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Abstract

As the HIV-1 epidemic enters its fourth decade, HIV-1 associated neurological disorders (HAND) continue to be a
major concern in the infected population, despite the widespread use of anti-retroviral therapy. Advancing age
and increased life expectancy of the HIV-1 infected population have been shown to increase the risk of cognitive
dysfunction. Over the past 10 years, there has been a significant progress in our understanding of the mechanisms
and the risk factors involved in the development of HAND. Key events that lead up to neuronal damage in HIV-1
infected individuals can be categorized based on the interaction of HIV-1 with the various cell types, including but
not limited to macrophages, brain endothelial cells, microglia, astrocytes and the neurons. This review attempts to
decipher these interactions, beginning with HIV-1 infection of macrophages and ultimately resulting in the release
of neurotoxic viral and host products. These include: interaction with endothelial cells, resulting in the impairment
of the blood brain barrier; interaction with the astrocytes, leading to metabolic and neurotransmitter imbalance;
interactions with resident immune cells in the brain, leading to release of toxic cytokines and chemokines. We also
review the mechanisms underlying neuronal damage caused by the factors mentioned above. We have attempted
to bring together recent findings in these areas to help appreciate the viral and host factors that bring about
neurological dysfunction. In addition, we review host factors and viral genotypic differences that affect phenotypic
pathological outcomes, as well as recent advances in treatment options to specifically address the neurotoxic
mechanisms in play.
Introduction
HIV associated neurocognitive disorders (HAND) are a
potential consequence of HIV-1 infection, and about half
of all adults with AIDS suffer from neurological com-
plications related to HIV-1 [1]. HIV-1 infection plays a
pivotal role in HAND by generating products that lead to
neurological damage in the central nervous system (CNS).
HAND includes a spectrum of neurological disorders
ranging from asymptomatic neurocognitive impairment
(ANI), an intermediate form termed mild neurocognitive
disorder (MND) and the severe form, HIV associated
dementia (HAD) [2]. The relationship between the pre-
valence of these forms to each other and their occurrence
in the overall population of HIV-1-infected individuals
can be depicted in a pyramidal form, with the total
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number of HIV-1-infected individuals forming the base,
with the upper layers having progressively fewer numbers
of patients exhibiting ANI, MND and HAD. As the avail-
ability of highly active anti-retroviral therapy (HAART)
has become more widespread worldwide, HIV-1-infected
individuals are living longer. Although the incidence and
prevalence of HAD have been reduced in the era of
HAART, the prevalence of HAND overall is actually in-
creasing worldwide. The increased lifespan of treated pa-
tients results in a chronic exposure of the brain to HIV-1
virions and viral proteins leading to inflammation, as well
as a concomitant chronic inflammation in the peripheral
immune system, leading to the accumulation of neuro-
logical damage [3]. The success of HAART in controlling
peripheral viral load is not necessarily accompanied by re-
duction in the immune activation in the brain [4].
. This is an Open Access article distributed under the terms of the Creative
ommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
iginal work is properly credited. The Creative Commons Public Domain
g/publicdomain/zero/1.0/) applies to the data made available in this article,

mailto:vinayaka.prasad@einstein.yu.edu
http://creativecommons.org/licenses/by/2.0
http://creativecommons.org/publicdomain/zero/1.0/


Rao et al. AIDS Research and Therapy 2014, 11:13 Page 2 of 15
http://www.aidsrestherapy.com/content/11/1/13
Overview of HIV neuropathogenesis
Before embarking on delineating the viral and host factors
that play central roles in HAND, it is helpful to have an un-
derstanding of the current working model for a mechanistic
basis of HIV neuropathogenesis. Infiltration of monocytes
into the brain is a hallmark of HAND [5]. Monocyte-
derived macrophages (MDM) are one of the major types of
cell that are infected by HIV-1 (CD4+ T lymphocytes and
dendritic cells being the other two cell types). Once the
HIV-1-infected macrophages have established residence in
the CNS, they secrete chemokines that establish a chemo-
taxis gradient across the blood–brain barrier (BBB), which
recruits more monocytic cells from the peripheral compart-
ment into the CNS [6]. This influx of HIV-1-infected
monocytic cells leads to the infection of other CNS-
resident monocytic cells, namely perivascular macrophages
and microglia [7], which in turn results in greater BBB
damage and accelerates the rate at which HIV-1-infected
and uninfected monocytic cells can enter the brain.
Neurons do not support HIV-1-infection or replication, but
they do express several cell-surface receptors (CCR5,
CXCR4, NMDAR etc.) that render them sensitive to insults
by viral proteins (e.g. Tat, gp120), inflammatory cytokines
(e.g. TNF-α, IL1β) and small metabolites (e.g. nitric oxide,
arachidonic acid, etc.) secreted by immune cells in the brain
[8]. The key events that contribute to HAND include direct
neuronal apoptosis, dysregulation of key neuronal support
cells, and the loss of dendritic arbor.

