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Abstract

Regression modelling is one of the most widely utilized approaches in epidemiological analyses. It provides a method
of identifying statistical associations, from which potential causal associations relevant to disease control may then be
investigated. Multivariable regression – a single dependent variable (outcome, usually disease) with multiple
independent variables (predictors) – has long been the standard model. Generalizing multivariable regression to
multivariate regression – all variables potentially statistically dependent – offers a far richer modelling framework.
Through a series of simple illustrative examples we compare and contrast these approaches. The technical
methodology used to implement multivariate regression is well established – Bayesian network structure discovery –
and while a relative newcomer to the epidemiological literature has a long history in computing science. Applications
of multivariate analysis in epidemiological studies can provide a greater understanding of disease processes at the
population level, leading to the design of better disease control and prevention programs.

Introduction
Multivariable regression modelling in which multiple
independent variables are regressed on a single depen-
dent variable is a technique familiar to any epidemiologist.
This analytical approach is a regular feature in the epi-
demiological literature, and is without doubt a useful tool.
By extending this approach to an analogous multivariate
regression model, in which all variables are simultane-
ously considered, substantially enhanced insight into the
disease system under study may be gained. At worst, both
multivariable and multivariate approaches will give iden-
tical results —as they must, because to determine the best
possiblemultivariatemodel of study data, all possiblemul-
tivariable models must also be considered, as the latter are
simply special cases of the former.
Gaining additional insights into a disease system by

simply switching to a more general data analytic tech-
nique is clearly very attractive, in particular when the
theoretical foundations for the more general approach are
long established. The modelling methodology we con-
sider here is referred to as Bayesian network analysis (as
defined in [1,2]). This is a form of graphical modelling
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[3,4], but whose focus is on structure discovery: determin-
ing an optimal statistical model, i.e. graphical structure,
directly from observed data. Whilst relatively uncommon
in the epidemiological literature, Bayesian network analy-
ses are increasingly finding application in areas of biology,
medicine and ecology (e.g. [5-12]) and Bayesian network
modelling itself has a vast technical literature (as is easily
seen by using the search term “Bayesian network” in any
bibliographic database, e.g. pubmed, web of knowledge).
Identifying causal relationships is the objective of many

epidemiological analyses involving regression modelling.
Empirical analyses of epidemiological data can demon-
strate statistical dependency between variables, and as
we later demonstrate Bayesian network analysis is ideally
suited to such a task. While the identification of statisti-
cal dependency is often a natural step towards postulating
causal mechanisms, it is, however, vastly more ambitious
to further assert that any given dependency exists within
a particular causal web. Expert knowledge and biological
understanding is clearly essential, since this is more than
a statistical data analysis exercise. To avoid any unneces-
sary confusion, all analyses and discussion here pertain
only to models of statistical association —it is a common
misinterpretation to assume that arcs in a Bayesian net-
work model denote causality, they denote only statistical
dependency.
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Our objective here is to demonstrate the potential utility
of Bayesian network structure discovery to epidemiolo-
gists.We consider specifically additive Bayesian networks,
which are Bayesian network models parameterized in
an analogous fashion to generalised linear models. The
classical formulation of Bayesian networks for binary or
multinomial variables uses a mathematically elegant con-
tingency table parameterisation [1,2]. For epidemiological
analyses such a parameterisation is both unusual and
rather opaque, and is likely vastly over parameterized
compared to the familiar additive formulation used in
generalised linear models (as discussed in [13]).
In the following sections we first briefly review themoti-

vation and experimental origins of regression modelling
in scientific studies. Graphical regression is then intro-
duced, followed by a series of simple empirical examples
which compare and contrast multivariable and multi-
variate regression. We then discuss the epidemiological
implications of these results and the limitations of the
approach.

