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Sexual size dimorphism in anurans fails to obey

Rensch’s rule
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Abstract

function of age difference between the sexes.

across the sexes.

Background: Sexual size dimorphism (SSD) is related to ecology, behaviour and life history of organisms. Rensch's
rule states that SSD increases with overall body size in species where males are the larger sex, while decreasing
with body size when females are larger. To test this rule, we analysed literature as well as own data on male and
female body size in anurans (39 species and 17 genera). We also tested the hypothesis that SSD is largely a

Results: Our data set encompassed 36 species with female-biased SSD, and three species with male-biased SSD. All
considered species failed to support Rensch’s rule, also when the analyses were phylogenetically corrected.
However, SSD was significantly correlated with Sexual Age Difference (SAD) across species. We also found a
significant correlation between SSD contrasts and SAD contrasts.

Conclusions: Our study suggests that Rensch’s rule does not accurately describe macroevolutionary patterns of
SSD in anurans. That SAD can explain most of the variation in SSD among species when controlling for
phylogenetic effects suggests that phylogeny is not responsible for the broad relationship between age and size
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Introduction

Sexual size dimorphism (SSD) is related to the ecology,
behaviour and life history of organisms, and widely ob-
served in the animal kingdom [1,2]. In most inverte-
brates and ectothermic vertebrates, females are larger
than males, whereas in endothermic animals males are
generally larger than females [1,2]. Beyond these broad
generalisations, the degree of SSD is however highly
variable within and between taxa. Rensch [3] proposed
that SSD increases with overall body size in species
where males are the larger sex, and decreases with body
size in species where females are the larger sex. This
pattern of variation, known as Rensch’s rule, has been
confirmed in a wide range of taxa including flower mites
[4], water striders [5], dragonflies [6,7], lizards [2,8,9],
snakes [2], turtles [10], hummingbirds [4,11], primates
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[12,13], shorebirds [14], drosophilid flies [15], salmonid
fishes [16], grouse [11], cattle breeds [17], domestic goats
and sheep [18] and bustards [11,19], although a range of
examples for opposing patterns also exist both at the inter-
and intraspecific level [20-25].

Several hypotheses have been proposed to explain the
evolution of SSD. Firstly, theory predicts that the inten-
sity of sexual selection in a given sex is a driver of bo-
dy size evolution [20,25]. Sexual selection is generally
thought to favour larger males, and should therefore re-
sult in male-biased SSD [26]. Female-biased SSD, on the
other hand, can arise in species where females strongly
compete for mates [14]. Secondly, fecundity selection to-
wards higher allocation of resources to individual off-
spring, the production of higher numbers of offspring,
or the ability to reproduce more frequently can also in-
crease the size of females, and has been hypothesized to
be related to the inverse of Rensch’s rule [8,27]. Thirdly,
correlational selection predicts that strong selection on
size in one sex also affects the opposing sex, revealing a
phenotypic coupling for size between the sexes among
related species, as well as among populations within
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species [2]. When sexual and fecundity selection are
unequal or one of them is lacking, then the stronger
force will drive size divergence between populations or
species through the respective sex, while the other sex
will change at a slower pace due to genetic correlations
between sexes. Finally, the life-history hypothesis pre-
dicts that differences in age and growth between males
and females may further contribute to SSD, explaining
allometry of SSD following Rensch’s rule as the proxim-
ate mechanism [15,16].

In most (but not all) cases, allometry in male-biased SSD
follows Rensch’s rule at the interspecific and intraspecific
level [2,13,23,28]. However, the trend is questionable in
species with female-biased SSD [22-24]. In anurans, sexual
size dimorphism is generally female-biased [29]. Although
this can be explained by natural selection for optimal body
size [30], directional selection for larger males [26], and dif-
ferences in age structure between sexes [31,32], no infor-
mation about the consistency of allometry for SSD with
Rensch’s rule is currently available. In this study, we provide
one of the first interspecific tests of Rensch’s rule in an-
urans, using data from 39 species markedly differing in
body size. Our aims were to: (1) examine patterns of SSD
across 39 anurans species; (2) test the consistency of allo-
metric relationships with Rensch’s rule; and (3) test the hy-
pothesis that variation in SSD is a function of sexual age
differences (SAD).

