Klck et al. Frontiers in Zoology 2010, 7:10
http://www.frontiersinzoology.com/content/7/1/10

FRONTIERS IN ZOOLOGY

Parametric and non-parametric masking of
randomness in sequence alignments can be
improved and leads to better resolved trees
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Abstract

therefore more objective.

Background: Methods of alignment masking, which refers to the technique of excluding alignment blocks prior to
tree reconstructions, have been successful in improving the signal-to-noise ratio in sequence alignments. However, the
lack of formally well defined methods to identify randomness in sequence alignments has prevented a routine
application of alignment masking. In this study, we compared the effects on tree reconstructions of the most
commonly used profiling method (GBLOCKS) which uses a predefined set of rules in combination with alignment
masking, with a new profiling approach (ALISCORE) based on Monte Carlo resampling within a sliding window, using
different data sets and alignment methods. While the GBLOCKS approach excludes variable sections above a certain
threshold which choice is left arbitrary, the ALISCORE algorithm is free of a priori rating of parameter space and

Results: ALISCORE was successfully extended to amino acids using a proportional model and empirical substitution
matrices to score randomness in multiple sequence alignments. A complex bootstrap resampling leads to an even
distribution of scores of randomly similar sequences to assess randomness of the observed sequence similarity. Testing
performance on real data, both masking methods, GBLOCKS and ALISCORE, helped to improve tree resolution. The
sliding window approach was less sensitive to different alignments of identical data sets and performed equally well
on all data sets. Concurrently, ALISCORE is capable of dealing with different substitution patterns and heterogeneous
base composition. ALISCORE and the most relaxed GBLOCKS gap parameter setting performed best on all data sets.
Correspondingly, Neighbor-Net analyses showed the most decrease in conflict.

Conclusions: Alignment masking improves signal-to-noise ratio in multiple sequence alignments prior to
phylogenetic reconstruction. Given the robust performance of alignment profiling, alignment masking should
routinely be used to improve tree reconstructions. Parametric methods of alignment profiling can be easily extended
to more complex likelihood based models of sequence evolution which opens the possibility of further improvements.

Background

Multiple sequence alignments are an essential prerequi-
site in alignment based phylogenetic reconstructions,
because they establish fundamental homology assess-
ments of primary sequence characters. In consequence,
alignment errors can influence the correctness of tree
reconstructions [1-3]. To deal with this problem at the
level of sequence alignment, different approaches and
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alignment software tools have been developed, but
despite major advances, alignment quality is still mostly
dependent on arbitrary user-given parameters, e.g. gap
costs, and inherent features of the data [4,5]. In particular
when sequences are highly divergent and/or length vari-
able, sequence alignment and the introduction of gaps
become a more and more complex enterprise and can
currently not be fully governed by formal algorithms. The
major problem is that finding the most accurate align-
ment parameters in progressive and consistency based
alignment approaches is difficult due to the incomplete
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knowledge of the evolutionary history of sequences and/
or heterogeneous processes along sequences [6]. As a
result, problematic sequence alignments will contain sec-
tions of ambiguous indel positions and random similarity.

To improve the signal-to-noise ratio, a selection of
unambiguous alignment sections can be used. It has been
shown that a selection of unambiguously aligned sec-
tions, or alignment masking [7], improves phylogenetic
reconstructions in many cases [2,8,9]. However, a for-
mally well defined criterion of selecting unambiguous
alignment sections or profiling multiple sequence align-
ments was not available. To fill this gap, different auto-
mated heuristic profiling approaches of protein and
nucleotide alignments have been developed. GBLOCKS
[10] is currently the most frequently used tool. The
implemented method is based on a set of simple pre-
defined rules with respect to the number of contiguous
conserved positions, lack of gaps, and extensive conser-
vation of flanking positions, suggesting a final selection of
alignment blocks more "suitable" for phylogenetic analy-
sis [10,11]. The approach does not make explicit use of
models of sequence evolution and is subsequently
referred to as a "non-parametric” approach.