Regressionmodelling concepts - a brief review
In classical experimental trial scenarios (e.g. [14], such as
factorial or Latin square designs), the investigator is able
to fix at predetermined values all of the variables of inter-
est in the experiment. These are the independent vari-
ables in a multivariable regression model. The research
question being asked here is how the measurement vari-
able – the outcome or response variable – changes across
the various different patterns of values chosen for the
independent variables. This is the historical foundation
of regression modelling. The ability to fix all variables of
interest to predetermined values is crucial and underlies
the experimental study design, because it enables unam-
biguous estimation of all key covariate effects on the
response variable.
The classical experimental design scenario contrasts

sharply with what is feasible and practical in many epi-
demiological studies, either in humans or other animals.
Considering zoonotic pathogens for example, animal hus-
bandry, livestock production and farm environment char-
acteristics are by their nature highly inter-dependent.
Thus, it is generally impossible to separate out the “true”
effects of individual covariates on the response variable
(e.g. the design matrix is not orthogonal, see [15]) because
the estimated effect of any covariate will now generally
also depend on what other covariates are also included
in the model (including the case in which all variables
are included). Moreover, determining the most appropri-
ate covariates for inclusion in the model is considerably
more difficult when dependencies exist between study
variables, as in the case in which confounding variables
are present. The Yule-Simpson paradox [16-18]: that an
apparent relationship between variables (e.g. a disease and

a putative risk factor) may disappear or even be reversed
when other variables are taken into account, is particularly
troublesome here. Similarly, the closely related difficulties
of negative (or positive) confounding.
In multivariable regression, relationships between the

“independent” variables in a study do not feature explicitly
in the modelling process. This seems entirely reasonable
in the classical designed experiment scenario. In regres-
sion analyses of epidemiologic data where many inter-
dependencies between study variables may be present,
explicitly modelling all relationships between all variables
is intuitively far more reasonable (as demonstrated in our
later examples). Common multivariable model selection
approaches, such as stepwise searches, may be sufficient
to implicitly account for such inter-dependencies, and
thus identify an optimal set of predictors for the outcome
(disease) variable. But a considerable difficulty here is how
to justify that the modelling results obtained are as opti-
mal as is practicable for a given study. The standard way to
address such issues in statistical modelling is to compare
a simpler model with a more general model. If the good-
ness of fit of the simpler model is no worse than the more
general model then the former is chosen as the preferred
model. This is the concept of parsimony—it is more desir-
able to explain a phenomenon, e.g. disease occurrence,
with a simpler than a complex model. In our current con-
text “more general” also refers to expanding the scope of
the modelling framework to explicitly include all relation-
ships between all variables, i.e. a multivariate rather than
multivariable regression model. The Bayesian network lit-
erature has long provided all the necessary theory and
algorithms (e.g. [1,2,19,20]) to implement such regression
modelling. Historically, the main practical difficulty in the
application of this approach has been a lack of suitable
computing resources and relevant accessible software.

Regressionmodelling in epidemiology
In typical regression analyses found in the epidemiolog-
ical literature (e.g. [21,22]) the use of a hypothesis test-
ing (P-values) framework is still far more common than
Bayesian inference. There is a considerable body of evi-
dence which strongly argues against the use of hypothesis
testing and P-values for model comparison and selec-
tion. Information theoretic and Bayesian approaches are
argued to be preferable on both conceptual and per-
formance grounds [23-26]. When the primary objective
is to identify optimal parsimonious models, i.e. struc-
ture discovery, then, in purely practical terms, using a
Bayesian or non-Bayesian paradigm is largely irrelevant
as in such analyses the use of uninformative or diffuse
priors is the standard practice in structure discovery
(e.g. see [1,2,19,20]). Hence, the actual parameter esti-
mates in any given model will be almost identical to
the maximum likelihood analogue. However, the very
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considerable advantage of adopting a Bayesian paradigm
is that we can then directly utilize established model
selection and comparison techniques from the Bayesian
networks literature [2,19,20].

Empirical examples: multivariable versus
multivariate
We first briefly describe a graphical statistical model,
recall that additive Bayesian network structure discov-
ery is concerned entirely with graphical models, and
its conceptual differences from classical regression. We
then present three separate illustrative analyses using
risk factor case study data (unpublished veterinary data
with variable names anonymized to maintain confiden-
tiality) comprising of 400 observations across 17 vari-
ables, where each variable is a measurement or attribute
from an individual subject (animal) and each subject only
appears once in the data. There are five binary vari-
ables and 12 continuous variables. Note that for our
current purposes background knowledge of the partic-
ular variables in the study is not relevant, as we are
only interested in comparing and contrasting the statisti-
cal results obtained by applying two different techniques
to identical data. This is an observational study and the
investigator was not able to fix the values of any of
these variables.

