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Abstract

The goal of this paper is to analyze the stochastic dynamics of childhood infectious disease time
series. We present an univariate time series analysis of pertussis, mumps, measles and rubella based
on Box-Jenkins or AutoRegressive Integrated Moving Average (ARIMA) modeling. The method,
which enables the dependency structure embedded in time series data to be modeled, has potential
research applications in studies of infectious disease dynamics. Canadian chronological series of
pertussis, mumps, measles and rubella, before and after mass vaccination, are analyzed to
characterize the statistical structure of these diseases. Despite the fact that these infectious
diseases are biologically different, it is found that they are all represented by simple models with
the same basic statistical structure. Aside from seasonal effects, the number of new cases is given
by the incidence in the previous period and by periodically recurrent random factors. It is also
shown that mass vaccination does not change this stochastic dependency. We conclude that the
Box-Jenkins methodology does identify the collective pattern of the dynamics, but not the specifics

of the diseases at the biological individual level.

Background

Childhood infectious diseases that induce lasting immu-
nity, such as measles, mumps and rubella are particularly
well documented dynamically. Theoreticians have
focused their attention on some of these infections
because of the comparative simplicity of the processes
that influence their transmission dynamics, the existence
of long runs of data over many decades and also as a con-
sequence of the remarkable periodicity of their incidences

[1].

Modern theoretical epidemiology has been significantly
influenced by the application of mathematics to the study
of infectious diseases and by the development of the the-

oretical framework of the threshold theorem, according to
which the introduction of a few infectious individuals
into a community of susceptibles will not give rise to an
epidemic outbreak unless the number of susceptibles is
above a critical value [2]. An example of the expansion of
this theorem was the development of the concept of a
basic reproductive number (which defines the average
number of secondary cases of infection generated by one
primary case in a susceptible population). The above-
mentioned assumptions enabled the development of sys-
tems of non-linear equations whose solutions describe
the transmission dynamics in a population. The applica-
tion of these explanatory models have provided insight
into the transmission dynamics, such as the discovery of a
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critical community size for measles [3] or the critical level
of mass vaccination required to block transmission within
a defined community [4]. Essential insights into the per-
sistence and stability of transmitted viral and bacterial
infections that induce lasting immunity within large
human communities was also gained by simple determin-
istic models (simulation) [5]. These mechanistic models,
such as compartmental susceptible-exposed-immune-
recovered (SEIR) models, predict the spread of infectious
diseases, exhibit damped oscillations and mirror well the
observed trends, such as for measles, which generally
exhibits biennal cycles (with a seasonal pattern) before
mass vaccination. The cycles are generated by the exhaus-
tion of the supply of susceptibles through infection and its
replenishment through new births, and may be perpetu-
ated by seasonal changes in the rate of transmission,
resulting from the aggregation and disaggregation of chil-
dren for school terms and holiday periods. Cycles are
more pronounced in infections with short infectious and
latent periods, such as measles.

These simple mechanistic models (especially the season-
ally-forced SEIR model) generate a rich array of dynamical
behaviours, including chaotic patterns [6]. However,
some authors have shown that the incorporation of more
biological realism into the model (i.e., age structure), of
realism in the seasonal forcing function, or of other spa-
tial factors, can suppress the complex dynamic [7-10].
Adding biological complexity and heterogeneity generates
a buffering effect that tends to reduce or eliminate the cha-
otic behaviour. The variety of dynamics seen in real pop-
ulations with different demographic and geographic
patterns suggests caution in the construction of models of
complex systems. Thus, it is impossible to mimic the
details of an epidemic on more than a qualitative level,
even if these "explanatory" models are very useful for
understanding the dynamics.

By contrast to simulation, empirical data on infectious
diseases can be studied with a stochastic approach that
models the dependent structure embedded in the time
series. Box-Jenkins modeling, also called the Autoregres-
sive Integrated Moving Average (ARIMA) method, seems
promising for complementing infectious disease theories
by describing the component structure ("non explana-
tory" analysis) of statistical time series. This method,
widely used in the biological sciences, has rarely been
applied to infectious disease modeling, despite the fact
that it seems promising for many common infections that
show seasonal behaviour and random changes or trends
(non-stationary time series). Helfenstein [11] was the first
to show that mumps and chickenpox time series from
New York City (1928 to 1960) both have the same simple
statistical structure. He concluded from his endeavour
that apart from their clinical and epidemiological proper-
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ties, it could be possible to classify the infectious diseases
by the structure of their corresponding time series and
that this might provide a better understanding of the dis-
ease. For example, he suggested that if the statistical struc-
ture of the time series for infectious diseases is different
from that of non-infectious diseases, then this might pro-
vide insight into diseases such as multiple sclerosis or cer-
tain forms of leukemia for which an infectious agent is
suspected but not established.