HIV-1 infection of Macrophages
The process of HIV-1 infection begins by HIV-1 binding to
CD4 receptor on the target cell surface, through the viral
envelope protein gp120 [9]. This binding induces a con-
formational change in gp120 that exposes a CD4-binding
induced (CD4i) co-receptor binding site, which subse-
quently binds to either CCR5 or CXCR4 coreceptor [10].
The binding of gp120 to a co-receptor then exposes the
fusion peptide in viral protein gp41, which is inserted into
the cell membrane and drives fusion of the viral and cell
membranes [11]. The co-receptor preference, which is de-
termined primarily by the V3 loop in gp120 [12], designates
a given HIV-1 isolate as either an R5 or X4 virus depending
upon whether it uses CCR5 or CXCR4 coreceptor. Based
on the fact that CCR5Δ32 mutation confers resistance to
HIV-1 transmission [13], the field has come to the conclu-
sion that only R5 viruses are transmissible and are the type
of viruses detected systemically early in infection. However,
later as the disease progresses, the predominant tropism
switches to CXCR4-usage [14], at least in some of the cases
(approximately 50%). CXCR4 usage is associated with faster
viral replication and a more rapid CD4+ T-cell decline [14].
However, this switch is not obligatory for disease progres-
sion, as exceptions are observed in some parts of the world
where non-B subtypes of HIV-1 are prevalent [15].
HIV-1 can productively infect both CD4+ T lymphocytes
and monocytic cells/macrophages. Infection of monocytic/
macrophage cells is primarily by M-tropic viruses driving
fusion through the CCR5 coreceptor, but infection by
T-tropic viruses through the CXCR4 coreceptor has also
been observed [16]. While dendritic cells can also be in-
fected by HIV-1, they do not support robust HIV-1 replica-
tion. However, they do play a crucial role in the systemic
spread of HIV-1 due to their strategic presence in lymph
nodes [17]. HIV-infection leads to a progressive decline in
the population of CD4+ T cells, which is due to loss of both
infected CD4+ T cells and uninfected cells (bystander kil-
ling) [18]. However, there is no systemic loss of monocytic
cells, either infected or uninfected. It has been reported that
monocytic/macrophage-tropic viruses, in addition to bear-
ing gp120 that is able to recognize and bind CCR5 corecep-
tor, have evolved the capability to infect cells with a lower
density of CD4 receptors on the cell surface and a greater
fusion activity [19]. Furthermore, macrophages are also
characterized by the budding of virions into internal multi-
vesicular bodies, which are vacuoles within the cells, rather
than budding through the plasma membrane directly to the
external medium. This mechanism allows HIV-1 to ‘hide’
inside the infected macrophages, making macrophages one
of the latent reservoirs of HIV-1 [20].
The predominant route of CNS exposure to HIV-1 is

through peripheral blood monocytic cells/macrophages that
have been infected by virus and transmigrate across the
blood–brain barrier (BBB) [5]. Peripheral blood monocytes
are categorized into classical “resting” monocytes that ex-
press only CD14 (CD14++CD16−), intermediate monocytes
that maintain high levels of CD14, while gaining CD16
positivity (CD14++ CD16+), and non-classical “activated”
monocytes that express high CD16 levels and lower levels
of CD14 (CD14+CD16++) [21]. The CD16++ subset, while
comprising only about 5-10% of the total circulating mono-
cyte population, is overrepresented in the brains of patients
with HIV encephalopathy [22,23]. CD16++ monocytes are
more susceptible to HIV infection and support higher levels
of viral replication [24]. Additionally, infected CD16++ mo-
nocytes have been shown to transmigrate more efficiently
across the BBB in response to a chemokine gradient [25].
While CD4+ T lymphocytes have been suggested to play a
role in trafficking HIV into the CNS, the vast majority of
HIV-1 isolates derived from CNS tissue appear to be of
macrophage-tropic lineage [26].

CNS invasion: disruption of the blood brain
barrier
The BBB is located at all points of interaction between the
brain tissue and blood vessels and consists of astrocytic
end feet and human brain microvascular endothelial cells
(HBMEC). In addition to the barrier created by HBMECs
and astrocytes, pericytes envelope the abluminal side of
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endothelium and increase the selectivity of the barrier
[27]. Pericyte density in the brain is much higher than that
observed in other organs, thereby constituting an ad-
ditional barrier [28]. The BBB maintains the sanctity of
the brain’s internal environment and provides an import-
ant physiologic and immunologic separation between the
CNS and the peripheral circulation. HIV-1 infiltrates the
BBB early after infection [29] using HIV-infected mono-
cytic cells as a “Trojan horse” for entry into brain [30].
While low numbers of monocytes routinely enter the
CNS as part of “immune surveillance” to replenish the
population of resident macrophages, infection by HIV-1
increases the adherence of monocytes to endothelial cells,
increasing their transmigration across the BBB [31]. The
HIV-infected macrophages in the vicinity of the BBB
secrete inflammatory cytokines and viral products that
damage HBMECs, induce cellular oxidative stress and
they also produce chemokines like CCL2 [32] that fa-
cilitate the build-up of additional immune cells near the
barrier. The interplay between the secreted cytokines, viral
products and HBMECs activates endothelial cells and in-
creases surface expression of adhesion molecules on endo-
thelial cells – which in turn accelerates the transmigration
of infected macrophages across the BBB.
HIV-1 proteins Tat and gp120 both directly damage the

BBB (Figure 1). Tat is a non-structural viral protein se-
creted by infected cells [33]. Tat mRNA [34], Tat protein
[35] and antibodies to Tat [36] are detectable in the CNS
of HIV-infected patients. Brain endothelial cells, when
exposed to HIV-1 Tat, have been shown to alter the
Figure 1 Invasion of the blood brain barrier. HIV-1 infected immune ce
degradation of tight junction proteins, oxidative stress and up-regulation o
blood brain barrier and increased migration of immune cells across the ba
monocytic cells as a “Trojan horse” for entry into brain [30].
expression and distribution of tight junction proteins
(claudins & occludins) [37]. Tat treatment of HBMECs
in vitro up-regulates matrix metallopeptidase-9 (MMP-9),
which in turn increases the permeability of brain endo-
thelial cells by degrading occludins [38]. In vitro two-
chamber models with HBMECs and astrocytes have also
shown HIV-1 Tat causes dysregulation of nitric oxide pro-
duction in brain endothelial cells [39] and induces secre-
tion of CCL2, a key chemokine responsible for migration
of immune cells [40].
Even though brain endothelial cells that line the BBB