Introducing graphical regression
In graphical statistical modelling there is no distinction
made between covariates and a response variable. All
are just “variables” as, formally speaking, a graphical
statistical model is a representation of the joint probabil-
ity distribution of all the random variables in the data.
Figure 1(a) depicts a graphical model which is directly
analogous to a classical multivariable regression model,
as arcs terminate only at a single “response” variable (e.g.
g5). But this model has a statistical interpretation which is
radically different from that in classical regression, here:
i) variables b3, b6, g9 and g10 are directly dependent with
variable g5; ii) variables b3, b6, g9, g10 are all indirectly
dependent with each other (via g5); and iii) all other vari-
ables are independent. In terms of i), direct dependence
means there is an arc directly connecting these variables
(in either direction). In terms of ii), in a graphical model all
variables in the same component (collection of connected
arcs —ignoring direction) are jointly statistically depen-
dent. This means that knowing the value of one variable
in this component can potentially provide information
about the likely value of any other variable in this compo-
nent (see [3,4]). If a variable has no arcs, either emanating
from it or terminating at it, then it is statistically inde-
pendent. In such a case knowing the value of any other
variable in the model tells us nothing about the value of
these variables.

All the graphical models we consider here are con-
cerned only with statistical dependency, and arc direction
in such models in no way implies any causal relationship.
The direction of arcs is a result of the probability cal-
culus required when dealing with models comprising of
joint probabilities. In general, arc direction has no epi-
demiological interpretation because observed data alone
cannot discriminate between arcs of opposite directions.
This is simply a consequence of factorising joint probabil-
ity distributions, and is typically referred to as likelihood
equivalence (see p.1052 in [11] for a more general expla-
nation, and [2] for technical details). A potential practical
complication of likelihood equivalence is when search-
ing for an optimal graphical structure. Standard search
approaches in the literature, such as Heckerman’s heuris-
tic hill climber [2], and the exact order based search by
Koivisto [20] (the latter is used in our later case stud-
ies), identify a single optimal (directed) graph. This is as
opposed to all graphs within the same likelihood equiv-
alence class, which is computationally intractable [2]. If
the objective is to identify all statistical dependencies in
study data then, as mentioned above, arc direction is not
relevant and such difficulties can be ignored. This is not
the case, however, when viewing the modelling results
within a causal (or indeed a longitudinal) framework as
the arc direction then has an obvious real interpretation.
In causal analyses the use of a priori restrictions on arc
directions to avoid contradicting known epidemiological
fact is likely appropriate (although not without some con-
ceptual challenges, see p212. in [2]). Causal analyses of
data using graphical models represents a large, and some-
what distinct, literature from Bayesian networks, with [27]
a standard text.
In summary, classical multivariable regression can easily

be denoted by a graphical model, but where the inter-
pretation of the model is different in that it is now a
joint probability model, albeit of a very simple structure.
The reason for considering such regression models within
a graphical modelling framework is that the graphical
structure can now easily be relaxed to allow dependen-
cies (arcs) to be present between any variables, i.e. this
framework allows us to directly compare results from
applying multivariable regression and multivariate regres-
sion on the same data. This then gives us our main
“result” of this paper—a demonstration of how usingmul-
tivariate regression may enhance our understanding of a
disease system.

Case study results
We now present three analyses. In each we determine
the globally optimal “multivariable” graphical regression
model, and compare this with the globally optimal “mul-
tivariate” graphical regression model. The term “globally
optimal” here refers to amodel which has the best possible
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Figure 1 Globally optimal multivariable regression model with g5 as the response variable and globally optimal multivariate regression
model of all 17 variables. (a) Globally optimal multivariable regression model with g5 as the response variable and covariates b3, b6, g9 and g10,
log marginal likelihood = -8664.4; (b) Globally optimal multivariate regression model of all 17 variables, log marginal likelihood = -8311.6. Markov
blanket for variable g5 are those variables in grey. Squares denote binary variables, ovals continuous.