ARIMA models may also be relevant for the investigation
of the relationship between different time series (for
example, between the residuals of two series of diseases or
between the residuals of a disease and those of an effector
variable such as weather), to evaluate the impact of inter-
vention (for example, the introduction of a screening test
in the course of disease surveillance in a population or to
measure the impact of an environmental catastrophe on a
disease pattern) or to make forecasts of disease data. A few
authors have used Box-Jenkins modeling to forecast the
mortality incidence of pneumonia and influenza in the
United States [12,13] or infectious diseases in Canada
[14]. These authors were not really concerned with the
possibility of evaluating the statistical structure of their
disease time series.

In line with Helfenstein's (1986) contention [11], this
paper will attempt to model time series of four childhood
infectious diseases (pertussis, mumps, measles and
rubella) using Box-Jenkins statistical methodology, in
order to compare their specific statistical structure before
and after mass vaccination in Canada. More specifically,
we expect to correlate specific models either with vaccina-
tion phase, disease dynamics, or data quality. In other
words, we attempt to characterize the basic statistical
dynamics of these infectious diseases to obtain a better
understanding of the different disease patterns, and
explore the possibility of classifying the infections by their
corresponding time series structure.

Data

Data were obtained from Health Canada (Center for
Infectious Diseases Prevention Control, Division of Dis-
ease Surveillance). Time series of pertussis, mumps, mea-
sles and rubella in Canada were available on a four-
weekly basis (13 observations per year) before 1990 and
on a monthly basis (12 observations per year) from 1991
to 2002, except for some periods where measles and
rubella (1959-1968) and mumps (1959-1986) were not
declared. The four-weekly and monthly time series were
analyzed from the 1950s. In Canada, mass vaccination
began in 1943 for pertussis, in 1963 for measles, and in
1969 for mumps and rubella (this could have varied for
some provinces and territories). The study covered the
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pre- and post-vaccination era (except for pertussis where
only the post-vaccination period is analyzed).

Notifications of infectious diseases on a four-weekly basis
can be found in the Annual Report of Notifiable Diseases
[15,16]. For the pre-vaccination era, four-weekly notifica-
tion data from 1953 to 1959 for measles, mumps and
rubella were analyzed. In the post-vaccination period,
four-weekly notification data from 1970 to 1976 for mea-
sles and rubella were used (mumps was not declared from
1959 to 1986; it is therefore impossible to analyze data in
the early post-vaccination era). In addition, four-weekly
notifications of pertussis from 1953 to 1962 and from
1970 to 1976 were studied. Finally, to cover the current
period, monthly notifications of measles, rubella and per-
tussis were used from 1991 to 2002 and mumps from
1991 to 1998 [17]. The crude time series for the three time
periods are presented in figures 1 to 3.

Some four-weekly time series from 1970 to 1976 had
unclassified annual data (i.e., without specifying in which
of the four-weekly period of the year the cases appeared).
For example, the pertussis time series had three unclassi-
fied observations in 1973. These data were proportionally
distributed with respect to the percentage of cases that
appeared in each four-weekly period. Since only a few
cases were unclassified (<1% each year), we assumed that
there was no effect on the dynamics. No other series ana-
lyzed (1950s and 1990s) had unclassified data. Further,
monthly observations (1991-2002 data) do not have
constant time intervals (they vary between 28 and 31
days). To control for this, we transformed the reported
time series on a basis of 28 days. For example, the total
number of cases that occurred in January was divided by
31 and multiplied by 28. This procedure allowed the cases
to be equally spaced over a period of 28 days and allowed
more comparable time series to be obtained. For time
series that contained null values, we added the constant of
one to the data. Monthly time series for measles (1991-
2002) and rubella (1991-2002) were adjusted by adding
a constant of one to all the data. Only 12 months (out of
144) for measles and six (out of 138) for rubella con-
tained null values. This procedure did not change the tem-
poral structure of the series, since one is added to all the
data, and allowed us to use the logarithmic transforma-
tion.