are not productively infected, several in vivo and in vitro
studies have demonstrated that envelope glycoprotein
gp120 causes a functional impairment at the BBB. The
gp120 protein is found on the surface of virions and on in-
fected cells as a homo-trimer, but gp120 is also shed from
infected cells and found in soluble form as a monomer
[41]. Studies involving HIV-1 gp120 transgenic mice, in
which gp120 was expressed in thymocytes and the CNS,
revealed that the permeability of the brain capillaries in
mice is severely impaired [42]. Kanmogne et al. demon-
strated, using a two-chamber BBB model, that the expo-
sure of HBMECs to recombinant HIV-1 gp120 protein
(from either X4 and R5 HIV-1 isolates) led to activation
of proinflammatory and interferon-inducible genes, in-
creased leukocyte adhesion, decreased trans-endothelial
electrical resistance (TEER) and increased migration of
monocytes across the barrier [43,44]. Removal of gp120
resulted in complete restoration of TEER and significant
improvement in permeability. Exposure of HBMECs to
lls release toxic viral products and inflammatory cytokines leading to
f adhesion molecules. This results in the increased permeability of the
rrier. HIV-1 infiltrates the BBB early after infection [29] using HIV-infected
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gp120 in vitro resulted in increased expression of adhesion
molecules (ICAM and VCAM), damage to the barrier and
a consequent increase in monocyte migration across the
monolayer of endothelial cells [45]. There was a dose
dependent increase in cytotoxicity of HBMECs when
exposed to recombinant gp120, and gp120-mediated
HBMEC cytotoxicity has been shown to involve the p38
mitogen-activated protein (MAP) kinase pathway [46].
Thus, both HIV-1 proteins gp120 and HIV-1 Tat have

been implicated in perturbing the blood–brain barrier.
Delineating the precise roles of additional viral and host
factors that directly perturb the BBB as well as identi-
fying reliable biomarkers of BBB damage would be cru-
cial to furthering our understanding of the mechanisms
driving the pathology specific to the BBB in HAND.
Such knowledge will accelerate the development of in-
novative treatment strategies, specifically aimed at pre-
venting damage to the BBB and reducing the CNS
invasion of infected macrophages.

Mechanisms of neuropathogenesis
Although neurons cannot be infected by HIV-1, neuronal
damage is a key feature in the development of HAND [47]
Neurons are vulnerable to direct damage by several viral
proteins. This vulnerability is mainly mediated through
the presence of several neuronal cell surface receptors:
the N-methyl-D-Aspartate receptors (NMDAR), the low-
density lipoprotein receptor related protein (LRP), chemo-
kine receptors CCR5 and CXCR4, and the dopamine
transporter. Glutamate is the most abundant neurotrans-
mitter in the brain, and it is responsible for propagating
excitatory signal transmission by binding to NMDAR and
opening cation specific channels in the cell membrane,
allowing ingress of sodium and calcium ions and the
egress of potassium ions [48]. LRP is a receptor involved
in cholesterol trafficking in neurons, and also plays a role
in signal transmission and inhibition of neuronal apoptosis
[49]. Dopamine receptors and transporters are less wide-
spread than NMDAR, but are importantly found in areas
of the brain that are prone to high levels of HIV-1 infec-
tion, such as the striatum and substantia nigra, which are
involved in executive function and the behavioral reward
system [50], and there are lower expression levels of dopa-
mine transporter in the striata of HIV patients with cogni-
tive deficits [51].
The two major viral proteins that interact with the

above receptors to cause neuronal injury are gp120 and
Tat. Both monomeric and oligomeric gp120 have neuro-
toxic capabilities [52], and transgenic mice expressing
gp120 have a spectrum of neuronal and glial changes
resembling abnormalities in brains of HIV-1-infected
humans [53]. HIV-1 gp120 directly binds NMDAR on
human embryonic neurons and can cause a lethal influx
of calcium ions [54] (Figure 2). HIV-1 gp120 can bind to
either CCR5 or CXCR4 and induce death in neuroblas-
toma cells [52,55] (Figure 2). This apoptosis apparently
takes place through a p38-MAPK-mediated signaling
cascade [56]. Cognitive testing of gp120 transgenic mice
showed age-dependent deficits in open field activity and
spatial reference memory tests [57]. The natural ligands of
both CCR5 (eg. CCL5, CCL3) and CXCR4 (CXCL12) were
found to be neuroprotective against gp120 neurotoxicity
[52,55,58,59]. However, CXCL12 displays neurotoxicity
[56] after the N-terminal cleavage of a tetrapeptide in
CXCL12 by MMP-2 [60]. Another factor up-regulated by
the interaction of gp120 with CXCR4 is the neuronal nico-
tinic receptor α7, which increases cellular permeability to
[Ca2+] influx and contributes to cell death [61].
The viral protein Tat also causes neurotoxicity via mul-

tiple pathways. Similar to gp120, Tat can activate NMDA
receptors and drive the toxic influx of Ca2+ ions [62]
(Figure 3). In addition to calcium dysregulation through
the NMDAR, Tat can induce the phospholipase C-driven
activation of inositol 1,4,5-triphosphate, which increases
the intracellular levels of [Ca2+] by mobilizing stores in
the endoplasmic reticulum and contributes to calcium
toxicity and cell death [63]. Tat also binds LRP in neurons,
causing LRP internalization and a decrease in uptake of
natural LRP ligands such as amyloid-β peptide and Apoli-
poprotein E [64] (Figure 3). The interaction of Tat with
LRP can lead to the formation of an apoptosis-promoting
complex including postsynaptic density protein-95 (PSD-
95), NMDA receptors and neuronal nitric oxide synthase
(nNOS) [65]. Tat has been found to interfere with the ex-
pression of miRNAs in neurons, increasing the levels of
CREB-targeting miR-34a and leading to neuronal dysfunc-
tion [66]. Tat can also interfere with the ability of dopa-
mine transporter to reuptake dopamine [67]. This likely
contributes to the particularly severe damage rendered to
dopaminergic-rich regions in the brains of patients with
severe HAND [51].
Other toxic viral proteins which have been found to