The recently introduced alternative profiling method,
ALISCORE [12], identifies randomness in multiple
sequence alignments using parametric Monte Carlo resa-
mpling within a sliding window and was successfully
tested on simulated data. ALISCORE was first developed
for nucleotide data, but has been extended here to amino
acid sequences. The program is freely available from
http://aliscore.zfmk.de. In short, within a sliding window
an expected similarity score of randomized sequences is
generated using a simple match/mismatch scoring for
nucleotide or an empirical scoring matrix for amino acid
sequences (see Methods), actual base composition, and
an adapted Poisson model of site mutation. The observed
similarity score is subsequently compared with the

Table 1: General overview of used data sets
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expected range of similarity scores of randomized
sequences. Like GBLOCKS it is independent of tree
reconstruction methods, but also independent of a priori
rating of sequence variation within a multiple sequence
alignment. Because of its explicit use of, although rather
simple, models of sequence evolution, ALISCORE can be
called a parametric method of alignment masking.

It has been demonstrated that both methods correctly
identify randomness in sequence alignments, although to
a very different extent [10-12]. A comparison of their per-
formance on real data is however missing. Both masking
methods suggest a set of alignment blocks suitable for
tree reconstructions. These alignment blocks should have
a better signal-to-noise ratio and this should lead to bet-
ter resolved trees and increased support values. There-
fore, we used these predictions to assess the performance
of both masking methods by comparing reconstructed
Maximum Likelihood (ML) trees. Additionally, our anal-
yses compared the sensitivity of tree reconstruction given
both profiling approaches in relation to different data and
alignment methods. Different test data sets were aligned
with commonly used alignment software (CLUSTALX
1.81 [13], MAFFT 6.240 [14], MUSCLE 3.52 [15], T-COF-
FEE 5.56 [16], and PCMA 2.0 [17]). For protein align-
ments, we used two data sets of mitochondrial protein
coding genes that differ in their sequence variability and
number of taxa, and an EST data set of mainly ribosomal
protein coding genes, including missing data of single
taxa. For nucleotide alignments, we tested the perfor-
mance of ALISCORE and GBLOCKS on highly variable
12S + 16S rRNA sequence alignments (Table 1).

Results

ALISCORE algorithm for amino acid data

As for nucleotide sequences [12], ALISCORE uses a slid-
ing window approach on pairs of amino acid sequences to
generate a profile of random similarity between two

Data set Type No. of genes Taxon No. of species No. of cons. Data source
clades

mtl AA 1 Eukaryota 17 12 NCBI/
SwissProt

mtll AA 5 Eukaryota 24 15 NCBI/
SwissProt

EST AA 51 Arthropoda 26 7 dbEST; KM/
BMvVR/FR/TB

125 +16S NUC 2 Arthropoda 63 9 NCBI/JD

Data sets used for analyses. mtl: mitochondrial data set I; mt Il: mitochondrial data set II; EST: EST data set; 125 + 16S rRNA: mitochondrial

ribosomal data set. Type: Kind of sequence type. AA: Amino acid sequences; NUC: Nucleotide sequences. No. of genes: Number of genes per
data set. No. of species: Number of species per data set. No. of cons. clades: Number of considered clades (selected). Data source: dbEST: EST
database of NCBI; unpublished sequences provided by KM (K. Meusemann), BMvR (B. Reumont), FR (F. Roeding), TB (T. Burmester) and JD (J.

Dambach).
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sequences. In contrast to the algorithm with nucleotide
data, ALISCORE employs the empirical BLOSUM®62
matrix, Q, (or alternatives of it, PAM250, PAMS500,
MATCH) to score differences between amino acids, Q.
Pairs containing indels and any amino acid are defined by
using the value of a comparison of stop codons and any
amino acid defined within Q. The observed score within a
window of pairwise comparisons is generated by sum-
ming scores of single site comparisons. Starting from a
multiple sequence alignment of length L, sequence pairs
(¢, j) are selected for which the following procedure is exe-
cuted: In a sliding window of size w at position k, a simi-
larity score S(k) is calculated comparing positions (i(k),

jk), 2k (1,2, .., L), using the following simple objective
function:
k+w-1
st = ) Q)
p=k