Certain limitations, inherent in all notification data [18],
must be considered. There are strong indications that not
all cases come to the attention of physicians, which leads
to underreporting of cases; further, the reporting of diag-
nosed cases is also considered incomplete [19-26].
Despite these shortcomings, the reporting system still
reflects the dynamics (i.e., relative changes) quite accu-
rately [15,16,19,27,28]. This type of under-reporting does
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not create a problem since our objective is to analyze the
dynamics. Furthermore, the notification system in Can-
ada has changed since 1950 (variation in the ways cases
are reported, variation in case definition, consideration of
laboratory confirmation, completeness of reporting) [15-
17,19,25,26,29,30]. Also, the number of persons at risk
may vary in the course of time. Had these phenomena
been of some extent, they would be expected to cause
problems by entailing inappropriate variations in the
course of time. As stated above, the time series have been
broken down into short sub-periods. This limited the
extent of inappropriate variations in the data.

The choice of the series was conditioned by the changes in
the surveillance system. The choice of the series was also
limited by the fact that four-weekly time series were some-
times broken by a one-week notification period. For
example, if the end-of-the-year notification period began
on November 26 and ended on December 23 (28 days),
the data between December 24 and 30 (7 days) were noti-
fied on a one-week basis in order to include the cases in
the corresponding year. This procedure allowing adjust-
ment of the data nevertheless caused problems by entail-
ing non-constant time intervals in the series. The series
have been selected with respect to these adjustments.
Firstly, data before 1950 were excluded because some
provinces and territories did not report the infectious dis-
eases. The first time series thus cover the period from 1953
to 1959. In 1959, measles, rubella and mumps were
excluded from the list of notifiable diseases in Canada.
Pertussis was analyzed from 1953 to 1962. The time series
was then truncated at the end of 1961, since the data were
notified on a one-week period (to adjust for the data in
the corresponding year). Measles and rubella notification
were re-introduced in 1969. The second time series were
selected from 1970 to 1976. In 1976, the series were trun-
cated because the data were notified on a one-week rather
than a four-week basis. It was not possible to analyze
mumps data for this second period, as mumps was not
notified between 1959 and 1986. The last series covered
the period from 1991 to 2002. In 1991, the surveillance
system was modified to introduce disease-specific case
definitions by laboratory tests. The data were then
declared on a month rather than four-week period.

Methods

Box-Jenkins modeling requires a series of observations,
obtained at equal time intervals on the same population.
The following introduction is necessarily brief, but a more
extensive introduction to this stochastic approach is avail-
able in many textbooks [31-35].

Denote the values of a series at equally spaced time ¢, t-1,
t-2,..byZ, Z, ,, Z,,... The Box-Jenkins method is based

Page 3 of 15

(page number not for citation purposes)



Emerging Themes in Epidemiology 2006, 3:9

10000

000 4

0
1953

1954 1956 1955 1957

Measles

3000

2000 -

1000 A

W Y WA

1953 1954 1955 1956 1957 1958 1959 1960 1961
Pertussis

Figure |

http://www.ete-online.com/content/3/1/9

6000

5000 4

4000

3000 4

2000 A

1000 -

0
1953

1954 1985 1956 1957 1958

Mumps

12000

10000 -
8000 + ﬂ
6000

4000 +

2000 4

NAUSNY

1953 1954 1955

v

1957

19456
Rubella

1958

4-weekly notifications of measles, mumps, rubella (1953-1959) and pertussis (1953—1962) in Canada.

on the class of AutoRegressive Moving Average models
(ARMA (p, q)) defined by the following equation:

Zy= Ziy+ .+ 2y +a-0a.,-...-6a,,+U
where the g,'s are independent and identically distributed

random shocks with mean 0 and variance 0“2 s s By
and 6, ..., g, respectively denote the autoregressive and
moving average coefficients and U is the model constant,
which is related to the mean of the series. In such a model,
the current time series observation Z, is explained by a lin-
2y

» a linear combination of the ¢ previous random shocks

ear combination of the p previous observations Z, , ...

dy1---14.4and the constant term U. The error term is repre-
sented by a,. If ¢ = 0 we retrieve the class of pure autore-

gressive models of order p (AR(p)) and with p = 0 the class
of pure moving average models of order ¢ (MA(g)). Using
the backward shift operator B such that BZ, = Z,,, an
ARMA (p, q9) model can be represented in the more con-
cise form:

#B)Z,= U + &(B)a,

where ¢(B) = 1-¢B- ... -¢,B’ and H(B) =1- HlB—. ... -G,Bd
respectively represent the autoregressive and moving aver-
age operators. For stationarity, it is required that all the
roots of the autoregressive operator lie outside the unit cir-
cle.