goodness of fit of all possible models, and is determined
using an established exact (as opposed to heuristic) struc-
tural search algorithm [20]. The goodness of fit metric
used here is the marginal likelihood [28], which is the
standard metric in Bayesian model selection.
When comparing models in a Bayesian paradigm the

objective is to infer which is the most plausible model
given suitable observations. Borrowing notation and ter-
minology from Mackay [28], the posterior probability
of each Bayesian model, P(Hi|D), can be written as
P(Hi|D) ∝ P(D|Hi)P(Hi) where D denotes the observed
data, e.g. a database of study records, and Hi denotes
hypothesis, in other words a model of the data, i.e. a
chosen hypothesis about relationships in the data parame-
terized into a statistical model. The data dependent term,
P(D|Hi) is called the evidence, and P(Hi) is a quantifi-
cation of our subjective prior belief about the current
hypothesis (i.e. model i) before any data has arrived. In the
Bayesian networks literature is it usual for all models to be
considered equally plausible prior to observing any data
[2,19], in which case P(Hi) is just a fixed constant for all
models (and thus can be ignored) and the evidence is pro-
portional to the posterior probability for each model. The

evidence, P(D|Hi), is also called the marginal likelihood
and has been shown to have a number of theoretically
desirable qualities, where themodel with highest marginal
likelihood is the preferred model. Model selection using
the marginal likelihood has been shown to be equivalent
to using Occam’s Razor (for more details see [28] p.422).
The model in Figure 1(a) is the best possible multi-

variable model for the data when we consider g5 as the
response variable. That is, it is the best possible graph
structure when an exact model search is used with the
restriction that arcs are only allowed to terminate at vari-
able g5. This search restriction ensures that the scope
of our graphical model is limited only to a multivari-
able regression model. We now repeat an identical exact
search but this time without the previous restriction on
the location of arcs. This allows us to determine the best
multivariate regression model of the data, that is, we con-
sider all variables simultaneously. This model is given in
Figure 1(b), and note that this is a directed acyclic graph
(DAG), no cycles —feedback loops —exist which is a
technical requirement of a graphical statistical model.
Before we compare the modelling results in Figure 1(a)

and (b), it is worth emphasizing the key methodological
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point here: the only difference in the process which identi-
fied graph (a) as the best model of the observed data, and
graph (b) as the best model of the observed data, is that
in the former the scope of the model search was restricted
to only consider graphs with arcs terminating at g5, i.e. a
multivariable graphical regression model.
In a graphical model the standard way to interpret

the results relative to a single variable is to compute its
Markov blanket [29]. A Markov blanket (highlighted in
grey in the figures) comprises the parents, children and
children’s parents of the variable of interest (arcs go from
parents to children [19]). To predict values for any vari-
able in a DAG, then all we need to know are the variables
in its Markov blanket, and all other variables in the graph
can be discarded. Conversely, each variable in the Markov
blanket is needed because each provides knowledge about
the variable of interest.
In Figure 1(a) the multivariable model provides statisti-

cal evidence that variables b3, b6, g9 and g10 are directly
dependent with g5. In Figure 1(b) the multivariate model
provides evidence that additionally variable b5 is directly
dependent with g5, and therefore obviously it is also in
the Markov blanket of g5. This then suggests that b5

should be included along with these other variables for
further investigation into their potential epidemiological
significance with response g5. In summary, even although
we only have a single response variable in this current
analysis, using the more general multivariate model has
provided a different set of most supported “predictor”
variables.
We now consider two further examples which are anal-

ogous to the g5 example but which now treat variable
g2 (Figure 2) and then variable b3 (Figure 3) as the
response variables in multivariable analyses. The globally
optimal multivariate model is obviously unchanged from
Figure 1(b) since in such a model all variables are consid-
ered jointly, but the Markov blankets for g2 (Figure 2b)
and b3 (Figure 3b) are now highlighted.
It is apparent that in both Figure 2 and Figure 3 the

results obtained using multivariable regression are quite
different from those obtained using multivariate regres-
sion. The number of direct arcs connected to (or from)
the response variable have increased, from two to five in
Figure 2 and from three to six in Figure 3. As the multi-
variate model permits arcs both to and from the response
variable this is perhaps no surprise, although there is no
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Figure 2 Globally optimal multivariable regression model with g2 as the response variable and globally optimal multivariate regression
model of all 17 variables. (a) Globally optimal multivariable regression model with g2 as the response variable and covariates b4 and g3, log
marginal likelihood = -8530.0. (b) Globally optimal multivariate regression model of all 17 variables, log marginal likelihood = -8311.6. Markov
blanket for variable g2 are those variables in grey. Squares denote binary variables, ovals continuous.
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Figure 3 Globally optimal multivariable regression model with b3 as the response variable and globally optimal multivariate regression
model of all 17 variables. (a) Globally optimal multivariable regression model with binary variable b3 as the response and covariates b4, g7 and g8,
log marginal likelihood = -8670.9. This is a generalised linear model with logit link function. (b) Globally optimal multivariate regression model of all
17 variables, log marginal likelihood = -8311.6. Markov blanket for variable b3 are those variables in grey. Squares denote binary variables, ovals
continuous.