Observed scores are compared to a frequency distribu-
tion of scores of randomly similar amino acid sequences
with length given by the window size. The generation of
randomly similar sequences follows the Proportional
model [18], which is an adaptation of a simple Poisson
model of change probability, adapted for observed amino
acid frequencies, but still assuming that the relative fre-
quencies of amino acids are constant across sites:

Ti+(1-m)e ™ (i=j)

Proportional : P;(t) =
it miH(l-e ™) (i#))

with P;; (¢) as the probability of change from amino acid
i to j, m; the frequency of amino acid j, 4 the instantaneous
rate of change, and ¢ the branch length/time. Different to
the algorithm used with nucleotide sequences in which
scores are adapted to varying base composition along
sequences and among sequences, the frequency distribu-
tion of scores of randomly similar sequences is only pro-
duced once for amino acid data. The frequency
distribution is generated by: 1) collecting frequencies of
amino acids of the complete observed data set, 2) gener-
ating 100 bootstrap resamples of this amino acid fre-
quency distribution and 100 delete-half bootstrap
resamples of each of the 100 complete bootstrap resam-
ples, and 3) by using these 10,000 delete-half bootstrap
resamples to generate 1,000,000 scores of randomly simi-
lar amino acid sequences with length given by the win-
dow size. This complex resampling leads to an even
distribution of scores of randomly similar sequences. The
frequency distribution of randomly similar sequences is
used to define a cutoff c(a = 0.95) to assess randomness of
the observed sequence similarity within the sliding win-
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dow. Matching indels are defined as Q;= ¢/w. The princi-
ple of the complete scoring process is described in [12].

Testing performance on real data
Extent of identified randomly similar blocks
Compared to GBLOCKS, using ALISCORE resulted in
the exclusion of fewer positions in most data sets (Figure
1). GBLOCKS identified fewer randomized positions
only for the highly diverse 12S + 16S rRNA data with the
GBLOCKS(all) option. For each data set, the percentage
of identified randomly similar sections differed on aver-
age between 1% and 5% for each multiple sequence align-
ment when ALISCORE was applied, and between 1% and
9% when GBLOCKS was used. Most alignment sites were
discarded by the default option GBLOCKS(none).
ML trees and Neighbor-Net analyses
Resulting ML trees and Neighbor-Net graphs were exam-
ined under two different aspects: 1) We compared trees
of all unmasked alignments with trees of differently
masked alignments per data set to analyze the influence
of each masking method on data structure and presence/
absence of selected clades (Figure 2). 2) We compared
bootstrap values of corresponding trees (Table 2) and
Neighbor-Net graphs (Figure 3) of unmasked and differ-
ently masked alignments to see if alignment masking
improves the signal-to-noise ratio in the predicted way.
In general, ALISCORE masked alignments resulted in
consistent ML topologies among identical but differently
aligned sequence data. The ALISCORE algorithm per-
formed in most cases better or at least equal well than the
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Figure 1 Percentage of identified non randomized positions. X-
axis: Used data sets. Y-axis: Average percentage of "non randomly sim-
ilar" positions per data set after alignment masking. GBLOCKS(none):
brown; GBLOCKS(half): orange; GBLOCKS(all): green; ALISCORE (blue).
A list of all single values is given in the additional file 1.
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Table 2: Averaged bootstrap support [%] of selected clades
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Data set Selected clades Gb(none) Gb(half) Gb(all) Al Unm

mtl
Plant 63.8 82,0 775 81.5 97.0
Viridiplantae 99.8 99.5 99.8 100.0 100.0
Streptophyta 100.0 100.0 100.0 100.0 100.0
(Rhodophyta, 68.5 92.0 88.5 82.8 96.8
Plant)
Fungi 100.0 100.0 100.0 100.0 100.0
(Ascomycota, 100.0 100.0 100.0 100.0 100.0
Blastocladiomyco
ta)
Metazoa 100.0 99.5 99.3 100.0 85.8
Bilateria 93.3 100.0 100.0 100.0 100.0
Gastroneuralia 100.0 100.0 100.0 100.0 100.0
Deuterostomia 73.0 99.8 100.0 99.8 100.0
(Fungi, Metazoa) 100.0 62.5 75.0 76.0 0.0
((Fungi, Metazoa), 413 17.3 46.3 24.0 0.0
Amoebozoa)