For adequate ARMA modeling, the time series must be sta-
tionary with respect to mean and variance. A simple and
efficient way to achieve stationarity is to consider the dif-
ference between consecutive observations. Let V =1 - B
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denote the regular difference operator defined by VZ, = Z,
-Z,,.If aseries has to be differenced to stabilize the mean,
then the model corresponding to the original series is
called AutoRegressive Integrated Moving Average
(ARIMA). An ARIMA(p, d, q) model is defined by the
equation:

#(B)V4Z,= U + G(B)a,.

In such a model, the d-th difference of the original series,
Vidz, is stationary and is represented by a stationary
ARMA(p, q) model.

Most of the monthly, four-weekly or quarterly time series
have a strong seasonal component (cyclical or periodic
fluctuations that recur at the same phase of the cycle
period). Indeed, some series may display seasonal non-
stationarity that requires seasonal differencing. For a time

series of period s, (s = 12 for monthly data and s = 13 for
four-weekly data), stationarity is often achieved by work-
ing with the seasonally differenced series Z, - Z, .. The sea-
sonal difference operator of period s is usually denoted by
V,=1 - Bs and a seasonal ARIMA model (SARIMA) is
defined by an equation of the form:

o(B\VVPZ, =U+6(B)a,.

Usually, one seasonal difference is sufficient and D = 1
Often, stationarity is obtained by seasonal differencing.
However, in some cases a regular difference may also be
necessary if a trend remains in the data. In SARIMA mod-
els, the autoregressive and moving average operators are
usually high order polynomials that involve terms in Bs.
In multiplicative models, these polynomials can be writ-
ten as the product of a polynomial in B and of another
one in Bs. The polynomials in Bs are called the seasonal
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Monthly notifications of measles, mumps, rubella and pertussis (1991-2002) in Canada.

components (SAR or SMA) of the model. The equations
that define these models are given in most time series
books, namely in [31,33,34].

Any successful modeling transforms time series into white
noise (random residual series); a time series that does not
require modeling (no trend and no dependent structure
embedded) is white noise, i.e., a series of random shocks.
One of the first steps in ARIMA modeling consists of sta-
bilizing the variance of the series (stabilization of the
mean is done by differencing). Various transformations
like the square root or the logarithmic transformations
can be appropriate. A practical tool for the choice of the
appropriate transformation, based on the [36] power
transformation, is the mean-range plot (the range of the
data is plotted against the mean for each seasonal period)
[11,37]. If the range is independent of the mean, no trans-
formation is required. If the plot displays random scatter

about a straight line, a logarithmic transformation is sug-
gested. Other transformations can be used if a satisfactory
model is not obtained by usual transformations.

ARIMA modeling is best done while following a protocol.
The main steps required by Box-Jenkins modeling are
model identification, parameter estimation and diagno-
sis. Identification is the key of model building. It allows
specification of the model, i.e., identification of the
number of regular and seasonal differencings and the
order of the autoregressive and moving average operators.

The dependency structure of a stationary time series may
be ascertained by the autocorrelation function (ACF). This
function measures the correlation between Z,and Z,,,, or,
in other words, it is the correlation between a series and
the same series lagged one, two, three... units. To help
identify the process order, we also use the partial autocor-
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relation function (PACF). The PACF is the same as ACF
except that the effect of the intervening observation(s) is
removed. ACF and PACF patterns are generally recognized
as belonging to certain types of ARIMA or SARIMA mod-
els. Minimizing either the residual variance, Akaike's
information criterion (AIC) [38] or Schwarz's Bayesian
Criterion (SBC) [39] helps identify the appropriate
model. Once the model is specified, parameters of the
model can be estimated. A rather straightforward iterative
process is used. Diagnosis of the model consists of validat-
ing the model by examining its residuals. Residuals of a
tentative model must be equivalent to white noise. Only
random variations should be left in the residuals once
main trends, dependencies, and cyclic variations have
been removed from the series. ACF of the residuals and
Ljung-Box statistics (global test for hypothesis of no corre-
lation across a specified number of time lags) [40] are use-
ful for testing the randomness of the residuals. In the case
where ACF shows significant autocorrelations in the resid-
uals, the protocol implies that one returns to the identifi-
cation step of the protocol to explore the possibility of
having missed an important component of the model or
because of an unstable variance. If different models repre-
sent the data equally well, one chooses the simplest. An
essential concept consists in finding a representation of
the series that includes as few parameters as possible (this
is the parsimony principle).

SAS version 9.1 was used to perform the analyses.

