib-
ular muscles”. By comparison with the potential out-
groups, the Phylactolaemata and Cyclostomata, the
presence of these two sets of muscles can be regarded
as the plesiomorphic condition. An erect and simple,
uniserial colony morphology is regarded as ancestral
among ctenostomes [5,22], a condition that among “car-
nosan” ctenostomes is most closely exhibited by the
paludicelloideans. They possess parieto-vaginal bands
and their vestibular muscles are present as parieto-dia-
phragmatic muscles that consist of few fibres closely
adjoining the distal vestibular muscles (Figure 7d; Palu-
dicella: [49-52]).
The ‘carnosan’ superfamilies Alcyonidioidea and

Hislopioidea are both considered early offshoots within
ctenostomes (Figure 1). Alcyonidioideans possess par-
ieto-vaginal bands (Alcyonidium: [53-55]; Elzerina:
depicted, but not labelled by [1]) and their vestibular
muscles show a distinct separation into parieto-dia-
phragmatic and distal vestibular muscles (Figure 7g; e.g.,
Alcyonidium: [53]). Within the Hislopioidea the current
study on Hislopia malayensis shows that parieto-vaginal
bands are absent and only vestibular muscles are pre-
sent, as reported by Annandale [52]. A similar arrange-
ment of muscles is present in H. corderoi [56,57]. Only
for H. lacustris a set of muscles resembling parieto-vagi-
nal bands has been illustrated [58]. However, the investi-
gated specimens were not well preserved and differences

Figure 6 The adult serotonergic nervous system of Hislopia malayensis. Maximum-intensity projections of confocal laserscanning image
stacks. (a) Lateral view of the lophophoral base showing the cerebral ganglion at the proximal side and parts of the circumpharyngeal neurite
bundles emanating to serotonergic perikarya at the lophophoral base. From the latter, two neurites are distinguishable at the base of each
adjacent tentacle. (b) Oral view of the serotonergic nervous system at the lophophoral base. The highest concentration of serotonin is found in
the cerebral ganglion on the left side. At the oral side, three serotonergic perikarya are present associated with the circumpharyngeal neurite
bundle. Further neurites extend towards the serotonergic perikarya from the ganglion and the circumpharyngeal ring. Abbreviations: cg -
cerebral ganglion, cpn - circumpharyngeal neurites, bp - perikarya at the lophophore base, obp - perikarya on the oral side of the lophophoral
base, nt - neurites extending into the tentacles.
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Figure 7 Schematic representation of apertural areas of retracted ectoproct zooids with associated muscles. The distal zooidal part
points upwards. Epidermal layers are drawn in continuous lines and coelomic epithelia dashed. Tentacles are displayed in dark grey and the
diaphragm in orange. (a + b) Apertural muscles in phylactolaemates consist of sparse vestibular dilatators and duplicature bands that either
insert at the diaphragm (b) or at the tentacle sheath (a). (c) Cyclostomes possess bundles of vestibular dilatators that extend from the distal
bodywall to the diaphragm. Comparable to the duplicature bands, cyclostomes possess an attachment organ built by peritoneal strands. (d - h)
Ctenostomes. (d) Paludicelloidean ctenostomes as Paludicella show homologs of phylactolaemate duplicature bands, parieto-vaginal bands, and
prominent vestibular dilatators, which are subdivided into the proximal parieto-diaphragmatic muscles and the distal parieto-vestibular muscles.
(e + f) Ctenostomes forming elongated peristomes/stolons usually lack parieto-vaginal bands and show a strong separation of parieto-
diaphragmatic and distal parieto-vestibular musculature. Alcyonidioideans (g) possess parieto-vaginal bands, whereas hislopioideans (h) lack
them. The vestibular dilatators consist of a single portion in hislopioideans. In Alcyonidioideans they are separated into parieto-diaphragmatic
and distal vestibular musculature. (i) Cheilostomes possess parieto-vaginal bands and parieto-diaphragmatic musculature as found in
ctenostomes. The aperture in cheilostomes is closed by the opercular occlusors - most likely modified distal vestibular muscles. Abbreviations:
a - atrium, ao - attachment organ, db - duplicature bands, dvm - distal vestibular muscles, ms - membranous sac, oocl - operculum occlusors,
op - operculum, pdm - parieto-diaphragmatic muscles, pvb - parieto-vaginal bands, sph - sphincter, v - vestibulum, vd - vestibular dilatators.
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in the muscular system were stated to be absent among
different species of Hislopia [52]. Accordingly, it is
appropriate to assume general absence of parieto-vaginal
bands for hislopiid ectoprocts. In contrast to the Alcyo-
nidioidea, vestibular muscles of Hislopia show no
separation into parieto-diaphragmatic and distal vestibu-
lar muscles, but instead extend over the entire length of
the vestibular wall (Figure 7h).
Arachnidioidean ctenostomes display a wide range