mtll
Plant 0.0 0.0 0.0 0.0 0.0
Viridiplantae 0.0 0.0 0.0 0.0 0.0
Streptophyta 100.0 100.0 100.0 100.0 100.0
Chlorophyta 0.0 0.0 0.0 0.0 0.0
Rhodophyta 99.5 93.5 98.5 97.5 97.8
(Rhodophyta, 0.0 0.0 0.0 0.0 0.0
Plant)
Amoebozoa 0.0 0.0 0.0 0.0 14.3
Fungi 100.0 100.0 100.0 100.0 933
(Ascomycota, 100.0 100.0 100.0 100.0 96.2
Blastocladiomyco
ta)
Metazoa 100.0 100.0 100.0 100.0 100.0
Bilateria 100.0 100.0 100.0 100.0 100.0
Gastroneuralia 98.5 100.0 100.0 100.0 88.5
Deuterostomia 69.3 94.5 98.8 955 73.3
(Fungi, Metazoa) 87.3 70.5 64.8 79.3 67.5
((Fungi, Metazoa), 0.0 0.0 0.0 0.0 0.0
Amoebozoa)

EST
Chelicerata 0.0 50.8 57.5 24.8 0.0
Pancrustacea 97.8 99.5 100.0 100.0 0.0
(Cirripedia, 56.0 58.5 79.5 85.0 0.0

Malacostraca)
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Table 2: Averaged bootstrap support [%] of selected clades (Continued)

Hexapoda 0.0
Collembola 98.8
Nonoculata 18.8
Ectognatha 88.0
125 +16S
Campodeidae 17.5
Diplura 0.0
Archaeognatha 0.0
Decapoda 0.0
Dictyoptera 0.0
Collembola 0.0
Odonata 57.8
Japygidae 29.8
Hymenoptera 0.0

46.5 66.8 52.8 0.0
99.5 99.8 100.0 0.0
74.5 72.8 843 0.0
55.8 76.8 753 0.0
89.3 98.8 97.0 99.8
87.8 96.8 925 94.3
59.8 85.3 75.8 47.5
38.5 38.0 81.8 733
38.0 39.3 453 49.5
97.5 99.3 97.5 96.0
100.0 100.0 99.3 100.0
99.5 99.0 100.0 100.0
88.0 84.3 83.8 24.8

Averaged bootstrap support [%)] of selected clades of each data set (mtl, mtll, EST, 12S + 16S) inferred from majority rule ML trees for all
GBLOCKS profiles (Gb(none), Gb(half), Gb(all)), ALISCORE (Al), and Unmasked (Unm). Values are averaged across different alignment methods

per masking approach.

GBLOCKS(half)). Application
yielded less congruent trees.
Amino acid data While plants, fungi, metazoans, and
included subtaxa were fully resolved in unmasked trees of
data set mtl, sister group relationships between major
clades (Fungi, Metazoa, Amoebozoa) could not be
resolved without alignment masking. If alignments were
masked according to the ALISCORE profile, all ML trees
showed a sister group relationship between fungi and
metazoans. In the case of the T-COFFEE alignment, the
Amoebozoa were placed as sister group to Fungi + Meta-
zoa. The alignment masking of GBLOCKS(all) and
GBLOCKS(half) led to comparatively resolved topolo-
gies. Masking the alignments with the GBLOCKS(none)
option reduced signal in the data (Figure 2). Bootstrap
values as measurement of data structure increased after
alignment masking, in particular for deep nodes (clade
(Fungi, Metazoa) and ((Fungi, Metazoa), Amoebozoa),
see Table 2). After alignment masking, Neighbor-Net
graphs showed less conflict (Figure 3).

For the mtII data set we were not able to recover mono-
phyletic plants and Amoebozoa as sister group to Fungi +
Metazoa. The sister group relationship between Fungi
and Metazoa was fully resolved in all ALISCORE,
GBLOCKS(all), and GBLOCKS(none) masked data sets.
GBLOCKS(none) and GBLOCKS(half) masked align-
ments supported in several instances implausible clades
(Figure 2).