Results

Mean-range plots were prepared for each infection time
series. For example, from the mean-range plot for the per-
tussis time series (1953-1962, figure 4), it is seen that the
square root transformation does not suffice to make the
range independent from the mean, whereas the logarith-
mic transformation appears appropriate. Mean-range
plots suggested the logarithmic transformation for every
infection time series except rubella (1953-1959), for
which a one over the square root transformation would
perhaps be more appropriate (data not presented). Since
the analyzed time series are short, it was not always clear
which transformation was best; in this case we preferred
to keep the same comparative base and to apply the loga-
rithmic transformation for every time series, including the
rubella case (1953-1959).

The following is a complete description of the analysis of
the pertussis time series (1953-1962). The ACF of the log-
arithmically-transformed series (figure 5a) exhibits perio-
dicity of length 13. This was expected since this childhood
disease shows a seasonal cycle. Such an ACF pattern
requires seasonal differencing (V,51n Z,=1n Z,-In Z ;)
to induce seasonal stationarity. The periodicity disappears
after seasonal differencing. The ACF and the PACF of V,
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In Z,in figures 5b and 5c allow one to identify a regular AR
and a seasonal MA component. Indeed, the decaying ACF
and the single peak at lag 1 in the PACF suggest an AR
component of order 1. Also, the ACF and PACF give indi-
cations that a MA component with only a term of order 13
is appropriate since a sole peak at lag 13 is detected. Diag-
nostic checking shows that the series of residuals behaves
as white noise. The residual ACF (figure 5d) exhibits no
specific pattern and no marked peaks. This is confirmed
by the Box-Ljung statistics (statistics Q), which gives lags
1, 13 and 26 P-values of 0.366, 0.643, and 0.579 respec-
tively. It is therefore concluded that the error term in the
estimated model is white noise and that the estimated
SARIMA model fits the data best.

The following model has completely characterized the
pertussis (1953-1962) time series:

(1-¢B)V 5 1In Z,= U + (1-OB13)q,

with parameter estimates (and standard errors) and resid-
ual variance:

9 ~0.65(0.07), © = 0.84 (0.17), U =-0.08 (0.02),
=0.216

The steps described for pertussis (1953-1962) analysis are
not repeated here for the other time series since they lead
to approximately the same type of model. A summary of
the results is presented in table 1. For each time series, we
provide N, the number of observations, the estimated

parameters, the residual standard deviation (9 ), the

standard deviation of the transformed and differenced

observed time series (9 ), the coefficient of determina-

tion (R2=1 - o 2./ o 2 ). For each studied series, diagnos-
tic checks based on the residuals failed to reveal any
obvious inadequacy. The residuals of each series exhibit
no specific pattern and no marked peaks. Furthermore,
the Ljung-Box test does not reject the estimated model at
the 5% significance level. Although the incidence of these
four diseases has considerably decreased after the mass
vaccination program (see fig. 1), the models remained
similar. Comparison of the R2 values indicates that except
for mumps (1991-1998), the models explain between
68% and 90% of the variance of the differenced series.
This is quite respectable in a time series context. All series
exhibit an AR component of order 1 and a MA component
of order 12 or 13. The rubella time series (1953-1959)
and the measles time series (1970-1976) do not follow
this model consistently, however. The major epidemic of
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rubella in 1956 (figure 1) as well as the one for measles in
1970 (figure 2) introduce significant variance in the time
series and make it difficult to model. The best model that
has characterized these series is:

(1-¢,B-¢,B-¢sB) V15In Z,= U + (1-0,,B12-0,5B13) a,.

It includes an AR term of order 2 for both series as well as
an AR term of order 6 for measles. With ¢, and ¢ = 0, this
more complex model amounts to the one obtained for the
other series.

Discussion

The results show that time series of pertussis, mumps,
measles and rubella have about the same stochastic
dependence in their consecutive data. Despite the fact that
these childhood infectious diseases are biologically differ-
ent, generally the number of new cases in one period is
given by the number of cases in the previous period and
by periodically recurrent random shocks. In order to ease
the discussion, AR-h (MA-h) denotes an AR parameter of
order h (MA parameter of order h). An AR-1 term assumes
that each observation is directly dependent (autocorre-
lated) on the past observation (incidence in April is, for
example, dependent on incidence in March). Such a com-
ponent shows that the dynamics of infectious diseases are
not only related by random or exogenous factors, but also
by factors that keep endogenous memory of the past. Also,
MA-12 and/or MA-13 terms were usually found. The way
that data are notified can explain the presence of the order
of 12, 13 or both for the seasonal MA parameter. In effect,
since four-week data in a specific year do not necessary
refer to the same period in the next year, it could introduce
small variations in the time series and harbour a small dif-
ference in the order of the seasonal MA component. A
MA-12 or MA-13 term means that each value is dependent
upon the current and past random shocks (random fac-
tors). Dependence on the previous-year random shock
would mean that random factors have a carry-over effect
on current-year occurrence of infectious diseases. Periodi-
cally recurrent random factors act in the same way over
incidence variations. Temperature would be an example
of a random factor that has such effect on infectious dis-
eases.