activate caspases in neurons include Vpr [68] and Nef
[69]. Vpu has been found to form cation-selective ion
channels in a lipid bilayer membrane [70], though this
effect has not been observed in neurons. Recently, stress
pathways and accumulation of amyloid beta (Aβ) fibrils
have been reported to be important in causing neuronal
dysfunction. It has been suggested that an integrated
stress response (ISR) pathway involving specific ISR
proteins may underlie the neuroinflammatory processes
observed in HAND [71]. It has also been reported that
individuals with HIV encephalitis display a higher levels
of intraneuronal Aβ accumulation in comparison with
controls, suggesting that HIV impacts the clearance of
Aβ in the brain [72].
Targeting the above discussed mechanisms of neuronal

toxicity could yield therapies that can alleviate the



Figure 2 Mechanisms of gp120 neurotoxicity. (1) gp120 can bind to the NMDA receptor and lead to excessive opening of NMDAR-gated
cation channels, allowing the influx of calcium ions to toxic levels [54]. (2) gp120 can directly bind to either CCR5 or CXCR4, activating an
p38-MAPK mediated signaling cascade that leads to neuronal apoptosis [56]. The gp120-CXCR4 binding also up-regulates the expression of the
nicotinic receptor α7, which increases cellular permeability to [Ca2+] influx and contributes to cell death [61].
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symptoms and improve the quality of life for patients
suffering from HAND.

Macrophage and microglial activation
In addition to toxic viral proteins, HIV-1-infected macro-
phages and microglia release a variety of neurotoxic host
factors that contribute to neuronal injury. These can be
broadly categorized as proinflammatory cytokines, che-
mokines, and small molecules. The proinflammatory cyto-
kines induced by HIV-1-infection of macrophages include
TNF-α, IL-1β, IL-6, IL-8 and IFN-α. TNF-α has been
shown to also inhibit glutamate uptake by astrocytes, lea-
ding to a extracellular buildup of glutamate that can lead
to neuronal excitotoxicity [73]. TNF-α has also been
found to have a neuroprotective role, through the TNFR2
mediated activation of NF-κB through a PI3 kinase [74],
so its role is more complicated than simply that of a
neurotoxin. IL-1β is released from macrophages in re-
sponse to protein kinases induced by gp120 [75], and both
IL-1β and TNF-α were found to dysregulate glutamate
production in neurons through the induction of glutamin-
ase [76]. IL-6 is also directly induced in macrophages by
gp120, and leads to the formation of large cytoplasmic
vacuoles in neurons that disrupt neuronal function [77].
Excess levels of IFN-α have been correlated with severity
of HIV dementia [78]. Treatment of MDM with IFN-α
(or HIV-1 infection) has been reported to increase
glutaminase (GLS1) expression through phosphory-
lation of STAT1, which was shown to act through GLS1
promoter [79]. In addition to inflammatory cytokines,
small molecules released by HIV-1-infected macropha-
ges such as platelet activating factor (PAF) and quino-
linic acid play a key role in neurotoxicity via NMDAR
dysregulation [80,81].
Microglia are mesoderm-derived cells whose popu-

lation is established in the brain perinatally. They are
responsible for immune surveillance of the CNS, and are
the primary source of inflammatory cytokines in the
brain [82]. Infected microglia are thought to be the main
source of giant multinucleated cells, which are a hall-
mark of HIV associated dementia and an important
source of inflammatory cytokines in the CNS of HIV-1
patients [83]. Microglia are a major source of neuronal
excitotoxicity, releasing glutamate in response to HIV-1
infection [84]. Even in patients who are able to effec-
tively control HIV infection via ART, increased micro-
glial activation has been shown to correlate with poorer
executive performance [85]. Treatment of fetal human
microglia with recombinant Tat induces the production
of a number of chemokines, such as CCL2 and CCL5,
involved in the development of HAND [86]. Dysregulated
chemokines released from microglia have an especially po-
tent impact on neurons, due to the presence of several
chemokine receptors on neuronal cell surface, including



Figure 3 Mechanisms of Tat neurotoxicity. (1) Tat binds to the NMDA receptor and drives the phosphorylation of an intracellular NMDAR
subunit, causing excess opening of cation channels and toxic accumulation of calcium [62]. (2) When applied to neurons, Tat is able to induce
the activation of PLC and drive the IP3-mediated release of intracellular calcium from ER stores, further contributing to calcium toxicity and
apoptosis [63]. (3) Tat can bind to LRP receptors, and be taken up as part of a macromolecular complex including NMDAR and neuronal nitric
oxide synthase (nNOS) that induces cellular apoptosis [65]. Tat can also drive the internalization of the LRP receptor, reducing the uptake of LRP
receptor ligands amyloid-β peptide and Apolipoprotein E, which may contribute to systemic neuronal dysfunction [64]. (4) Tat interferes with the
activity of dopamine transporter, diminishing the reuptake of dopamine by pre-synaptic neurons and interfering with signal transmission [67].
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CCR1, CCR4, CCR5, CCR9/10, CXCR2, CXCR4, and
CX3CR1 [87].