Bootstrap support values only marginally increased
after alignment masking (Table 2). Neighbor-Net graphs

of GBLOCKS(none)

as well showed only marginal reduction of conflicts after
alignment masking (Figure 3). Unmasked EST data did
not yield well supported resolved trees. Most ALISCORE
masked alignments led to clearly improved resolution of
‘traditionally’ recognized clades (e.g. Chelicerata,
Hexapoda, Pancrustacea). If alignments were masked
using GBLOCKS(all) or GBLOCKS(half), tree resolution
increased likewise. Using the GBLOCKS(none) masking
option did not improve resolution compared to other
masked alignments (Figure 2). Considering bootstrap val-
ues as measurement of tree-likeness, GBLOCKS(all),
GBLOCKS(half), and ALISCORE improved tree-like-
ness of the data (Table 2). Except for the default
GBLOCKS(none) setting, Neighbor-Net graphs showed a
substantial decrease of conflict after alignment masking
(Figure 3).

Nucleotide data Again, ALISCORE and GBLOCKS(all)
masking improved tree-likeness of the 12S + 16S nucle-
otide alignments at the taxonomically ordinal level. ALIS-
CORE outperformed GBLOCKS(all) and
GBLOCKS(half) in all instances. GBLOCKS(none)
clearly performed worst (Figure 2, Table 2).

Discussion

Parametric and non-parametric masking methods were
successful in identifying 'problematic’ alignment blocks.
In general, removal of these blocks prior to tree recon-
struction improved resolution and bootstrap support. We
interprete these results as an improvement in signal-to-
noise ratio. For data set mtl and mtIl, we assumed clade
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Figure 2 Average percentage of resolved clades within single data sets. On the left: Occurrence of selected clades (Table 2-3) of each data set
(mtl, mtll, EST, 12S + 16S), inferred from majority rule ML trees. On the right: Total occurrence of all considered clades [%] for each data set, averaged
across all four alignment methods. GBLOCKS(none): brown; GBLOCKS(half): orange; GBLOCKS(all): green; ALISCORE: blue; Unmasked: red.
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Figure 3 Neighbor-Net graphs. Neighbor-Net graphs generated with SplitsTree 4.10 based on concatenated supermatrices of unmasked (left), ALIS-
CORE masked (middle), and GBLOCKS(none) masked (right) data. mtl, mtll and EST networks depend on a T-COFFEE alignment, the 125 + 165 rRNA
network on a PCMA alignment. Neighbor-Nets were calculated with uncorrected p-distances. All inferred Neighbor-Net graphs are given in the addi-
tional File 1. Tree like structures in these graphs indicate distinct signal-like patterns in the corresponding alignment. Graphs generated from ALISCORE
data sets are more tree-like. Lack of information leads to star-like graphs, conflicting signal produces cobwebs.
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validity congruently to Talavera & Castresana [11]. For
the EST data set, traditionally accepted clades were only
recovered for masked data sets in contrast to the
unmasked approach, e.g. Pancrustacea [19-27], Malacost-
raca [28-30], Hexapoda [19,20,22,25-27,31-35], Ectogna-
tha [22,26,31,32,34,36] or Collembola [22,26,31-35], see
Figure 4. A detailed review on these clades including
morphological, neuro-anatomical and palaeontological
evidence has been recently published in Edgecombe [37]
and Grimaldi [38]. An improved data structure after
alignment masking is also supported by more distinct
split patterns (Figure 3).

Alignment masking further reduced sensitivity of tree
reconstructions to different alignment methods. The
method implemented in GBLOCKS has the potential to
overestimate the extent of divergent or ambiguously
aligned positions, especially in partial gene sequences
and gappy multiple sequence alignments like EST data or
rRNA loop regions. Masking with the GBLOCKS(none)
option tended to result in suboptimal node resolution
and support values (Figure 2 and Table 2, 3). In the case of
the 12S + 16S rRNA data, GBLOCKS(none) masking
even reduced signal strength. This phenomenon is clearly
evident in Figure 3, where the split decomposition pat-
tern appears most fuzzy in the GBLOCKS(none) Neigh-
bor-Net graph. We conclude that the incongruence
between GBLOCKS(none)- and remaining masked trees
may have resulted from conservative and stringent
default parameters settings of GBLOCKS, in which all
gap including positions were removed and only large con-
served blocks were left. While the higher amount of con-
flicting signal in unmasked multiple sequence alignments
clearly based on noisy data, it seems that the
GBLOCKS(none) masking discarded too many informa-
tive positions.