Box-Jenkins modeling is based on the mathematical prop-
erties of the time series and not on the transmission
dynamics of infectious diseases as alluded to previously.
Description of the dependent structure of the time series
does not necessarily enable explaination of its pattern. It is
nevertheless possible that some factors account for the
emergence of theses processes. In other words, the poten-
tial for an epidemic lies not only with the mean biological
parameters of a disease, such as transmission risk or the
duration of the infectivity or latent period, but just as well

http://www.ete-online.com/content/3/1/9

with the way society is organized, how often we travel, the
size of our family, division of the school year, density of
the population, etc. In the case of measles, for example, it
is well known that the transmission potential is higher in
autumn because of school entry [5]. Seasonal patterns of
births are also well documented [41-44]. Moreover, exist-
ence of different viral strains magnifies the problem of
elucidating the complex dynamics of infectious diseases.
Future research, particularly in molecular epidemiology,
could help understand these dependencies.

Our results suggest that childhood infections share some
basic factors, and that mass vaccination does not seem to
have changed the embedded stochastic dependency. In
Canada, the pertussis vaccine was introduced in 1943, the
measles vaccine in 1963, and the mumps and rubella vac-
cines in 1969. Unfortunately, national estimates of child-
hood vaccination coverage were not collected in a
standardized manner or on a regular basis prior to 1994.
In 1994 and 1998, annual surveys were conducted by the
Division of Immunization, LCDC, to obtain population-
based estimates of vaccination coverage of 2-year-olds in
Canada [45]. Results of the 1998 survey show stable cov-
erage levels compared to the previous 1994 surveys. The
coverage levels for one dose of measles (96.0%), mumps
(95.4%) and rubella (95.3%) vaccines are the highest for
any of the routinely recommended vaccines and the clos-
est to national targets for 97% coverage by the second
birthday. Coverage levels for pertussis in the 1994 and
1998 surveys approximate 80% by the age of two years.
Notwithstanding the large proportion of susceptibles vac-
cinated, vaccine failure can occur, so that a proportion
remains susceptible. Higher immunity is reached for viral
infection (measles, rubella, mumps). Thus, measles vac-
cine efficacy varies between 85% and 95% with a single
dose of the vaccine given at 12 or 15 months and may
reach 100% with a second dose [46-49]. A single dose of
the mumps and rubella vaccines produces an antibody
response in over 95% and 97% of susceptible individuals,
respectively [48,49]. For pertussis (a bacterial infection),
immunity might be lower. Efficacy of the pertussis vac-
cines was estimated to be no more than 85% and will not
induce lasting immunity [48,50-52]. We therefore con-
clude that vaccination coverage and vaccine efficacy are
relatively high for measles, rubella and mumps, but could
be lower for pertussis.

Vaccination is the crucial public health intervention that
limits epidemics by reducing the net case reproductive
number (R) (number of transmissions/number of
infected sources). If R is maintained below one, then the
infection will be eliminated from the population. Among
other interventions that have a bearing upon epidemics
(to lower R) are isolation of infected cases from suscepti-
bles during the infectious period, or administering antibi-
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Table I: Estimates of parameters
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a) Pertussis

Period N AR (9,)  AR(d) AR (¢ SMA (©,,) SMA (0,5) Constant (U) o] o R?
1953-1962! 17 0.65* - - 0.84* -0.08* 0378 0216 068
1970-1976! 78 0.89* - - 0.35 0.65* 0.08 0693 029 082
1991-20022 132 0.94* - - 0.58* - -0.05 0569 0213 086
b) Mumps

Period N  AR(9) AR(p) AR(d)  SMA(9,) SMA (®,3) Constant (U) 6 G R2

w a
1953-1959! 78 0.82* - - - -0.17 0335  0.195 0.89
1991-19982 84 0.47* - - 0.54* -0.08 0406 0365 020
c) Measles