Results

The degree of SSD differed significantly among species and
sexes (species, Fsg 77=64.992, P<0.001; sex, F; ;=
38411, P<0.001; species x sex, F3g 77 =9421, P<0.001).
Thirty-six species were characterised by female-biased SSD,
whereas male-biased SSD was found in 3 species. Variation
in SSD did not follow Rensch’s rule (Figure 1A). Model I
revealed a significant isometric relationship between the
mean size of the sexes across 39 species (i.e. p =1 was not
rejected; Fy 35 = 343.374, R> = 0.903, p = 0.992 + 0.054, 95%
CI=0.938-1.046, P<0.001). Model II revealed a similar
slope (p=1.044 + 0.057, 95% CI =0.987-1.101, P < 0.001).
Phylogenetically corrected analyses also showed that
variation in SSD did not support the existence of Rensch’s
rule ($=0.974 + 0.082, 95% CI=0.892-1.056, P < 0.001;
Figure 1B). RMA regression for the analysis of contrasts
showed a similar relationship ( = 0.958 + 0.076, 95% CI =
0.882-1.034, P <0.001).

Species with female-biased SSD did not follow Rensch’s
rule, as SSD did not decrease with body size (Figure 1C).
Model I revealed a significant relationship between male
and female size (F), 35=484.223, R*=0934, p=0.967 +
0.044, 95% CI =0.923-1.011, P <0.001), similar to what is
assumed under isometry (test of hypothesis: § = 1). Model
IT revealed a similar slope (=0.996 + 0.043, 95% CI=
0.953-1.039, P <0.001). Variation in SSD did not support
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Figure 1 Allometry of SSD in anurans. The linear (Model |)
regression line (3) with 95% confidence interval (weak line) is shown
for SSD. The thick grey line represents isometry, i.e. 3= 1. Each dot
represents one species based on the mean body size of males and
females. A: SSD-size relationship for 39 species, Model |, 3 =0.992;

B: SSD-size relationship for 36 species with female-biased SSD,
Model I, B =0.967; C: SSD-size relationship for 36 species with
female-biased SSD calculated from the phylogenetic tree in Figure 3,
using independent comparisons (Felsenstein [62]; Garland et al. [66)),
Model |, B =0.974).




Liao et al. Frontiers in Zoology 2013, 10:10
http://www.frontiersinzoology.com/content/10/1/10

the existence of Rensch’s rule when controlling for
phylogenetic effects (Model I: =0.935 + 0.051, 95% CI =
0.870-1.000, P<0.001; Model II: =0.948 + 0.043, 95%
CI =0.892-1.002, P<0.001), indicating that the lack of sig-
nificance might be due to low sample size.

No deviation from normal distribution was found for
both SSD and SAD (one-sample Kolgomorov—Smirnov
two-tailed test: SSD, Z =0.781, P=0.657; SAD, Z=0.721,
P=0.677). SSD was significantly correlated with SAD
across species (Pearson correlation analysis: r = 0.520, P <
0.001, n =39; Figure 2A). The set of SSD and SAD con-
trasts obtained from the phylogenetic tree (Figure 3) also
did not deviate significantly from a normal distribution
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Figure 2 The relationship between SSD (Log (female mean size) -
Log (male mean size) ratio) and SAD (Log (female mean age)-Log
(male mean age) difference) for 39 anurans species. Each dot
represents a species. A: a significant correlation between SSD and
SAD (r=10.520, P=0.001); B: a significant correlation between SSD
contrasts and SAD contrasts calculated from the phylogenetic tree in
Figure 3, using the method of independent comparisons (Felsenstein
[62]; Garland et al. [66]) (r=0339, P=0.037).
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(one-sample Kolgomorov—Smirnov two-tailed test on SSD
and SAD contrasts: Z = 0.499, P =0.965 and Z =0.834, P =
0.484, respectively). Residuals showed no heteroscedasticity
(Pearson correlation coefficient between residuals and
predicted SSD values: r=-0.038, P=0.830) and were
normally distributed (one sample Kolgomorov—Smirnov
two-tailed test: Z = 0.588, P =0.879). A correlation analysis
between SSD and SAD contrasts through the origin
(Figure 2B) was significant (r=0.339, P=0.037, n=38),
confirming that SSD contrasts can be largely explained by
SAD contrasts.