The ALISCORE and GBLOCKS(all) approach per-
formed quite similar and best on all data sets. This dem-
onstrates that even a predefined set of rules suffices to
extract randomness within sequence alignments. Tala-
vera & Castresana [11] showed this already in their exten-
sive analyses of GBLOCKSs performance. The use of
large data sets in phylogenomic analyses resulted in a tre-
mendous increase of molecular data, but also in an
increase of sampling error which could even bias seem-
ingly robust phylogenetic inference [39]. Several such
cases have been reported [40-42]. Therefore, it is impor-
tant to establish a reliable alignment masking approach to
cope with systematic errors in multiple sequence align-
ments. Our analyses showed that the sliding window
approach will be a useful profiling tool to guide alignment
masking.

ALISCORE optionally uses a BLOSUM®62 or various
PAM matrices to score differences between amino acid
sequences, or a simple match/mismatch score for differ-
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ences between nucleotide or amino acid sequences. It
uses a simple modified Poisson model of character state
change (called Proportional for amino acids [18], adapted
for uneven base composition and sequence selection) in
its resampling procedure to generate a null distribution of
expected scores of randomly similar sequences. These
scoring models and resampling processes are not very
realistic, but however performed well in our analyses.

A recently published alternative approach, NOISY, uses
a qnet-graph of sequence relationships to assess random-
ness of single positions [2]. The approach uses Monte
Carlo resampling of single columns to compare fit of ran-
dom data columns on a qnet-graph with the fit of
observed data columns. The NOISY method appears as a
fast and better alternative to the GBLOCKS approach,
but a comparative analyses of its performance with the
sliding window approach remains to be done.

Conclusions

We demonstrate for empirical data that alignment mask-
ing is a powerful tool to improve signal-to-noise ratio in
multiple sequence alignments prior to phylogenetic
reconstruction. Masking multiple sequence alignments
makes them additionally less sensitive towards different
alignment algorithms. Our study also shows, that the
scoring algorithm for amino acid data implemented in
ALISCORE performs well.

The ALISCORE (parametric) approach is independent
of a priori rating of sequence variation and seems to be
more capable to handle automatically different substitu-
tion patterns and heterogeneous base composition.

It will be a matter of further analyses, whether an exten-
sion of the sliding window approach to more realistic
likelihood models of change and Monte Carlo resampling
will further improve the performance. However, it would
be conceivable to implement a more explicit model based
approach in GBLOCKS as well. The advantage of
improved parameterizing GBLOCKS could be a signifi-
cant gain in speed compared to the sliding window
approach. The best approach should be the most efficient
one in terms of computational time and increased reli-
ability of trees, the latter one admittedly hard to assess.

Methods

Data sets

We used four different types of real data sets in combina-
tion with different alignment approaches, three mito-
chondrial (mt) and one nuclear (nu) data set (Fig. 1).
Complete mt protein coding sequences of 11 genes were
downloaded for eukaryotes from SwissProt and Gen-
Bank. Six genes (COII, COIIl, ND2, ND3, ND4L, ND6)
show high sequence variability compared to the less vari-
able genes (COI, Cytb, ND1, ND4, NDS). The first mt data
set (mtl) included protein sequences of all chosen mito-
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Table 3: Average percentage of resolved clades per data set
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Data Gb(none) Gb(half) Gb(all) Al Unm
mtl 91.7 91.7 93.8 93.8 83.8
mtll 58.3 56.7 58.3 60 58.3
EST 571 85.7 96.4 85.7 0

125 + 16S 16.6 86.1 88.9 97.2 77.7

Average percentage of resolved clades (selected) inferred from majority rule ML trees, averaged across different alignment methods. Values
are given for all GBLOCKS profiles (Gb(none), Gb(half), Gb(all)), ALISCORE (Al), and Unmasked (Unm).