Period N AR (9,)  AR(d) AR (¢ SMA (©,,) SMA (0,5) Constant (U) o) o] R2
1953-1959! 78 0.93* - - 0.31% 0.69 0.02 0561  0.199 087
1970-1976!-3 78 0.63* 0.48* -0.21% - -0.19 .01 0314 090
1991-20022 132 0.78% - - 0.90% - -0.42% 1.676 0834 0,75
d) Rubella

Period N  AR(9) AR() AR(d)  SMA(9,) SMA (©,5) Constant (U) 1] 1] R2
1953-1959!-3 78 1.27% -0.38% - - -0.05 1.000 0358 087
1970-1976! 78 0,94* - - - 0,82* -0,08 0816 0265  0.89
1991-20022 126 0,85* - 0.90* -0.10 -0,34* 1.664 0711 082
*p < 0,05.

Ifour-weekly notifications.
2Monthly notifications.

3The rubella (1953-1959) and the measles (1970-1976) time series do not follow the SARIMA model (1,0,0)(0,1,1),, ., |3 consistently. See text for

details.

otics, which can reduce the infectious period of some
diseases. Nevertheless, our analyses show that changes in
these parameters do not affect the general statistical pat-
tern of the epidemic.

Acknowledging the similar statistical structure of all our
series remains a crude step, since the infection series differ
in the magnitude of their AR and seasonal MA coeffi-
cients. However, interpretation of these coefficients must
be done by keeping in mind that many biases in the noti-
fication data may affect the results [18,26]. Pertussis in the
1950s led to a lower AR-1 parameter (0.65) than in the
1970s and 1990s (around 0.90). That means that both
series after 1970 are closer to the limit of non-stationarity
and more dependent on preceding incidence. Comparing
the seasonally differenced (V,51n Z,) series of pertussis for
the three periods (figure 6), one sees that pertussis, in the
1970s and 1990s, shows more pronounced slow fluctua-

tions than in the 1950s. Moreover, a greater impact of
periodically-recurrent random factors seems to explain
the dynamics of pertussis in the 1950s and 1970s. The sea-
sonal MA parameter changes from 0.84 in the 1950s to
0.57 in the 1990s. It seems that variability in the 1950s is
more random or subject to a few more random events.
Finally, the deterministic linear trend in the 1950s, which
is shown by the constant (p < 0.05) of the model, could
be explained by mass immunization (which started in
1943 for pertussis).

Results for the mumps series should be interpreted with
caution. For example, in some provinces, such as Québec,
most of the recorded cases (>90%) are clinically-diag-
nosed, which can cause problems in terms of disease spe-
cificity [53]. Given the current high vaccination coverage
and the low incidence of mumps, the positive predictive
value of a diagnosis based solely on the presence of paro-
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titis is probably low. Therefore, the reported number of
clinically-diagnosed cases probably over-estimates true
mumps occurrence [54]. The low positive predictive value
is due to the low prevalence of mumps in an immunized
population and to the fact that other viruses, including
enteroviruses and influenza viruses, may also cause paro-
titis. Therefore, any overestimation of the number of
mumps cases on the basis of the surveillance definition
may have created problems for modeling, specifically for
the 1990s. The AR-1 parameter for mumps was expected
to be higher in the 1950s (0.82) and the 1990s (0.47). The
New York mumps time series (from 1928 to 1960) exhib-
its an AR-1 of 0.93 and a MA-12 of 0.87 [11].

The estimated parameters of the measles and rubella
series exhibit relatively constant results. However, the
small trend in the seasonally-differenced rubella time
series (1953-1959) suggested the application of regular
differencing (figure 6). The model that best fits the regu-
larly- and seasonally-differenced series has an AR-1 and a
MA-13 term. Regular and seasonal differencing were also
considered for the measles time series (1970-1976),
which exhibits a significant epidemic peak in 1970. A
model with an AR-1 term and a MA-13 term was also
found. In those cases, replacement of the AR operator by
a differencing operator V = 1 - B (which corresponds to
setting ¢, = 1) also leads to a particular case of the general
model presented in table 1. A better model was searched
and it came out that the seasonal differences of both series
were best fitted by adding an AR-2 term. An AR-6 term was
also required for the measles (1970-1976) series. How-
ever, we believe that those series should be inspected with
caution since their variability is high.