regarding the length of the peristome and are mainly
characterized by cystid appendages which often anasto-
mose among individual zooids of a colony. Details on
their polypide morphology are mostly restricted to the
genus Nolella [59,60], which always has an elongated
peristome. So far, no parieto-vaginal bands have been
recorded for this genus (Figure 7e).
The Victorelloidea, Walkerioidea, and Vesicularioidea

are characterized by peristome-elongation/trophon or
stolon formation [22,25] with often reduced parieto-
vaginal bands. In the latter two clades, the distal par-
ieto-vaginal muscles are spatially more displaced from
the parieto-diaphragmatic muscles (Figure 7f; e.g.,
Bowerbankia: [26]) than in the victorelloideans (Victor-
ella: [26]) or the arachnidioideans (e.g., Nolella: [59]).
Within the Walkerioidea only Hypophorella expansa, a
species considered to be basal within this clade [25],
possesses distinct parieto-vaginal bands [53,61]. Indica-
tions for the latter are also present in Farrella repens
[62], while all other walkerioideans have reduced them
(Aeverillia: [63]; Harmeriella: [64]; Walkeria: [65,66]).
Similarly, a single species among victorelloideans, Sun-
danella sibogae, possesses parieto-vaginal bands [67],
while other genera have reduced them (Pottsiella:
[68,69]; Victorella: [26,70]). From our current knowl-
edge, all Vesicularioidea lack parieto-vaginal bands
(Bowerbankia: [26,52,59,71,72]; Buskia: [73]; Spathipora:
[74]; Terebripora: [75]; Vesicularia: [76]).
Parieto-vaginal bands are present in malacostegan ecto-

procts (Table 1), which are commonly regarded as a
paraphyletic to all remaining Cheilostomata [77]. Conse-
quently, parieto-vaginal bands are probably part of the
ancestral cheilostome bauplan and may have been pre-
sent in the last common cheilostome ancestor (Figure 7i).
Since they have also been recorded in species from
almost all “higher” groupings of cheilostomes (Table 1
and references therein [31,59,78-92]), it seems reasonable
to assume that they are present in most cheilostomes.
Cheilostomes have retained the parieto-diaphragmatic
muscles. Distally to these muscles, opercular occlusors
are situated (Figure 7i). Based on their similar topology
and insertion points, we consider the occlusors as a mod-
ification of the distal vestibular muscles. As a conse-
quence, we reject the notion that apertural muscles,
including the opercular occlusors, are phylogenetically

derived from parietal muscles [28,33]. As shown above,
apertural muscles are present in all three ectoproct sub-
clades including the Phylactolaemata and Stenolaemata,
which both lack parietal muscles.
Several authors have regarded the cheilostome ances-

tors to be Arachnidium-like [1,28], but as previously
mentioned, soft body morphology is almost unknown
for the genus. The most precise data are available for
the genus Nolella, which forms elongated peristomes.
Similar to Nolella, species with long peristomial tubes
that belong to other superfamilies commonly lack the
parieto-vaginal bands. Since parieto-vaginal bands were
probably present in the ctenostome-like ancestor of
cheilostomes, it would be of particular interest to study
arachnidioidean species with short peristomes, such as
Arachnidium fibrosum.

Lophophoral and digestive tract musculature
The tentacle musculature consists of two longitudinal
muscle bands in most ectoprocts investigated to date
[33]. Within Phylactolaemata, Fredericella is an excep-
tion in having only one longitudinal muscle band [93].
In general, the tentacle musculature is smooth in phy-
lactolaemates and cheilostomates, whereas striated
myofibrils have been reported for ctenostomes and
cyclostomes. However, only for phylactolaemates several
species were analysed in detail by electron microscopy
[33,93]. Accounts on cyclostome tentacle muscles rely
on the classical study of Borg [47], whereas only a single
species of both cteno- [94] and cheilostomes [95] were
analysed on the ultrastructural level. We observed stria-
tion of the longitudinal tentacle musculature of Hislopia
malayensis, which supports the previous notion that cte-
nostomes possess striated tentacle musculature.
As the center of the nervous system and source of