Astrocytes: no longer a passive bystander
Over the past 10 years, a significant amount of research
has gone into understanding the extensive role played by
astrocytes in the CNS, overturning their previous status as
merely space holders, structural scaffolding, and scaven-
gers. Their newly described roles include uptake of neuro-
transmitters, modulation of synaptic transmission, BBB
maintenance, vaso-modulation, and long-term potenti-
ation. The new concept of neuronal-glial intercommunica-
tion, where astrocytes play a dynamic role by integrating
neuronal inputs and modulating synaptic activity, has
helped us better comprehend astrocyte dysfunction in the
context of HAND [88,89].
It has been recently shown that astrocytes can be in-

fected by HIV-1 in vitro, and additionally that infected
astrocytes can impair BBB function [90], but the infected
astrocytes are rarely seen in patient brain autopsies
(although one recent study has shown 20% of the astro-
cytes are infected in patients with HAD [91]). Fur-
thermore, recombinant Tat protein has been shown to
be responsible for the induction of chemokines [92],
cytokines [93] and nitric oxide synthetase [94] in cul-
tured primary human astrocytes. For example, Tat has
been shown to induce astrocytes to produce platelet-
derived growth factor BB (PDGF-BB), which in turn in-
duces the production of CCL2 [95]. HIV-1 Tat can also
up-regulate the expression of MMP-9 via MAPK-NF-
κB-dependent mechanism, and MMP-9, in turn, disrupts
the BBB [96].
Exposure of astrocytes to gp120 causes up-regulation of

IL-6 and TNF-α [97], and increases the release of gluta-
mate and potassium, which leads to toxic increases in cal-
cium in neurons and astrocytes [98]. Using Affymetrix
microarray analysis, Wang et al. showed that primary hu-
man astrocytes, when exposed to HIV-1 or gp120 in vitro,
have an impaired ability to transport L-glutamate, and the
authors ascribed this defect to transcriptional inhibition of
the EAAT2 glutamate transporter gene [99]. More re-
cently, Fernandes et al. have used an animal model to
show that gp120 prevents the uptake of extracellular glu-
tamate by astrocytes, leading to a disruption of glutamate-
glutamine homeostasis and a consequent impairment of
memory [100]. Release of toxic cytokines, inability to take
up excess glutamate and damage to the BBB make astro-
cytes a central offender in the pathogenesis of HAND.
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Neuroprotective factors
Macrophages, microglia and even neurons themselves
produce a number of neuroprotective mediators of in-
flammation. Neurotoxicity seen in HAND is the net result
of the effects of neurotoxic insults and the action of
neuroprotective host factors. In the quest to define neuro-
toxic agents responsible for HAND, the neuroprotective
processes often go unnoticed. Platelet derived growth
factor (PDGF) confers neuroprotection against gp120
toxicity by stimulating the PI3K/Akt pathway [101], and
the pretreatment of neuronal cells with PDGF-CC abro-
gated Tat-mediated neurotoxicity by mitigating apoptosis
and neurite loss [102]. Astrocytes exposed to HIV-1 or
chronically infected with HIV-1 express the tissue inhi-
bitor of metalloproteinases-1 (TIMP-1), which is shown to
have a neuroprotective role when primary human neurons
are exposed to HIV-1 [103]. It has also been reported that
exposure of astrocytes to HIV-1 gp120 induces the expres-
sion of nuclear factor erythroid-derived 2-related factor 2
(Nrf2), which plays a role in the stimulation of anti-
oxidant defensive enzymes [104].
Fractalkine (FKN/CX3CL1) is a chemokine produced by

neurons, and it plays an important role in communication
with microglia, which abundantly expresses the FKN re-
ceptor CX3CR1 (neurons also express this receptor but
less abundantly). FKN plays an important role in neuro-
protection and helps reduce gp120 toxicity via activation
of ERK1/2 and CREB (this effect was seen both in the
presence and absence of co-cultivated glial cells) [105].
Increased levels of FKN were found in the neurons of
patients with HIV encephalitis, and FKN was found to po-
tently drive the migration of monocytes across an in vitro
trans-well system, as well as inhibit the neurotoxic effects
of Tat protein in rat cerebellar neurons [106]. Also the
chemokine CCL3L1 protects against gp120 neurotoxicity
by phosphorylation of CREB, which promotes the tran-
scription of the cell-survival gene bcl-2 [107]. The routes
of action of these host mediators against viral neurotoxins
may offer potential avenues of therapeutic intervention
that capitalize on existing pathways of neuroprotection.

Host genetic determinants of neurotoxicity
Several important host gene polymorphisms have been
associated with an effect on the transmission of HIV-1
and/or AIDS disease progression (e.g., CCR5-Δ32 [108],
CCL31 [109]). Similarly, several host gene polymorphisms
have been linked with effects on the susceptibility to
neurocognitive impairment. A point mutation identified
in CCR2 (V64I) that had been associated with slower im-
munosuppressive disease progression [110], has also been
shown to be specifically associated with a slower pro-
gression of neurocognitive impairment [111]. This V64I
variant was not associated with a difference in plasma or
CSF viral load, suggesting that its impact could be
mediated through a mis-regulation of the inflammatory
response rather than through differences in viral replica-
tion. A polymorphism in the TNF-α gene increases its
production in response to bacterial LPS, and this allele has
been found in an increased frequency of patients with
HAD [112]. An allele of CCL2, 2578G confers a 50% re-
duction in risk of acquiring HIV-1 infection. However, the
same allele, subsequent to HIV infection, was also asso-
ciated with a 4.5 fold increased risk of HAD [113]. This
2578G allele resulted in a greater transcriptional output of
CCL2, which could exacerbate the development of HAND
by increasing the influx of monocytic cells in response to
CNS infection.