chondrial genes of 17 taxa. The second mt data set (mtII)
comprised the five less variable genes out of data set mtl
but with 24 taxa, corresponding to Talavera & Castresana
[11]. The third mitochondrial data set (12S + 16S)
included nearly complete 12S + 16S rRNA sequences for
63 arthropod taxa. The nuclear data set (EST) was com-
piled from 51 mainly ribosomal protein coding genes
from Expressed Sequence Tags (ESTs) of 26 arthropod
taxa. These were selected from published (dbEST, NCBI)
and unpublished EST data (Meusemann, v. Reumont,
Burmester, Roeding, unpubl.). The data set comprised
representatives of all major arthropod clades including
water bears (Tardigrada) and velvet worms (Ony-
chophora). A definitive tree of arthropods has not been
established yet, therefore we restricted our comparison
on tree resolution and bootstrap support values for
selected clades. We remark that increased resolution and
support might not reflect a real improvement of phyloge-
netic signal-to-noise ratio, but we consider this compari-
son as a good approximation in which the bootstrap
values are used as approximation of tree-likeness in the
data.

Alignments

All genes were aligned separately, each data set using
MAFFT 6.240 [14], MUSCLE 3.52 [15], CLUSTALX 1.81
[13], and T-COFFEE 5.56 [16] with default parameters.
Since the number of taxa of the rRNA data was too high
for T-COFFEE, PCMA 2.0 [17] was used instead which
aligns more similar sequences with the CLUSTAL algo-
rithm and less similar sequences with the T-COFFEE
algorithm. Each alternative alignment was profiled once
with ALISCORE and with all three possible gap predefin-
itions of GBLOCKS in which either no gaps
(GBLOCKS(none)), all gaps (GBLOCKS(all)), or posi-
tions which have in less than 50% of sequences a gap
(GBLOCKS(half)) are allowed. Thus, five different sets
per alignment method were used in tree reconstructions:
a) unmasked, b) three different GBLOCKS masked, and
¢) ALISCORE masked. This was conducted for all four
data sets (mtl, mtIl, 12S + 16S, EST). Using ALISCORE,
alignments were screened separately with 2,000 ran-

domly drawn pairwise comparisons and a window size w
= 6. Within its scoring function gaps were treated like
ambiguous characters on nucleotide level. On amino acid
level we used the BLOSSUMS62 substitution matrix. Posi-
tions identified by ALISCORE or suggested by
GBLOCKS as randomly similar were removed and single
genes were concatenated for each data set and each
approach. Percentage of remaining positions after mask-
ing was plotted for each alignment and masking approach
(Figure 1), in total for 1,104 single alignments (see addi-
tional file 1).

Split Networks

Split decomposition patterns were analyzed with Split-
sTree 4 [43], version 4.10. We used the Neighbor-Net
algorithm [44] and uncorrected p-distances to generate
Neighbor-Net graphs from concatenated alignments of
each data set before and after exclusion of randomly sim-
ilar sections.

Tree reconstructions

Maximum likelihood (ML) trees were estimated with
RAxML 7.0.0 [45] and the RAxXML PTHREADS version
[46]. We conducted rapid bootstrap analyses and search
for the best ML tree with the GTRMIX model for rRNA
data and the PROTMIX model with the BLOSUM62 sub-
stitution matrix for amino acid data with 100 bootstrap
replicates each. Twenty topologies with bootstrap sup-
port values of all three GBLOCKS masked, ALISCORE
masked, and unmasked alignments were compared for
each single data set. Majority rule was applied for all
GBLOCKS masked, ALISCORE masked, and unmasked
topologies to investigate consistency of selected clades.
Clades below 50% bootstrap support were considered as
unresolved.

Additional material

Additional file 1 Table S1. Detailed analyses results. Detailed results
including lists of the percentage of remained positions after alignment
masking per data set and alignment method. Given are all considered
clades and corresponding bootstrap values (>50%) per data set, alignment
method and (un)masked approach as well as all Neighbor-Net graphs.
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