reason that this need always be the case. What may be
rather more surprising is that arcs identified in the mul-
tivariable model may not be identified in the multivariate
model. For example in Figure 2(a) there is an arc from
b4 to g2, but in Figure 2(b) b4 is not directly connected
to g2 – moreover, it is not even in g2’s Markov blanket.
The multivariable model suggests b4 is worthy of further
investigation. In contrast, the full multivariate model sug-
gests that in fact b4 is only indirectly related with g2, and
this indirect dependence is also remote in the graph, i.e.
outside the Markov blanket. In other words there is little
statistical evidence to support epidemiological investiga-
tion of b4. This result cannot be dismissed by arguing that
the multivariable model is somehow more parsimonious,
because the same model selection metric is used in all
model comparisons. There is a very large difference (>
100) in (log) marginal likelihood values between the mul-
tivariable and multivariate models (see figure legends). A
guide to the relative size and interpretation of differences
in (log) marginal likelihoods can be found in Table 2.1
page 27 in [30], and using the terminology there, a differ-
ence of greater than 10 is considered very strong evidence

in favour of the model with greater (log) marginal likeli-
hood. In summary, therefore, the data supports that the
multivariate models are simply a better fit to the data in
our examples.
Our final example is shown in Figure 3. The key dif-

ference between the results here is that the multivariable
model implies that there are three variables worthy of fur-
ther investigation. In contrast, the multivariate model has
ten variables in theMarkov blanket for b3, six of which are
directly connected with b3.
To complete our case study analyses, and further

emphasize that our proposed multivariate regression
approach is simply a generalization of usual multivari-
able regression, it is readily possible to compute odds
ratios and mean effects of the parameters (arcs) in our
graphical model. For example, the marginal (posterior) log
odds ratio for the arc from g5 to b5 (see panel b of any
of the figures) has a 95% confidence (or credible) inter-
val of (0.20, 0.65). This is a log odds ratio as we have a
logistic regression between b5 and g5 in this part of the
graph. Similarly, the marginal mean (posterior) effect for
the arc from b3 to g4 has a 95% confidence interval of
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(0.18, 0.54), and for the arc from g2 to g9 the correspond-
ing interval is (0.08, 0.27). The latter two intervals are for
the mean effect rather than log odds as these are Gaus-
sian regressions. It is straightforward to compute such
parameter coefficients for any node in themodel, and note
also that each of these 95% confidence intervals does not
include zero. These would therefore typically be consid-
ered as having a strong degree of statistical support, and
each is connected to the “response” node in each of our
three multivariate examples.
Tables giving medians and marginal 95% posterior con-

fidence intervals for every parameter in each of the
three multivariable models (Figures 1a, 2a and 3a) and
in the full multivariate model (Figures 1b/2b/3b) can be
found in the Additional file 1: Appendix. A key point
of note here is that nodes with the same parents have
identical parameter estimates in each model (e.g. com-
pare variables g1, g11 and g12 between the multivariable
and multivariate models) as they should. The multivari-
ate model is simply a collection of multivariable mod-
els and so the parameter estimates will be the same
given the same parents. The difference is that the for-
mer is more flexible and allows any node to have parents,
unlike in a GLM type model. Generally speaking —and
as we have seen in our case study examples —this means
that the parents, and therefore parameter estimates, may
be different for at least some variables (nodes) in the
data (e.g. compare the parameter estimates for node g5
between Figure 1a and 1b).