HAND co-morbidity with drugs of abuse
Neurocognitive disease in HIV-patients can be greatly
exacerbated by abuse of drugs such as opiates, metham-
phetamine and cocaine. Injection drug users (IDUs) are at
particular risk, as injection drug use remains an important
route of HIV-1 transmission [114]. In addition, HIV-
patients addicted to drugs of abuse are less likely to adhere
to antiretroviral drug regimens. Opioid abuse is associated
with faster HIV-1 disease progression, including increased
risks of neurocognitive problems. While the “typical” opi-
oid abuser has previously been perceived as a heroin IDU,
there is a growing problem with the rising numbers of
people abusing prescription opiates – a 2008 report indi-
cated that while 400,000 Americans used heroin within
one year, an estimated 12 million Americans abused pre-
scription opiates within the same timeframe [115]. The
mechanisms of opioid-mediated injury in conjunction
with HIV-CNS infection are well documented. μ-opiod
receptor (MOR) is one of the primary routes of opiod
signaling [116]. While morphine itself leads to the down-
regulation of MOR in cultured microglia, treatment of
microglia with morphine and Tat reverses this down-
regulation, providing a potential feed-forward mechanism
of higher numbers of MOR at the cell-surface available to
propagate further morphine-Tat mediated neurotoxicity
[117]. Doxycycline-inducible Tat transgenic mice (that
express HIV-1 Tat in astrocytes) that were administered
both doxycycline and morphine showed a marked de-
crease in the density of dendritic spines in the striatum,
compared with mice given either doxycycline or morphine
alone [118]. PDGF-BB was also able to protect human
neurons from synergistic Tat/morphine damage by inhi-
biting production of ROS and caspase-3 through the acti-
vation of the PI3K pathways [119].
Morphine also acts synergistically with gp120 to pro-

mote neuronal death through p38 MAP kinase signaling
[120]. Mice that were transgenic for gp120 and subjected
to morphine withdrawal failed to normalize oxidative
capacity compared with non-transgenic mice subjected to
morphine withdrawal. The same study also found failure
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to recover from synaptic damage in gp120-transgenic
mice experiencing withdrawal compared with non-trans-
genic mice [121]. Tat-induced release of CCL2 from astro-
cytes is further enhanced by morphine, and can increase
the chemotactic migration of a microglial cell line towards
affected astrocytes [122]. HIV-1 patients using opiates
were found to have higher levels of microglial activation
in their brains [123]. There is also evidence of opioid use
having an effect on HIV-1 infection and replication:
morphine significantly enhanced the infectivity of human
macrophages, possibly by an increase in CCR5 expression
[124]. A more recent study showed that treatment of
monocytes with morphine down-regulated several anti-
HIV-1 microRNAs, which rendered the monocytes more
susceptible to infection [125]. Administration of morphine
to rhesus macaques before infection with SIV resulted in a
higher viral set point compared with a non-morphine con-
trol group [126].
Methamphetamine (METH) use has been found to ex-

acerbate brain injury and neuronal loss in HIV-1 patients,
particularly in populations of interneurons in dopamin-
geric areas (DA) where the drug acts on the behavioral
reward system [127]. METH potentiates a Tat-mediated
decrease in dopaminergic release in the cultured human
fetal neurons [128]. In the human neuroblastoma cell line
SH-SY5Y, treatment with both METH and Tat produced
significantly higher levels of both apoptosis and formation
of autophagosomes than either factor by itself [129]. In
cultured human astrocytes, METH was found to potenti-
ate the gp120-mediated release of the pro-inflammatory
cytokine IL-6, mediated through the PI3K/Akt and NF-κB
pathways [130]. Treatment of METH on astroglioma cells
transfected with a Tat expression construct exacerbated
Tat-induced down-regulation of the neuroprotective factor
β-catenin [131]. Furthermore, HIV-patients using METH
were found to have significantly higher viral loads than
non-METH users. This was found to be a result of the
interference of METH with antiretroviral therapy [132].
METH also interferes with the normal antigen processing
and phagocytic functions of macrophages [133], enhances
the susceptibility of macrophages to HIV-1 infection by
up-regulation of CCR5 [134] and increases HIV-1 replica-
tion in CD4 T cells and monocytes [135].
Cocaine is also known to accelerate the pathology of

HAND. The drug binds the dopamine transporter and
reduces the rate of dopamine uptake. Cocaine poten-
tiates Tat-mediated neurotoxicity through the action at
D1 receptors [136], Cocaine administration to SHIV-
infected simian macrophages enhanced viral replication
through increases in NF-κB signaling and IL-10 [137],
and cultured human endothelial cells exposed to cocaine
experienced an up-regulation in adhesion molecules,
resulting in increased monocyte transmigration across
the BBB [138].
Interestingly, according to recent studies cannabinoids
(CB) appear to actually mediate a degree of neuroprotec-
tion in the context of CNS-HIV-1 damage. Synthetic
CBs acting on the CB2 receptor (CB2-R) were able to
mitigate gp120-induced damage in both human dopa-
minergic neurons and CB-2R expressing microglia [139],
and a CB2 agonist was found to rescue deficits in neuro-
genesis seen in gp120-expressing transgenic mice [140].