feeding and sensory structures, the lophophoral base
represents the most complex part of the polypide [33].
However, most of our current knowledge resides in its
description of the cheilostome Cryptosula pallasiana
[95]. Buccal dilatators are present in this species, but
were also described for the cheilostome Bugula simplex
[59], the ctenostome Bowerbankia pustulosa [96], Crisia
eburnea, and other cyclostomes [47,97]. They are
smooth in H. malayensis, C. pallasiana, and B. simplex,
while they were reported striated for B. pustulosa. A
second pair of dilatators inserting above the ganglion as
in H. malayensis has not been reported for any other
species. In C. pallasiana, so-called “basal transverse ten-
tacle muscles” are present at the base of each pair of
tentacles that probably act as antagonist to the tentacle
musculature [95]. These muscles are absent in H.
malayensis, but possibly the circular ring muscle at the
lophophoral base of this species may be a homologous
structure. The two muscle groups at the lophophoral
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base below each longitudinal tentacle muscle have to
our knowledge not been reported for any other ecto-
proct so far. Functionally, they remain difficult to inter-
pret, but they could act in lophophore movement and
rotation. To clarify their function, more detailed obser-
vations on living specimens, e.g., by video microscopy,
are required.
In several ctenostomes the vacuolated cells of the

pharyngeal epithelium possess distinct striated muscle
fibres on their lateral walls. For Zoobotryon verticillatum
[98] and Alcyonidium polyoum [99] ultrastructural ana-
lysis revealed that the pharyngeal cells along with these
fibres represent a prominent myoepithelium. Light
microscopical observations on such fibres were also con-
ducted for the ctenostomes Alcyonidium hirsutum [100],
Victorella pavida [101], and Bowerbankia pustulosa
[96]. This specialized pharynx acts as a strong sucking
pump for particle capture and has also been observed in
the cheilostomes Bugula flabellata [100], B. neritina
[102], and Cryptosula pallasiana [103]. In the current
study we found no muscular elements in the pharyngeal
cells of Hislopia malayensis. The only musculature asso-
ciated with the pharynx consists of striated ring muscles
surrounding the pharyngeal epithelium. Pharyngeal ring
musculature has been described by the above mentioned
authors for the respective species and is, when men-
tioned, striated. This musculature is also present in Flus-
trellidra hispida [104] and Zoobotryon verticillatum
[105]. Longitudinal muscles in the pharynx were only
found in B. pustulosa [96]. Most phylactolaemate
bryozoans possess striated ring musculature in the phar-
ynx as well [40,106]; only in Asajirella gelatinosa longi-
tudinal muscles have been observed [33]. Cyclostome
pharyngeal musculature consists of striated ring

musculature and few longitudinal muscle fibres [47]. In
conclusion, striated ring musculature appears to be a
common trait of the ectoproct pharynx, whereas longi-
tudinal fibres only occur in a few of the species studied
so far. However, drawing the border between the phar-
ynx and adjoining esophagus is often difficult in many
ectoprocts and mostly only discernable by the ciliation
pattern [107]. Accordingly, some of the observed longi-
tudinal pharyngeal musculature could actually belong to
the esophagus, which possesses few longitudinal fibres
in H. malayensis (this study), F. hispida [104], and
B. pustulosa [96].
The differentiation of the cardiac portion of the sto-

mach or proventriculus into a gizzard occurs in some
cheilostomes and cyclostomes, but is more frequently
found in ctenostomes [33,108]. In the latter, the gizzard
was previously considered to have evolved only once
[25], while other authors argue for its multiple indepen-
dent origin [108]. Internally, it is lined by cuticular
plates or teeth used for crushing ingested food particles.
In hislopiids the proventriculus carries a smooth cuticu-
lar lining in all species except for Echinella placoides,
where it contains several spirally arranged cuticular
ridges [109]. Functionally, it was either interpreted to
act as a mere storage organ or as crushing organ for
ingested food particles [110]. In H. malayensis the inner
walls of the proventriculus never form contact and food
particles are very small that do not require grinding. In
the proventriculus, there is a very active exchange of
undigested whole particles: the distal sphincter closes;
then a slow wave of tight constriction starts from the
proximal end which then moves distally. It squeezes the
contents and forces them to spurt back through the nar-
row constriction, between cuticular ridges, towards the