Epidemiological implications
When the analytical task is to identify statistical depen-
dencies with one (or more) response variables, then both
theoretically and as demonstrated in the above empiri-
cal examples, the more general additive Bayesian network
structure discovery approach appears clearly preferable.
In particular, the multivariable approach is just a special
case of the multivariate approach, i.e. there is nothing pre-
venting the more general structural search (Figures 1b,
2b, 3b) from identifying the same globally optimal model
as in the restricted structural search (Figures 1a, 2a, 3a).
Hence, there is nothing to lose, at least in statistical terms,
by adopting the more general approach. Moreover, the
far simpler multivariable approach may identify covari-
ates which are not supported by the multivariate model,
e.g. the second case study example. A possible explana-
tion for such contradictions is the Yule-Simpson paradox,
in that we are trying to describe observations from a com-
plex disease system of inter-dependent variables through
amultivariable model, whichmay just be too simplistic for
this particular application.
By using a multivariate regression approach the trade-

off being made with classical multivariable regression is
that the former may provide potentially more information

about the disease system under study, in terms of identi-
fying statistical dependencies. This may lead to new and
novel findings. But equally, some of the newly identified
statistical dependencies may also be readily discarded as
potential causal associations, when viewed through the
prism of an epidemiologist’s expert knowledge of the biol-
ogy of the disease(s) of interest. A brief contrast may be
made here with historical approaches such as path analy-
ses [31], which were applied reasonably commonly during
the 1970s to address a range of chronic and environ-
mental diseases [32-34], and this approach still appears
occasionally in the epidemiological literature. The key
distinction between path analyses and additive Bayesian
network structure discovery is that the former is explic-
itly causal, where some or all, of the graph structure is
determined apriori via expert opinion. The latter asserts
only the presence of statistical dependency, and while it
can include prior expert opinion into the structural search
(it is a Bayesian approach after all) the default usage is to
allow the data itself to identify an optimal graph structure.
The advantage of allowing the study data itself to identify
an optimal graph is that this may include arcs which an
expert may not, and may not include arcs which an expert
would assert must be present in the given disease system.
The epidemiological challenge is then to explain such dis-
crepancies which may result in gaining new insight into
the disease system.

Software for multivariate regression
Reliable, easy to use software is essential for facilitat-
ing the uptake of any new data analytic technique into
the epidemiological community. In order to apply addi-
tive Bayesian network structure discovery to study data
appropriate software is required. In theory, Bayesian
network analyses could be performed within a num-
ber of widely used Bayesian software programs, such
as WinBUGS/OpenBUGS [35] or JAGS [36]. In prac-
tice, however, other approaches are necessary because
the central task in Bayesian network analyses is struc-
ture learning which involves fitting and comparing a great
many different multivariate models. In programs such
as OpenBUGS and JAGS it is simply computationally
impractical to fit every model via Markov chain Monte
Carlo simulation, in addition to the difficulty in reli-
ably estimating the marginal likelihood for each model.
Instead, programs which employ analytical approxima-
tions, i.e. Laplace approximations [37,38], are preferable
and indeed arguably necessary. The particular software we
used in the examples is the abn library for R [39], which
has been developed by the authors for performing addi-
tive Bayesian network structure discovery with epidemi-
ological data and is available from CRAN (http://cran.
r-project.org/web/packages/abn/index.html). This library
has been extensively tested and validated against other

http://cran.r-project.org/web/packages/abn/index.html
http://cran.r-project.org/web/packages/abn/index.html
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established Bayesian modelling software such as INLA
[40] (and also JAGS). The abn library also includes
wrappers to allow INLA to be used for all numerical
estimation. Case studies which demonstrate how to imple-
ment analyses similar to those presented, along with
detailed numerical validation studies are available from
http://www.r-bayesian-networks.org. A range of other R
libraries for fitting Bayesian networks and other forms of
graphical regression can be found at http://cran.r-project.
org/web/views/gR.html.While these software libraries are
all for use with R it is also possible for R to be accessed
from within other popular statistical software such as SAS
(via IML Studio).