Viral genetic determinants
HIV-1 is phylogenetically divided into four groups: M, N, O
and P, each representing a successful zoonotic event from
primates – group M being the most widespread. Group M
is further divided into subtypes A, B, C, D, F, G, H, J, K as
well as a number of circulating recombinant forms (CRFs)
of these subtypes. The global distribution of HIV-1 sub-
types is region-specific, with a given geographical region
correlating with the presence of a distinct subtype, a CRF
or a particular combination of subtypes and CRFs [141].
Such a highly region-specific distribution is thought to be
due either to a founder effect, to host-population genetics
selecting for specific subtypes of HIV-1, or a combination
of both [142]. Region-specific subtype-distribution has
allowed researchers to correlate region-specific disease se-
verity to subtype-specific viral gene polymorphisms, as
documented in clinical studies. For example, reports from
India, where HIV-1 subtype C is the predominant subtype,
pointed to a lower incidence (0 - 4%) of severe forms of
HAD [143,144], in contrast to geographic regions where
subtype B HIV-1 is prevalent, which reported pre-HAART
incidence levels of 15 - 30% [145,146].
Our laboratory previously investigated whether genetic

differences between the circulating isolates are responsible
for the wide variation in incidence of HAD in different
geographic regions. We reported that a majority (88%) of
HIV-1 subtype C isolates worldwide have a Tat protein
with a Cys31Ser polymorphism that disrupts a dicysteine
motif, which is a key element of Tat protein’s homology to
β-chemokines [147] (Figure 4). In contrast, the Tat pro-
teins encoded by 99% of non-subtype C HIV-1 isolates
maintained a C31 residue at that position. We demon-
strated that Tat protein of subtype C HIV-1 isolates with a
C31S polymorphism is defective for monocyte chemotaxis
function in vitro [147]. As the infiltration of monocytic
cells to the brain is a hallmark of HAD and plays a central
role in triggering the inflammatory onslaught on neurons,
we hypothesized that the C31S polymorphism in Tat pro-
tein of subtype C HIV-1 isolates contributes to the me-
chanistic basis for low incidence of HAD reported in
India, as fewer monocytic cells would migrate to brain
and result in little neuronal damage.
In subsequent studies, several other groups have showed

that recombinant subtype C Tat protein has a decreased
potential for direct neurotoxicity [149,152] and a decreased



Figure 4 Contribution of the dicysteine motif in Tat to neuropathogenesis. (1) Tat is secreted by infected macrophages and microglia in the
vincity of the blood brain barrier resulting in damage to the integrity of the barrier. Dicysteine Tat can act as a ligand on certain chemokine receptors
expressed by circulating monocytes (i.e. CCR2, CCR3, CCR5), and promote monocyte migration across the BBB into the CNS [148]. Clade C Tat lacking
the intact dicysteine motif fails to attract monocytes in a two chamber migration assay [149]. (2) Dicysteine Tat (TatB but not TatC) also induces higher
expression of CCL2 and activation marker CD40 in microglial cells than non-dicysteine Tat [150]. (3) When applied to astrocytes, dicysteine Tat induces
higher levels of CCL2 [149] and in HIVE SCID Mouse model astrogliosis is more pronounced in the presence of HIV-1 with an intact dicysteine motif
[151]. (4) In neurons, it has been proposed that the Cys31 in the Tat dicysteine motif specifically disrupts the disulfide bond between Cys 744 and Cys
798 on the NR1 subunit of the NMDA receptor, leading to persistent activation of the NMDA receptor [152]. The increase in Tat-mediated apoptosis in
dicysteine Tat is also seen in human primary neurons (mediated by increased levels of cleaved caspase-3), in addition to higher levels of ROS and
increased levels of mitochondrial depolarization [149]. Primary Human neurons exposed to viral supernatants from HIV-1 with intact dicysteine motif
exhibit neuronal apoptosis and HIV-1 SCID mice exposed to the same supernatants have cognitive dysfunction [151].
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ability to induce inflammatory chemokine and cytokines
[153-155]. In order to examine whether the C31S poly-
morphism is associated with biological differences in neu-
ropathogenesis, we compared cognitive dysfunction and
pathological changes induced by representative subtype C
and B isolates in a SCID mouse HIV encephalitis (SCID-
HIVE) model [155]. This allowed us to compare two
genetically distinct HIV-1 isolates employing a single host
genetic background. These studies revealed that subtype
C isolates with a C31S polymorphism have lower potential
to cause neuropathology and cognitive dysfunction [155]
(Figure 4). In primary monocytes, subtype B Tat was
found to induce higher amounts of pro-inflammatory fac-
tors than subtype C Tat, such as TNF, IL-6, CCL2, and
IDO (an enzyme in the kynurenine pathway that leads to
production of neurotoxic quinolinic acid) [153]. HIV-1
TatB has also been shown to disrupt the integrity of brain
microvascular endothelial cells to a greater extent com-
pared to Tat C [156]. Also, TatB, compared with TatC, can
induce higher levels of IDO in human primary astrocytes
[157], and TatB also induces higher levels of CCL2 in
microglia [150] and primary astrocytes than TatC (this
higher CCL2 induction was specifically associated with
the presence of the dicysteine motif) [149] (Figure 4).
Astroglioma cells that were either transfected with a
Tat expression construct or treated with recombinant Tat
showed a decrease in β-catenin, a transcriptional co-
activator in the Wnt signaling pathway involved in
neuroprotection. This β-catenin decrease was specific to
the dicysteine motif in Tat, as neither TatC nor a TatB
mutant with a disrupted dicysteine motif (C30G) were
able to bring about this decrease [158].
The low incidence of HAD caused by subtype C HIV-1