Table 1 List of cheilostome genera where parieto-vaginal bands have been found

Cheilostomata

Suborder Superfamily Family Genus Reference

“Anasca”

Malacostegina Membraniporoidea Membraniporidae Membranipora [30,77,78]

Electridae Electra [58,79,80]

Flustrina Flustroidea Flustridae Flustra [81,82]

Carbasea [81,83-85]

Calloporoidea Tendridae Tendra [86]

Buguloidea Bugulidae Bugula [58]

Microporoidea Microporidae Andreella [87]

Steginoporellidae Steginoporella [84]

Ascophoran

Hippothoomorpha Hippothooidea Hippothoidae Antarctothoa [88]

Umbonulomorpha Lepralielloidea Umbonulidae Umbonula [83]

Lepraliomorpha Schizoporelloidea Cryptosulidae Cryptosula [58,89]

Eminooeciidae Eminooecia [90]

Smittinoidea Smittinidae Parasmittina [91]
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proximal end. In addition, particles are pushed back and
forth between the lower proventriculus and the upper
caecum. This is achieved mostly by cilia in these two
regions but also by spasmodic contractions of the cae-
cum (Wood, personal observation). The purpose of all
this movement is unclear. The effect may be to break
apart any particles that cling together and not to grind
any particles.
In H. malayensis the remaining stomach or caecum

possesses mainly smooth circular muscle bands with
two prominent longitudinal muscles at the proximal
side and few longitudinal fibres between the circular
muscles. A similar muscular system of the caecum has
been described for F. hispida [104], Z. verticillatum
[105], B. pustulosa [96], and the cheilostome C. pallasi-
ana [103]. The circular muscle bands in these species
are not adjoining, but keep a distance to each other. On
the contrary, phylactolaemates solely possess a dense
layer of circular, striated muscle fibres in the caecum
[33]. The remaining digestive tract, i.e. the intestine and
rectum, possess only smooth longitudinal musculature
in H. malayensis (this study), Z. verticillatum [105], and
B. pustulosa [96], while additional ring musculature was
described for F. hispida [104]. In contrast, most phylac-
tolaemates possess mainly densely packed smooth ring
musculature in the intestine [40]. Among phylactolae-
mates, only A. gelatinosa shows few additional longitudi-
nal muscle fibres in the intestine [33].

Retractor muscles and the striation problem
The partitioning of the zooid into the cystid and a
retractable polypide is a characteristic feature of all ecto-
procts. Accordingly, polypide retractors are present in
all clades, and usually constitute the most prominent
somatic muscles. Their traverse within the coelom is
usually simple and unidirectional from the proximal or
lateral cystid wall to the lophophore base [111]. This
condition is also present in H. malayensis and other
species of Hislopia [52,56,57].
Retractor muscle fibres have been controversially

described as either striated (e.g. [54,112]) or smooth (see
[113]). Thereby, all ultrastructural studies found the
fibres to be smooth [33]. In the current study on Hislo-
pia malayensis we found the retractor muscle fibres to
be mainly smooth, while the distal-most parts appeared
‘striated’. A similar appearance of the retractor muscle
fibres was recently observed in Pottsiella erecta [69].
Such striations were attributed as ‘pseudostriations’,
resulting from contraction folds or helically coiled fibrils
[73,96,113]. However, other ctenostomes also show
striations in expanded zooids with relaxed retractors
(Schwaha: unpublished observations). Consequently, it
remains difficult to fully interpret these striation pat-
terns, which inevitably requires ultrastructural analysis.

Myogenesis during the budding process
The temporal appearance of the retractor, apertural and
parietal muscles, as well as the polypide anlage during
budding has previously been analysed in several ctenos-
tomes and has been used for phylogenetic inferences.
The earliest analyses tried to reconstruct the suborders
‘Carnosa’ and ‘Stolonifera’ as monophyletic taxa [23,24],
which was later rejected [22,25]. The latter author, Jeb-
ram [22], analysed myogenesis during the budding pro-
cess of a hislopioid, Hislopia corderoi. Accordingly,
parietal muscles are the first to appear during budding
in H. corderoi, whereas the polypide anlage is second,
followed by the retractor muscles and the apertural
muscles, respectively - a succession also found in speci-
mens of the closely related superfamilies Alyconidiodea
and Arachnidioidea [22]. The results of this study on H.
malayensis show that the parietal muscles are last to
appear during budding, which is not in accordance with
the observations on H. corderoi. However, it has to be
considered that the observations by Jebram [22] were
conducted on old preserved material and that the speci-
mens were mainly analysed as whole mounts. With
these methods, the delicate first anlagen of the retractor
and apertural muscles are rather difficult to distinguish.
Considerable variation in the asexual muscle succession
occurs among numerous other ctenostome species [22]
and might also be present among species of Hislopia. As
promising these muscle successions might be for ctenos-
tome phylogeny, their value should perhaps not be over-
estimated until analysed with modern methods.