Limitations
Computational feasibility
The main limitation when applying additive Bayesian net-
work structure discovery to epidemiological data is com-
putational feasibility. The number of variables which can
be included in a Bayesian networks analysis is limited.
As a guide, this might be less than about 25 variables for
exact structural search techniques and perhaps up to 40
for heuristic approaches (e.g. see [11]). Inclusion of more
variables is possible with access to specialist computing
facilities and expertise. This means that including addi-
tional variables, such as interaction terms, which can be
done easily enough just as in standard regression mod-
elling, requires careful consideration. Each term adds to
the number of variables in the model, and therefore adds
considerably to the computational time required to per-
form structural searches. There are a number of ad-hoc
ways to address the computational demands. For exam-
ple by splitting variables into smaller thematic groups for
analyses. This may then suggest that some variables can
be dropped, reducing the computationally burden to a
more manageable level. For larger problems (more vari-
ables), model averaging using order-based Markov chain
Monte Carlo is an option [19] as it can cope with many
more variables (e.g. > 100). Such averaging approaches
randomly sample from the posterior landscape of possi-
ble graphs (strictly speaking, node orderings), with better
fitting graphs being sampled more often than poorer fit-
ting graphs, and during this sampling (i.e. jumping from
model to model) it is possible to estimate the relative
support for each arc (or groups of arcs) in terms pos-
terior probabilities. This is an approach used in bioin-
formatics for sequence analyses (e.g. [10]) but does have
some important caveats, such as producing results which
will be biased relative to direct (non-order based) model
selection.
Access to scientific computing facilities, while not

essential, is highly beneficial. For larger problems (> 25
variables), heuristic search approaches are required which
are demanding as they must be run many times to ensure

reliable results. An additional severe computational drain
is addressing over-fitting, which is an ever present
problem in model selection [41], irrespective of whether
using exact or heuristic searches. Good practice in
structure discovery is to either utilize some form of model
averaging, for example using majority consensus graphs
as the optimal model [9,42], or else using parametric
bootstrapping approaches [43] applied to the globally
best graph [11]. The majority consensus approach is sim-
ilar to that used in phylogenetics with tree structures,
except here a majority consensus graph is created from
all arcs which appeared in at least a majority of heuristic
search results. This provides an alternative way to esti-
mate relative support for individual arcs other than by
Markov chain Monte Carlo, which can be highly prob-
lematic when dealing with graph structures (see [19]).
A single exact search for a model comprising of 20
variables may take 24 hours to complete on a modern
desktop, and this may need to be repeated many (hun-
dreds) times during model averaging or bootstrapping
to ensure robust results. Code for addressing over-fitting
using parametric bootstrapping and also parallelization
across a cluster computer can be found at http://www.r-
bayesian-networks.org.

Future potential: missing values
Missing observations are a common feature of field
studies and epidemiological data. In standard regression
modelling, observations with missing values are usually
dropped from analyses (as it is essential to maintain
identical observations when comparing different models).
In graphical regression modelling this is also the easi-
est course of action. There are, however, a number of
established algorithms for fitting graphical models in the
presence of missing values due to the joint probabilistic
nature of these models. Rather than “fill-in” such values
using traditional approaches such as multiple-inputation,
a graphical model can be used to either marginalize out
missing entries in the data [44] or predict their most
likely values using the graphical structure itself via the
propagation of probabilities across the graph (methods
of propagation form a considerable part of the graphi-
cal modelling literature, see [4,45,46]). These are elegant
conceptual solutions, although they do still assume that
values are missing at random, but such approaches are
numerically highly complex. It is unclear whether these
would be feasible in the context of structure discovery, as
when there are missing values in the data the graph can no
longer be split into conditionally independent computa-
tional units (i.e. each node and its parents - for estimating
the marginal likelihood, see [2]). This is a very consider-
able complication, both in terms of implementation and
computing time. Approaches have been developed for
structure discovery in the presence of missing values, such

http://www.r-bayesian-networks.org
http://cran.r-project.org/web/views/gR.html
http://cran.r-project.org/web/views/gR.html
http://www.r-bayesian-networks.org
http://www.r-bayesian-networks.org
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as Structural-EM [47], although implemented in mod-
els with a simpler parameterisation than those presented
here. The implementation of such approaches is an area of
future work, but further highlights the considerable exist-
ing theory and potential of graphical regression and struc-
ture discovery approaches in analyses of epidemiological
data.

Conclusion
The wide utilization of regression modelling in epidemi-
ological analyses means that outputs from such analyses
have a ready application in disease control and preven-
tion programs. Up until recently, such applications have
been constrained by the use of multivariable regres-
sion. Extending multivariable regression to full multi-
variate regression —utilizing additive Bayesian network
structure discovery—offers the epidemiologist potentially
far greater insight into the complex inter-relationships
between variables within a disease system. The main con-
straint in the use of this methodology is its considerable
computational demands, but given the ever increasing
availability of cheap computing power this technique is
increasingly feasible for use in a wide range of studies.
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