Discussion

Rensch’s rule has been widely confirmed in various ani-
mal taxa [2,8,9,17,18,26,27,33]. The majority of studies
found that sexual selection on male size is satisfactory
at explaining Rensch’s rule [8,9,14,26-28,34]. However,
Rensch’s rule for example persists in domestic mammals,
for which sexual selection has become replaced by hu-
man control [17,18]. In a few cases, fecundity selection
has been effective at explaining the inverse of Rensch’s
rule [2,24,35]. Our study on anurans showed that SSD-
size relationships in anurans were inconsistent with
Rensch’s rule and the inverse of it, because species with
female-biased SSD displayed isometric relationships with
mean body size.

Rensch’s rule is nearly universal among taxa with male-
biased SSD. In taxa with female-biased SSD, either Rensch’s
rule or the inverse of it are regularly demonstrated
[2,23,36]. Patterns failing to support Rensch’s rule or its in-
verse have been found exclusively in taxa with female-
biased SSD [2,21,22]. The results of our inter-specific study
conform to this pattern. To explain the lack of association
between SSD and size, we suggest that fecundity selection
on females favouring large size (which is supposed to be
strong in ectotherms) balances out sexual selection in
favour of large male size.

Variation in SSD is affected by factors other than
sexual, correlational and fecundity selection, including
life-history traits as well as energetic and ecological con-
straints. Previous studies showed that SSD in anurans
can be explained by age differences between males and
females [16,32,37-49]. Our results demonstrate a correl-
ation between SSD and SAD across 39 species, identify-
ing SAD as a main factor contributing to the extent of
SSD across species. Similarly, developmental time differ-
ences between the sexes previously explained the extent
of SSD in arthropods [2,15] and fish [16].

SSD results from sexual divergence in ontogenetic trajec-
tories [50-52], which may reflect a trade-off in energy allo-
cation between somatic growth, survival and reproduction
[53]. Based on the functional relationship of adult body
size = f (initial size + growth rate x age) [44], the adult size
of a given sex depends on growth duration in combination
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Figure 3 The phylogenetic tree of the anuran used in the comparative analysis following Frost et al. [65].
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with growth rate. Like most ectothermic animals with
indeterminate growth, the age at maturity is a critical life-
history trait to determine the ontogenetic trajectory in
anurans. Males usually mature earlier than females [54],
resulting in a female-biased SSD because a later maturation
leads to more energy being devoted to somatic growth to
achieve large body size [44,54]. Growth rates also contrib-
ute to body size and thus to SSD. SSD in anurans is posi-
tively correlated with sex difference in age at maturity, and
negatively correlated with the corresponding difference in
annual growth rate, with the relative contributions of age
and growth to SSD varying among species [52]. This onto-
genetic pattern supports our result that SSD did not obey
Rensch’s rule. Energy is the ultimate basis underlying the
growth divergence between sexes when selection favours
males and females to reach differential optimal sizes. For
anurans with female-biased SSD, strong fecundity selection
enhances female investment in offspring production, con-
straining their potential for growth [52]. Males could be
less affected from such constraints because, compared to
females, reproduction is significantly less costly for them
[52,53].

Ecological factors usually operate through ontogeny in
sex-specific ways to affect the body size of individuals and
species [55-57]. Diet and temperature can induce substan-
tial phenotypic plasticity in body size of ectothermic
animals. In general, animals reared on lower quality diets
mature smaller [58,59], and animals reared at lower devel-
opmental temperatures mature larger [60]. Variation in

SSD can arise when males and females respond differently
to diet or temperature (differential- plasticity hypothesis)
[61]. For anuran species with an allometric relationship
between overall size and trophic morphology and/or differ-
ential temperature preferences between sexes, SSD can be
associated with intersexual niche partitioning [30,32].

Treating species as independent units yielded in re-
sults which are qualitatively different from those using
phylogenetically independent contrasts. SSD contrasts
can be explained by SAD contrasts because the relation-
ships between female and male size and age may not be
influenced by phylogenetic relatedness. Similarly, vari-
ation in SSD in 17 anurans has previously been explained
through SAD based on phylogenetic information incorpor-
ating independent contrasts [32].