The serotonergic nervous system
The serotonergic nervous system in Ectoprocta was pre-
viously analysed in different kinds of planktotrophic and
lecitotrophic larvae [14-16,114]. During ectoproct meta-
morphosis, larval organ systems undergo histolysis and
adult organs, including the nervous system, are formed
anew ("catastrophic metamorphosis”) [16,115]. Due to
the significant morphological differences, the individual
components of the larval nervous systems are most
likely lost during metamorphosis and are thus not con-
sidered ontogenetically homologous sensu Haszprunar
[116]. So far, the adult serotonergic nervous system has
only been investigated in the lepraliomorph cheilostome
Triphyllozoon mucronatum [16]. The latter shows a
similar condition to Hislopia malayensis. The highest
concentration of serotonin in both species is located in
the circumpharyngeal nerve ring or “cerebral ganglion”.
Additional serotonergic perikarya are present at the
lophophoral base and are connected to the ganglion by
fine neurites. Hislopia malayensis possesses additional
serotonergic neurites, which run from these perikarya
into the tentacles. Such serotonergic neurites have not
been found in T. mucronatum. These results currently
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support a common serotonergic nervous system in gym-
nolaemates, i.e. cteno- and cheilostomes, but for esti-
mating its value for phylogenetic considerations more
species need to be analysed.

Conclusions and Outlook
This study presents the first data on the myoanatomy
and serotonergic nervous system of an adult ctenostome
ectoproct, Hislopia malayensis. Comparative analysis
revealed that the Phylactolaemata show several morpho-
logical differences to the remaining ectoprocts by, e.g.,
being the only ectoproct taxon with a distinct bodywall
musculature. Only few synapomorphies for all ectoproct
taxa are identifiable (cf. [93]). As an example, our study
demonstrates that the apertural muscles are highly simi-
lar among the major ectoproct subclades and consist of
two principal sets of muscles, the parieto-vaginal bands
and the vestibular muscles. These have been modified
among the different ectoproct taxa according to the dif-
ferent morphology of the aperture. Their phylogenetic
derivation from parietal muscles seems unlikely. Con-
cerning the apertural muscles in ctenostomes, two main
evolutionary trends are apparent: 1. Formation of dense
encrusting colonies with almost box-shaped zooids and
the aperture and its associated musculature shifted
towards the frontal side (Figure 7g, h). 2. Peristome
elongation or even stolon formation, usually accompa-
nied by loss of parieto-vaginal bands and with distal par-
ieto-vaginal musculature being more distantly situated
from the parieto-diaphragmatic musculature (Figure 7e,
f). Parieto-vaginal bands were most likely present in the
cheilostome ancestor and appear to be present in most
extant Cheilostomata.
Concerning the musculature of the digestive tract,

there are clear differences between the Phylactolaemata
and the Gymnolaemata. Most species of the former
possess tightly packed, mostly cross-striated ring mus-
culature, whereas the digestive tract musculature of
the Gymnolaemata contains longitudinal muscles that
are more loosely arranged. Among the phylactolae-
mates, only Asajirella gelatinosa possesses few longitu-
dinal muscles in the wall of the digestive tract. This
species belongs to the family Lophopodidae, which is
currently regarded as the most basal family within
Phylactolaemata [117,118]. Accordingly, we assume
longitudinal and ring musculature in the wall of the
digestive tract a basal ectoproct feature. Similarly, two
longitudinal muscle bands in the tentacles of the
lophophore seem to constitute a basal ectoproct fea-
ture. The lophophoral base connecting the tentacles
shows a complex set of several muscle groups, but due
to the lack of comparative data, conclusions on the
plesiomorphic state for Ectoprocta are currently not
possible.

Cyclostome ectoprocts possess annular ring muscles in
their membranous sac that might have evolved from the
ring musculature of the phylactolaemate bodywall [45].
However, additional investigations using state-of-the-art
technology are needed to further address this issue, since
most available data rely on the classical work by Borg [47].
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