in India was further corroborated by the absence of HAD
in Ethiopia, as measured by neurocognitive tests using
International HIV Dementia (IHD) scale. Subtype C HIV-1
is also widespread in the Southern African countries.
Interestingly, however, recent cohort studies in South
Africa and Botswana, where C is the predominant sub-
type, showed that the incidence of HAD is much higher
than that in India at 25 and 38% respectively [159-162]. In
light of our earlier findings indicating reduced neu-
ropathogenicity for subtype C HIV-1 [155], we were in-
trigued by the increased incidence data reported for
subtype C HIV-1 cohorts in Southern Africa. While it
may be generally assumed that subtype C HIV-1 from
different regions of the world are highly related, studies on
the phylogenetic and molecular clock analysis of gp120
sequences of Indian HIV-1 isolates have shown that their
origin in India occurred much later than that of South
African subtype C HIV-1 [163,164]. Therefore, we initi-
ated a multi-site study to investigate phylogenetic dif-
ferences between Southern African (South Africa and
Zambia) and South Asian (India and Bangladesh) subtype
C HIV-1 isolates. Our results showed that, with respect
to both the whole virus genome sequence as well as
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sequences encoding Tat protein, the Indian HIV-1C
isolates are genetically distinct from those in Southern
Africa. More importantly, HIV-1C isolates with an intact
dicysteine motif in Tat protein (C31) were quite rare (2 -
3%) in India, while they were significantly more frequent in
the Southern African countries (11 - 26%). Thus, the
frequency of HIV-1C isolates with a C31 in Tat broadly
paralleled the incidence of HAD in these countries. Neuro-
cognitive tests in SCID-HIVE mice, using a representative
subtype C from Southern Africa (HIV-11084i) with an intact
dicysteine motif in Tat (C31) and comparing it to subtype
C from India (HIV-1IndieC1) lacking an intact dicysteine
motif in Tat (C31S), showed that mice exposed to subtype
C from Southern Africa exhibited significantly greater
cognitive dysfunction compared to subtype C from India
[151], especially when the testing paradigm presented a
higher level of memory load. These findings lead to three
main conclusions. One, intra-subtype variation exists and
such variation can involve viral genes in HIV-1 that play a
direct role in neurotoxicity. Two, it is more accurate to
correlate differential disease outcomes in two geographical
regions being compared, to differences in neurovirulence
signatures rather than to differences in subtypes as a whole.
Three, once further confirmed in a clinical study, it should
be possible to perform a genetic screening in a subtype C
HIV-1 epidemic for Tat genotype to gauge the risk of
neurological dysfunction at the time of initial diagnosis.
Additional genetic determinants in Tat, other than C31,

that play a crucial role in the pathogenesis of HAND are
unknown, but are likely to exist. Further studies on dif-
ferential neuropathogenesis potential of HIV-1 variants in
different geographic regions will be informative. Similarly,
considering the fact that gp120 causes neuropathogenesis
via multiple pathways, it is also possible that there are
genetic differences in gp120 between viral variants in their
ability to cause HAND via gp120-mediated neurotoxicity.
Identification of such variants and their impact on the
pathogenesis of HAND will help dissect the various types
of neurotoxic insults involving different cellular receptors
and develop better therapeutics and/or diagnostics.

Treatment modalities for HAND
HAART significantly lowers the viral load in both the
periphery and the CNS, and has been crucial in signifi-
cantly decreasing the incidence and prevalence of severe
forms of HAND [165]. However, recent clinical studies
and a meta-analysis [1,166,167] in patients on HAART
revealed milder forms of neurological dysfunction (ANI
& MND) in greater than half of HIV-positive patients. In
studies examining individuals with ART-controlled HIV
viremia, HIV DNA in PBMCs correlated with regional
brain atrophy highlighting the contribution of peripheral
viral reservoirs to CNS pathology [168]. Even the modi-
fied HAART regimens that include drugs with better
CNS penetration effectiveness (CPE) scores, termed
neuro-HAART, have had limited success among patients
[169-171]. Researchers have suggested various approaches
to targeting latent CNS HIV reservoirs and sources of
neuroinflammation such as cytokines, chemokines and
oxidative stress that are in play inside the CNS and are re-
fractory to antiretrovirals. Use of anti-inflammatory and
anti-excitotoxic drugs like Minocycline (second-gene-
ration tetracycline derivative) [172] and Memantine (volt-
age-dependent, open channel NMDAR blocker) [173],
that can cross the BBB at substantial levels and that have
been shown to be neuroprotective in SCID HIVE mice
and SIV models, are currently being investigated as adju-
vants to treat HAND. Several neuroprotective factors,
both endogenous (as discussed above) and exogenous
(e.g., pDING; [174]) are also being proposed as alternate
treatments, with a focus towards eliminating neuroin-
flammation caused by exposure to HIV-1 [101-103]. Intra-
nasal delivery of neurotropic protective factors such as
insulin, IGF-1 and neurotrophin has been shown to miti-
gate many of the behavioral and pathological deficits in
gp120 transgenic mice [175]. In vitro studies, using in-
novative delivery techniques such as gold and lipid based
nano-particles, have been shown to be effective in de-
livering HAART and anti-inflammatory/anti-excitotoxic
agents across the blood brain barrier [176] to specifically
target CNS reservoirs. NanoART treatments in humanized
mice reduced viral loads and protected CD4 T-cell popula-
tions [177]. Natalizumab, a monoclonal antibody against
alpha-4-integrin known to block trafficking of leukocytes
across the blood–brain barrier, has been shown to be ef-
fective in preventing HIV-1 infected cells from breaching
the BBB in a SIV model by Campbell and colleagues [178].
These new and innovative treatments, in combination with
Neuro-HAART, could be useful in treating HAND in the
aging at-risk HIV-1 infected population. Thus, current
approaches to intervention of HAND include not only the
careful choice of antiretrovirals with better CNS penetra-
tion and efficacy, but also the future use of neuroprotective
agents or the modulation of neuroprotective host factors.

Conclusions
Our precise understanding of host factors that mediate the
neurotoxic insult launched by exposure of CNS to HIV-
1-infected cells, HIV-1 or specific HIV-1 proteins has
increased in the recent past. In addition to increased know-
ledge about the pathways of neurotoxicity, we are also
learning about the regional genetic variations in viral genes
leading to intra-clade, region specific differences in disease
severity. The discussion above clearly indicates that numer-
ous opportunities exist to specifically block the neuro-
toxicity of viral and host proteins as well as potential
neuroprotective factors that could be augmented to help
alleviate the negative impact of HIV-1 on the brain.
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