Like in previous studies [25,35], methodological as-
pects give reason to view our results with caution. Mean
age and size may vary considerably between years in the
same population. Skeletochronology might also be prob-
lematic, because endosteal resorption and false lines can
affect age estimation. However, any bias in estimating
individual age should equally affect males and females.
Results of correlations across species should also be re-
garded cautiously because species’ data points cannot be
assumed to be statistically independent [61,62]. However,
Harvey and Pagel [63] pointed out that comparisons across
species still lead to meaningful analyses unless they depend
on a cluster of points that share an immediate common
ancestor.
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Methods

We obtained sex-specific demographic and morpholo-
gical data on mean age and size across 39 species and 17
genera from the literature and our own data based on
species from the Sichuan Province, China (Additional
file 1: Table S1). Individuals were collected by hand at
night using a flashlight. Sex was determined based on
secondary sexual characteristics (vocal sacs in adult
males, and eggs readily visible through the abdominal
skin in adult females). We measured body size (snout-
vent length, SVL) of each individual using a calliper,
holding each individual in its normal posture. We stored
the second phalange of the hind limb in 10% neutrally
buffered formalin for skeletochronology. Some individ-
uals were subsequently released at the point of capture,
whereas other individuals were brought to the lab for
studying testis size and sperm traits. Individual age was
estimated by skeletochronology as follows. We removed
the skin and muscle tissues of each digit, and decalcified
the remaining bones in 5% nitric acid for 48 h before
washing them in running tap water for 24 h. We then
stained the decalcified digits for 150 min in Haris’s haema-
toxylin and rinsed them with distilled water. Subsequently,
we dehydrated the stained bones through successive stages
of increased ethanol concentrations (1 h in each concentra-
tion). We cross-sectioned the diaphyseal region of each
phalanx at a thickness of 8 pm and selected the smallest
medullar cavity of the sections to examine LAGs (Lines of
Arrested Growth) with a LEITZ dialux 40 microscope,
photographing the sections using a Motic BA300 digital
camera mounted on a Moticam2006 light microscope at x
400 magnifications. Endosteal resorption of long bones
starts from the inner surface of the bone, enlarging the
marrow cavities and eroding a portion of LAGs after hiber-
nation [40]. We confirmed the first LAG based on the
Kastschenko Line (KL; the interface between the endosteal
and periosteal zones) [41,42]. False and double lines were
rarely observed and not considered as true LAGs in all
samples. Following Monnet and Cherry [32], we calculated
the mean values for the population as algebraic means for
each year, weighted by sample size. Mean values for species
were obtained as algebraic means of population values re-
gardless of the sample size in cases where data were avail-
able for different populations. We calculated SAD as the
difference between log-transformed female and male mean
ages because age is strongly heteroscedastic. Following
Lovich and Gibbons [64], SSD was calculated as (log
(female mean size)/ log (male mean age)) - 1, arbitrarily set
positive when females are larger and negative when males
are larger.

For our comparative analysis, we used an established
phylogeny [65] (Figure 3). We calculated mean size and
age in both sexes for ancestral nodes as the algebraic
mean of the two closest lower nodes [61]. Details of the
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general procedure for estimating the character values in
the ancestors are presented in Felsenstein [62]. With 39
species at the tips of this reconstructed tree, 38 (39-1)
SSD and SAD pairs of contrasts could be computed for
pairs of nodes sharing an immediate common ancestor,
and then re-scaled and analysed as suggested by Garland
et al. [66]. Correct standardization and homogeneity of
variance of standardized contrasts were confirmed using
the method proposed by Purvis and Rambaut [67].

We applied a General Linear Model (GLM) treating body
size as a dependent variable and species and sex as fixed
factors to test for sex differences in mean body length. We
tested Rensch’s rule in lineages with mixed SSD and
female-biased SSD. We used the log-scaled size of one sex
regressing against the log-scaled size of the other sex to test
for allometry vs. isometry. When performing a simple re-
gression between log;o—transformed female and male size,
measurement error will be approximately equal in both
sexes. The Model I regression (Ordinary Least Squares,
OLS) would be statistically incorrect as neither male nor
female size measurements are fixed nor measured with
error [2]. We therefore regarded a Model II regression (e.g.
Reduced Major Axis, RMA) between log;, (female size)
and log;, (male size) as more appropriate. To test whether
the size relationship between sexes departed from isometry,
we calculated the 95% confidence interval (CI) of the slope
of the regression between their respective size contrasts
and assessed whether a slope of unity fell within its bounds.
All statistical tests were two-tailed, and performed on the
log-transformed values of the original data.

Additional file

Additional file 1: Table S1. Species, location, mean size and age within
each sex and references of published papers and unpublished data for
the 39 anurans species considered in this study. * indicate mean + SE.
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