Finally, from 1991 to 2002, the seasonally-differenced
series of rubella (and measles) exhibit large fluctuations
(figure 6). Childhood infectious disease time series gener-
ally exhibit highly significant seasonal and long-term
cycles in pre-vaccination eras, but mass immunization
reduces the relative importance of the cycles [5]. Seasonal
oscillations of measles and rubella are less obvious in the
1990s and seasonal differencing may be less appropriate
for these series. Also, these data could pose problems. It
may occur that the large fluctuations alluded to above
may have considerable importance, but be difficult to res-
cue by the Box-Jenkins methodology. The latter can
appropriately describe regular patterns in data sets, such as
linear trends, endemic data, or regular cycles of disease
occurrence. It can even forecast data inasmuch as the pat-
tern of past data is regular. The Box-Jenkins methodology
can therefore perform best with infectious time series data
that show regularly cycling epidemics unabated by either
vaccination episodes or substantial changes in disease def-
initions that can profoundly disturb the required regular-
ity of the series. On the other hand, simulations

http://www.ete-online.com/content/3/1/9

undertaken with a system of differential equations (the
SEIR model, for instance), based on the biologic parame-
ters of diseases (latent period, infectious period, reproduc-
tive rate, etc.), have been shown to mimic adequately,
though qualitatively, irregular patterns of infectious dis-
eases, such as unexpected epidemics of small and large
sizes embedded in the same series. This may suggest that
when it comes to irregular patterns, it is necessary to con-
sider the non-linear dynamic mathematical basis of dis-
ease patterns, rather than to rely on the traditional linear
statistical approach. Nonetheless, this does not mean that
the Box-Jenkins methodology has had its last word, since
the variation in the statistical parameters (AR, MA, etc.),
which may bear significance, has not yet been paid suffi-
cient attention.

In this paper, while considering Canada as a whole, space
has been ignored. Clearly, spatial coupling of sub-popula-
tions decreases with distance (as temporal autocorrela-
tions decay with time). However, given the robustness of
our results we may confidentially assert that the conclu-
sions would have remained the same had provinces been
considered separately. Coupling can, however, be opti-
mized in sub-populations analysis, that can remain unde-
tected in large ensembles. Also, given large data sets and
diagnoses of disease over, say, a regional area, coupling
among local populations could bring up interactions and
collective phenomena possibly detected by the Box-
Jenkins methodology. Despite this, interaction among
sub-populations would best be detected with a non-linear
dynamic methodology that specially accounts for interac-
tions. Further, since the results of the Box-Jenkins meth-
odology are generally robust to ordinary fluctuations
involving regular time series patterns, we expect that
changes in the time scale of disease aggregation (from
monthly to weekly or bi-weekly reports) would elicit no
significant difference with respect to statistical modeling.
Nevertheless, non-linear dynamic modeling might make a
difference.

Conclusion

Despite the fact that the studied infectious diseases are
biologically different, it was found that they may generally
be represented by simple models that have basically the
similar statistical structure. The number of new cases in
one month is given by the number of cases in the previous
month and by periodically recurring random factors. Fur-
ther, all series displayed seasonal drift that was accounted
for by seasonal differencing. It was also shown that mass
vaccination does not change this structural dependency.
Even though mass vaccination was expected to have major
impact on disease transmission dynamics (i.e., incidence,
average age at infection, long-term periodicity, seasonal
cycles), it does not clearly affect the stochastic dynamics.
This statement should, however, be limited to the case
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Figure 6

Seasonally differenced and logarithm transformed time series of 4-weekly (1953—-1959, 1970-1976) and monthly (1991-2002)
notifications of pertussis, mumps, measles and rubella in Canada.

with no breakdown of the disease regular pattern, either
by mass vaccination or changes in disease definition. We
therefore conclude that the Box-Jenkins stochastic mode-
ling technique is generally robust to biological factors that
are expected to entail significant effects in disease trans-
mission dynamics. In cases of irregular patterns of disease,
therefore, the Box-Jenkins method may fail, thus leaving
the investigator with complex models that are genuinely
difficult to interpret. Our initial attempt was to classify the
series according to their stochastic dynamics; it came as a
surprise that most series proved similar and mostly inde-
pendent of the particular circumstances of the collective
dynamics. Incidentally, it is highly significant that our
models did not differ from those obtained by Helfenstein
[11] despite our dealing with much shorter series and dif-
ferent diseases. Two things can be concluded from the
above: (1) that the Box-Jenkins methodology does rescue

regular patterns of disease, but modeling may fail when
disturbed biological dynamics are at stake; (2) that the
Box-Jenkins methodology is sensitive to the generic
organizational principles of the disease population
dynamics without reference to the individual biological
parameters of the studied disease, i.e., it does identify the
collective pattern of the dynamics, but not the specifics of
the diseases at the biological individual level.
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